Equivalence of AlgebraicA -calculi
— extended abstract-

Alejandro Diaz-Caro Simon Perdrix
LIG, Université de Grenoble, France CNRS, LIG, Université de Grenoble, France
Alejandro.Diaz-Caro@imag.fr Simon.Perdrix@imag.fr
Christine Tasson Benoit Valiron
CEA-LIST, MeASI, France LIG, Université de Grenoble, France
Christine.Tasson@cea.fr Benoit.Valiron@imag.fr

We examine the relationship between tiigebraicA -calculus(A4g) [9] a fragment of the differen-
tial A-calculus[[4]; and thdinear-algebraicA -calculus(A;,) [, a candidatet -calculus for quan-
tum computation. Both calculi are algebraic: each one ispgead with an additive and a scalar-
multiplicative structure, and the set of terms is closedaurithear combinations. We answer the
conjectured question of the simulation Adig by Ajin [2] and the reverse simulation @fi, by Aayg.
Our proof relies on the observation that, is essentially call-by-value, whil&, g is call-by-name.
The former simulation uses the standard notion of thunkdélevthe latter is based on an algebraic
extension of the continuation passing style. This resultstep towards an extension of call-by-value
/ call-by-name duality to algebraic-calculi.

1 Introduction

Context Two algebraic versions of the-calculus arise independently in distinct contexts: tlgelbiaic
A-calculus Qag) and the linear algebraikt-calculus fin). The former has been introduced in the context
of linear logic as a fragment of the differenti&lcalculus. The latter has been introduced as a candidate
A-calculus for quantum computation: X,, a linear combination of terms reflects the phenomenon of
superposition, i.e. the capability for a quantum systemetonbiwo or more states at the same time.

Linearity of functions and argumentdn both languages, functions which are linear combinatioh
terms are interpreted pointwiséa.f + 3.9) x= a.(f) x+ 3.(g) x, where “” is the external product.
The two languages differ on the treatment of the argumems)id, any function is considered as a
linear map: (f) (a.x+ B.y) —; a.(f) x+ B.(f) y, reflecting the fact that any quantum evolution is
a linear map; whiledyy has a call-by-name evolutioniAxM) N —5 M[x := N], without restriction
on N. As a consequence, the evolutions are different as illigsirby the following example. 1Aji,,
(AX(X) X) (a.y+B.z) —; a.(y) y+ B.(2) zwhile in Aag, (AX(X) X) (a.y+B.2) —a (a.y+B.2) (a.y+
B.2) =a a2.(y) y+ (aB).(y) z+ (Ba).(2) y+ B2.(2) 2

Simulations These two languages behave in different manner. An esseputéstion is whether they
would nonetheless be equivalent (and in which manner). édda positive answer would link two
distinct research areas and unify works done in linear lagit works on quantum computation. It has
been conjectured]2] thali, simulatesAag. Our contribution is to prove it formally (Secti@nB.1) and
to provide also the other way around proof Xfy simulating Ajn (SectionC3R). The first simulation

*A full version of this paper with all the proofs is availablethe arXiv

© A. Diaz-Caro, S. Perdrix, C. Tasson & B. Valiron
This work is licensed under the
Creative Commoris Attribution License.

HOR 2010
EPTCS ?2, 20?2, pp.[-6, d0i:10.4204/EPTCS22.2?

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Equivalence of Algebraig -calculi

uses the encoding, known as “thunk” in the folkloré [6], whis based on “freezing” the evaluation
of arguments by systematically encapsulating them inttratitons (that is, making them into values).
It has been extensively studied in the case of the regulégypad lambda-calculu$i[5]. The other way
around is based on an algebraic extension of continuatissimstyle encodind[8].

Modifications to the original calculi In this paper we slightly modify the two languages. The ueiq
modification toAag consists in avoiding reduction unda; so that for anyM, AxM is a value. As a
consequence) is not linear:Ax(a.M + B.N) # a.AxN+ B.AxN. In Aj,, we restrict the application
of several rewriting rules in order to make the rules moreeceht with a call-by-value leftmost-redex
evaluation. For instance, the ry® +N) L —, (M) L+ (N) L is restricted to the case where bdtht- N
andL are values.

