
HOR 2010
EPTCS ??, 20??, pp. 1–6, doi:10.4204/EPTCS.??.??

c© A. Dı́az-Caro, S. Perdrix, C. Tasson & B. Valiron
This work is licensed under the
Creative Commons Attribution License.

Equivalence of Algebraicλ -calculi
– extended abstract∗–

Alejandro Dı́az-Caro
LIG, Université de Grenoble, France

Alejandro.Diaz-Caro@imag.fr

Simon Perdrix
CNRS, LIG, Université de Grenoble, France

Simon.Perdrix@imag.fr

Christine Tasson
CEA-LIST, MeASI, France

Christine.Tasson@cea.fr

Benoı̂t Valiron
LIG, Université de Grenoble, France

Benoit.Valiron@imag.fr

We examine the relationship between thealgebraicλ -calculus(λalg) [9] a fragment of the differen-
tial λ -calculus [4]; and thelinear-algebraicλ -calculus(λlin) [1], a candidateλ -calculus for quan-
tum computation. Both calculi are algebraic: each one is equipped with an additive and a scalar-
multiplicative structure, and the set of terms is closed under linear combinations. We answer the
conjectured question of the simulation ofλalg by λlin [2] and the reverse simulation ofλlin by λalg.
Our proof relies on the observation thatλlin is essentially call-by-value, whileλalg is call-by-name.
The former simulation uses the standard notion of thunks, while the latter is based on an algebraic
extension of the continuation passing style. This result isa step towards an extension of call-by-value
/ call-by-name duality to algebraicλ -calculi.

1 Introduction

Context. Two algebraic versions of theλ -calculus arise independently in distinct contexts: the algebraic
λ -calculus (λalg) and the linear algebraicλ -calculus (λlin). The former has been introduced in the context
of linear logic as a fragment of the differentialλ -calculus. The latter has been introduced as a candidate
λ -calculus for quantum computation: inλlin , a linear combination of terms reflects the phenomenon of
superposition, i.e. the capability for a quantum system to be in two or more states at the same time.

Linearity of functions and arguments. In both languages, functions which are linear combinations of
terms are interpreted pointwise:(α . f + β .g) x = α .(f) x+ β .(g) x, where “.” is the external product.
The two languages differ on the treatment of the arguments. In λlin , any function is considered as a
linear map: (f) (α .x+ β .y) →∗

ℓ α .(f) x+ β .(f) y, reflecting the fact that any quantum evolution is
a linear map; whileλalg has a call-by-name evolution:(λxM) N →a M[x := N], without restriction
on N. As a consequence, the evolutions are different as illustrated by the following example. Inλlin ,
(λx(x) x) (α .y+ β .z) →∗

ℓ α .(y) y+ β .(z) z while in λalg, (λx(x) x) (α .y+ β .z) →a (α .y+ β .z) (α .y+
β .z) =a α2.(y) y+(αβ).(y) z+(βα).(z) y+ β 2.(z) z.

Simulations. These two languages behave in different manner. An essential question is whether they
would nonetheless be equivalent (and in which manner). Indeed, a positive answer would link two
distinct research areas and unify works done in linear logicand works on quantum computation. It has
been conjectured [2] thatλlin simulatesλalg. Our contribution is to prove it formally (Section 3.1) and
to provide also the other way around proof ofλalg simulatingλlin (Section 3.2). The first simulation

∗A full version of this paper with all the proofs is available in the arXiv

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Equivalence of Algebraicλ -calculi

uses the encoding, known as “thunk” in the folklore [6], which is based on “freezing” the evaluation
of arguments by systematically encapsulating them into abstractions (that is, making them into values).
It has been extensively studied in the case of the regular, untyped lambda-calculus [5]. The other way
around is based on an algebraic extension of continuation passing style encoding [8].

Modifications to the original calculi. In this paper we slightly modify the two languages. The unique
modification toλalg consists in avoiding reduction underλ , so that for anyM, λxM is a value. As a
consequence,λ is not linear:λx(α .M + β .N) 6= α .λxN+ β .λxN. In λlin , we restrict the application
of several rewriting rules in order to make the rules more coherent with a call-by-value leftmost-redex
evaluation. For instance, the rule(M +N) L →ℓ (M) L+(N) L is restricted to the case where bothM +N
andL are values.