Finally, several distinct techniques can be used to makelgabiic calculus confluent. Ay,
restrictions on reduction rules are introduced, eagM + .M —, (a + 3).M if M is closed normal.
In Aag @ restriction to positive scalars is proposed. Finally, cae use a typing system to guarantee
confluence. In this paper, we assume that one of these temsigwithout specifying explicitly which
one — is used to make the calculi confluent.

2 Algebraic A-calculi

The languaged i, andA,g share the same syntax, defined as follows:

M,N,L == V|(M)N|M+N|a.M (terms),
Uuvw == 0|B|a.B|V+W (values),
B = x|AxM (basis terms).

wherea represents scalars which may themselves be defined by a tammgr, and endowed with a
term rewrite system compatible with their basic ring operst (+, x). Formally it is captured in the
definition [, sec. Ill — def. 1] of a scalar rewrite systemt far our purpose it is sufficient to think of
them as a ring.

The main differences between the two languages ar@iteduction and the algebraic linearity of
function arguments.),V andW are values, an8 is a basis term, the rules are defined by:

(AXM)N —5 M[x:=N] By

AXM)B —; Mx:=B] By,

U) (VW) = (U)VHU)W
V) (aW) —; a. (V)W Yain »
V)0 —, 0 Vain -

In both languagest- is associative and commutative, i@®1+N)+L=M+ (N+L)andM+N =
N + M. Notwithstanding their different axiomatizations — onesdséh on equations and the other one on
rewriting rules — linear combination of terms is treatedhie same way: the set of terms behaves as a
module over the ring of scalar in both languages.

In Aaq the following algebraic equality is defirfd

1 The reader should not be surprised by noticing that two tefmisare equal undet, may reduce to terms that are not
equal any more. Indeed, itis already the case with the sijoshequality of theA -calculus.

A. Diaz-Caro, S. Perdrix, C. Tasson & B. Valiron 3

M+N)L =2 (M)L+(N)L (Aag) @.(BM) =a (@xB)M (Aag)
(a.M)N =5 a.(M)N (Aalg) OM =, 0 (Aalg)
0+M =4 M (Aalg) IM = M (Aalg)
a.M+N) =5 a.M+a.N (Aalg) OM =, O (Aalg)
aM+BM =, (a+pB).M (Aalg) a0 =, O (Aalg)

In the opposite, the ring structure and the linearity of flonts inAj, are provided by reduction rules.
LetU,V andW stand for vaIu& the rules are defined as follows.

U+V)W —; U)V+V)W (Ajn) 0+M —, M (Alin)
(aV)W —; a.(V)W (Alin) a.(BM) —; (axB).M (Ajn)
a.(M+N) —, aM+a.N (Alin) OV —, 0 (Alin)
aM+BM —; (a+B)M (Alin) iM -, M (Alin)
aM+M —; (a+1).M (Alin) OM —, O (Alin)
M+M —;, (14+1).M (Alin) a0 —, O (Alin)
The context rules for both languages are
M— M M — M N— N M— M
(M)N— (M) N M+N—M+N M+N—-M+N aM—aM
together with the additional context rule only foy,
M —; M’
V)M = (V)M

The B-reduction ofA,g corresponds to a call-by-name evaluation, while freeduction ofAji,
occurs only if the argument is a basis term, i.e. a variablenasbstraction. Thgrules, only available
in Ajin, allows linearity in the arguments.

3 Simulations

3.1 Ajin simulatesAgyg

We consider the following encodin) : Aaig — Aiin. The variablesf andz are chosen fresh.

@ = 0o (M)N) = ((M)) Az(N),
K = ®f, (M+N) = (M)+(N),
(AxM) = Ax(M), (aM) = a.(M).

One could be tempted to prove a result in the linéVof~, N implies (M) —; (N)). Unfortunately
this does not work. Indeed, the encoding brings “admirtisgaredexes, as in the following example
(wherel = AxX). Although(AxAy(y) X) | —aAy(y) I,

((AxAy(y) x) 1) = (AxAy((y)) (Az(x)) (AzAx(x) f) =7 Ay((y) f) (Az(AzAX(X) f) f),

Ay 1) =Ay((y) f) (AzAx(x) f)
are not equal: there is an “administrative” redex hidderefirst expression. This redex does not bring
any information, it is only brought by the encoding.

In order to clear these redexes, we define the Admin as follows.

2Notice that inAji, a value is not necessarily in normal form. For instance theevaxx-+ Axx reduces to 2xx. The
reductions of values result solely from the ring structarg] all values are normalizing terms.

4 Equivalence of Algebraig -calculi

Admin0 = 0, AdminMAixM = AxAdminM
Adminx = x, AdminM+N = AdminM+ AdminN
AdminAfM) f = AdminM Admina.M = a.AdminM

Admin(M)N = (AdminM) AdminN

Theorem 3.1 For any program (i.e. closed term) M, if M>3 N and(N|) —; V for a value V, then there
exists M such that(M) —; M" and AdminM= AdminV .

Proof Proof by induction on the derivation M —4 N. O

Lemma 3.2 If W is a value and M a term such that Admin®Admin M, then there exists a value V
such that M—; V and AdminW= AdminV .

Lemma 3.3 If V is a closed value, thefV) is a value.

Theorem 3.4 (Simulation) For any program (i.e. closed term) M, if M- V a value, then there exists
avalue W such thaiM) —; W and AdminW= Admin(V|).

Proof The proof is done by induction on the size of the sequencedofateonsM —; V. If M =V, this is
trivially true by choosingV = (V)), which is a value sinc¥ is closed, by Lemma33.3. Now, suppose the
result true for the reductioN —;V and suppose th&il —, N. By induction hypothesigiN) —; W, for
some valu&V such thathdminW= Admin(V|). From Theorerfi 311, there exid#& such tha{M) —; M’
andAdminM = AdminW. From Lemmd_3]2, without loss of generality we can chooseNHito be a
valueW’. This closes the proof of the theorem: we have indeed thdigg@alminW = Admin(V)). O

3.2 Aag simulatesAji

To prove the simulation ofji, with A5 we use the following encoding. This is an algebraic extansio
of the continuation passing style used to prove that caidoye simulates call-by-value in the regular
A-calculus [[8].

Let [-] : Ain — Aayg be the following encoding. The variablésg andh are chosen fresh.

X = Af(f)x [(M)N] = Af([M]) Ag([N]) Ah((g) h) f,
[0] = O [a.M] = Af(a.[M]) f,
[AXM] = Af(f) Ax[M], [M+N] = Af([M]+[N]) f.
Let W be the encoding for values defined by:
Yx) = X YaV) = aW¥V),
Yo =0 YV +W) = YV)+W¥YW).

YAxM) = Ax[M],
Using this encoding, it is possible to prove thgg simulatesA;i, for any program reducing to a value:

Theorem 3.5 (Simulation) For any program M, if M—} V where V is a value, then
[M] (Axx) —5 W(V).

Thanks to the subtle modifications done to the original algielcalculi (presented in the introduc-
tion), the proof in [[8] can easily be extended to the algebcaise. We first define a convenient infix
operation () that captures the behaviour of the transleeds. For example, B is a base termi,e. a
variable or an abstraction, then its translation ihfg is [B] — A f (f) W(B). If we apply this translated
term to a certairk, we obtain f (f) W(B) K —; K W(B). We capture this by defininB: K = K ¥(B).

In generalM : K is the reduction of thé, g term[M] K, as Lemm&3]7 states.

A. Diaz-Caro, S. Perdrix, C. Tasson & B. Valiron 5

Definition 3.6 Let(:) : Ay, x Ay, — /Ay, be the infix binary operation defined as follows:
B:K=(K)¥(B) (with B a base term),
(M)N:K=M:Ag([N])Ah((g) h)K (with M not a value),
(M)N:K=N:Af(WM)) I K (with M, but not N being a value),
(M)N:K=((WM)) W(N)) K (with M a value, and N a base term),
(M) (N1 +Np) : K=((M)N71+ (M) Np) : K (with M and N + N values),

(M) (a.N):K=a.(M)N:K (with M anda .N values),
(M)0:K=0 (with M a value),
(M+N):K=M:K+N:K,

aM:K=a.(M:K),

0:K=0.