Finally, several distinct techniques can be used to make an algebraic calculus confluent. Inλlin ,
restrictions on reduction rules are introduced, e.g.α .M + β .M →ℓ (α + β).M if M is closed normal.
In λalg a restriction to positive scalars is proposed. Finally, onecan use a typing system to guarantee
confluence. In this paper, we assume that one of these techniques – without specifying explicitly which
one – is used to make the calculi confluent.

2 Algebraic λ -calculi

The languagesλlin andλalg share the same syntax, defined as follows:

M,N,L ::= V | (M) N | M +N | α .M (terms),
U,V,W ::= 0 | B | α .B | V +W (values),

B ::= x | λxM (basis terms).

whereα represents scalars which may themselves be defined by a term grammar, and endowed with a
term rewrite system compatible with their basic ring operations (+,×). Formally it is captured in the
definition [1, sec. III – def. 1] of a scalar rewrite system, but for our purpose it is sufficient to think of
them as a ring.

The main differences between the two languages are theβ -reduction and the algebraic linearity of
function arguments. IfU,V andW are values, andB is a basis term, the rules are defined by:

(λxM) N →a M[x := N] βλalg
,

(λxM) B →ℓ M[x := B] βλlin
,

(U) (V +W) →ℓ (U) V +(U) W γλlin
,

(V) (α .W) →ℓ α .(V) W γλlin
,

(V) 0 →ℓ 0 γλlin
.

In both languages,+ is associative and commutative, i.e.(M +N)+L = M +(N+L) andM +N =
N + M. Notwithstanding their different axiomatizations – one based on equations and the other one on
rewriting rules – linear combination of terms is treated in the same way: the set of terms behaves as a
module over the ring of scalar in both languages.

In λalg the following algebraic equality is defined1:

1 The reader should not be surprised by noticing that two termsthat are equal under=a may reduce to terms that are not
equal any more. Indeed, it is already the case with the syntactical equality of theλ -calculus.

A. Dı́az-Caro, S. Perdrix, C. Tasson & B. Valiron 3

(M +N) L =a (M) L+(N) L (λalg) α .(β .M) =a (α ×β).M (λalg)
(α .M) N =a α .(M) N (λalg) (0) M =a 0 (λalg)

0+M =a M (λalg) 1.M =a M (λalg)
α .(M +N) =a α .M + α .N (λalg) 0.M =a 0 (λalg)

α .M + β .M =a (α + β).M (λalg) α .0 =a 0 (λalg)

In the opposite, the ring structure and the linearity of functions inλlin are provided by reduction rules.
LetU,V andW stand for values2, the rules are defined as follows.

(U +V) W →ℓ (U) V +(V) W (λlin) 0+M →ℓ M (λlin)
(α .V) W →ℓ α .(V) W (λlin) α .(β .M) →ℓ (α ×β).M (λlin)

α .(M +N) →ℓ α .M + α .N (λlin) (0) V →ℓ 0 (λlin)
α .M + β .M →ℓ (α + β).M (λlin) 1.M →ℓ M (λlin)

α .M +M →ℓ (α +1).M (λlin) 0.M →ℓ 0 (λlin)
M +M →ℓ (1+1).M (λlin) α .0 →ℓ 0 (λlin)

The context rules for both languages are

M → M′

(M) N → (M′) N

M → M′

M +N → M′ +N

N → N′

M +N → M +N′

M → M′

α .M → α .M′

together with the additional context rule only forλlin

M →l M′

(V) M →l (V) M′
.

The β -reduction ofλalg corresponds to a call-by-name evaluation, while theβ -reduction ofλlin

occurs only if the argument is a basis term, i.e. a variable oran abstraction. Theγ-rules, only available
in λlin , allows linearity in the arguments.

3 Simulations

3.1 λlin simulatesλalg

We consider the following encodingL·M : λalg → λlin . The variablesf andzare chosen fresh.