Lemma 3.7 If K is a value, thervM, [M]K —} M : K.
Lemma 3.8 If M —, N thenvK value, M: K =% N : K

The proof of the Theorein 3.5 is now stated as follows.

Proof of Theoreri-315-rom Lemmd3]7[M] (Axx) reduces tM : (Axx). From Lemmd318, it reduces
toV : (Axx). We now proceed by structural induction ¥n

e LetV be a base term. Thah: (Axx) = (Axx) W (V) — P(V).

e LetV =Vi+Vo. ThenV : (Axx) =Vq : (AxX) + V2 : (AxX), which by the induction hypothesis,
reduces taP (V1) + W(Vo) = W(V).

e LetV =a.V'. ThenV : (Axx) = a.(V': (Axx)), which by the induction hypothesis, reduces to
a.PV)=W(V).
O

4 Conclusion and perspectives

In this paper we proved the conjecturéd [2] simulation\gd by A, and its inverse, on valid programs
(that is, programs reducing to values), answering an opestipun about the equivalence of the algebraic
A-calculus Qayg) [9] and the linear-algebraig-calculus fjin) [1].

As already shown by Plotkin]8], if the simulation of callHvglue by call-by-name is sound, it fails
to be complete for general (possibly non-terminating) petots. To make it complete, a known solution
is to consider the problem from the point of view of Moggi'snmoutational calculus [7]. A direction
for study is to consider an algebraic computatiohatalculus instead of a general algebraicalculus.
This raises the question of finding a correct notion of mormadchpturing both algebraicity and non-
termination in the context of higher-order structures. #eo direction of study is the relation between
the simulation of call-by-name by call-by-value using tksiand the CPS encoding. A first direction of
study is [5]

Concerning semantics, the algebraicalculus admits finiteness spaces as a madel [3]. What is the
structure of the model of the linear algebraicalculus induced by the continuation-passing style trans
lation in finiteness spaces? The algebraic lambda-cal@ande equipped with a differential operator.
What is the corresponding operatorAi, through the translation?

6 Equivalence of Algebraig -calculi

References

[1] Pablo Arrighi & Gilles Dowek (2008)Linear-algebraic lambda-calculus: higher-order, encogs, and con-
fluence In: Andrei Voronkov, editorRTA 2008 Lecture Notes in Computer Sciens®l7, Springer, Hagen-
berg, Austria, pp. 17-31.

[2] Pablo Arrighi & Lionel Vaux (2009)Embeding AlgLam into LineaPrivate communication.
[3] Thomas Ehrhard (2005Finiteness spaceMathematical Structures in Computer Scieh6é4), pp. 615—646.

[4] Thomas Ehrhard & Laurent Regnier (2003he differential lambda-calculug heoretical Computer Science
309(1), pp. 1-41.

[5] John Hatcliff & Olivier Danvy (1997) Thunks and the lambda-calculudournal of Functional Programming
7(03), pp. 303-319.

[6] Peter Zilahy Ingerman (1961)Thunks: a way of compiling procedure statements with somaents on
procedure declarationsCommunication of the ACM(1), pp. 55-58.

[7]1 Eugenio Moggi (1989)Computational Lambda-Calculus and Monada: LICS, IEEE Computer Society,
pp. 14-23.

[8] Gordon D. Plotkin (1975):Call-by-name, call-by-value and the lambda-calculusheoretical Computer
Sciencél(2), pp. 125-159.

[9] Lionel Vaux (2009):The algebraic lambda calculusathematical Structures in Computer Scieh®€5), pp.
1029-1059.

	Introduction
	Algebraic lambda-calculi
	Simulations
	Lineal simulates Alg
	Alg simulates Lineal

	Conclusion and perspectives