L0M = 0, L(M) NM = (LMM) λzLNM,
LxM = (x) f , LM +NM = LMM+ LNM,

LλxMM = λxLMM, Lα .MM = α .LMM.

One could be tempted to prove a result in the line ofM →a N implies LMM →∗
ℓ LNM. Unfortunately

this does not work. Indeed, the encoding brings “administrative” redexes, as in the following example
(whereI = λxx). Although(λxλy(y) x) I →a λy(y) I ,

L(λxλy(y) x) IM = (λxλy((y) f) (λz(x) f)) (λzλx(x) f) →∗
ℓ λy((y) f) (λz(λzλx(x) f) f),

Lλy(y) IM = λy((y) f) (λzλx(x) f)

are not equal: there is an “administrative” redex hidden in the first expression. This redex does not bring
any information, it is only brought by the encoding.

In order to clear these redexes, we define the mapAdminas follows.

2Notice that inλlin a value is not necessarily in normal form. For instance the value λxx+ λxx reduces to 2.λxx. The
reductions of values result solely from the ring structure,and all values are normalizing terms.

4 Equivalence of Algebraicλ -calculi

Admin0 = 0, AdminλxM = λxAdminM,

Adminx = x, AdminM+N = AdminM+AdminN,

Admin(λ f M) f = AdminM, Adminα .M = α .AdminM.

Admin(M) N = (AdminM) AdminN,

Theorem 3.1 For any program (i.e. closed term) M, if M→a N andLNM →∗
ℓ V for a value V, then there

exists M′ such thatLMM →∗
ℓ M′ and AdminM′ = AdminV.

Proof Proof by induction on the derivation ofM →a N. ⊓⊔

Lemma 3.2 If W is a value and M a term such that AdminW= AdminM, then there exists a value V
such that M→∗

ℓ V and AdminW= AdminV .

Lemma 3.3 If V is a closed value, thenLVM is a value.

Theorem 3.4 (Simulation) For any program (i.e. closed term) M, if M→∗
a V a value, then there exists

a value W such thatLMM →∗
ℓ W and AdminW= AdminLVM.

Proof The proof is done by induction on the size of the sequence of reductionsM →∗
a V. If M =V, this is

trivially true by choosingW = LVM, which is a value sinceV is closed, by Lemma 3.3. Now, suppose the
result true for the reductionN →∗

a V and suppose thatM →a N. By induction hypothesis,LNM→∗
ℓ W, for

some valueW such thatAdminW= AdminLVM. From Theorem 3.1, there existsM′ such thatLMM→∗
ℓ M′

andAdminM′ = AdminW. From Lemma 3.2, without loss of generality we can choose this M′ to be a
valueW′. This closes the proof of the theorem: we have indeed the equality AdminW′ = AdminLVM. ⊓⊔

3.2 λalg simulatesλlin

To prove the simulation ofλlin with λalg we use the following encoding. This is an algebraic extension
of the continuation passing style used to prove that call-by-name simulates call-by-value in the regular
λ -calculus [8].

Let J·K : λlin → λalg be the following encoding. The variablesf ,g andh are chosen fresh.

JxK = λ f (f) x, J(M) NK = λ f (JMK) λg(JNK) λh((g) h) f ,
J0K = 0, Jα .MK = λ f (α .JMK) f ,

JλxMK = λ f (f) λxJMK, JM +NK = λ f (JMK+ JNK) f .

Let Ψ be the encoding for values defined by:

Ψ(x) = x, Ψ(α .V) = α .Ψ(V),
Ψ(0) = 0, Ψ(V +W) = Ψ(V)+ Ψ(W).

Ψ(λxM) = λxJMK,

Using this encoding, it is possible to prove thatλalg simulatesλlin for any program reducing to a value:

Theorem 3.5 (Simulation) For any program M, if M→∗
ℓ V where V is a value, then

JMK (λxx) →∗
a Ψ(V).

Thanks to the subtle modifications done to the original algebraic calculi (presented in the introduc-
tion), the proof in [8] can easily be extended to the algebraic case. We first define a convenient infix
operation (:) that captures the behaviour of the translatedterms. For example, ifB is a base term,i.e. a
variable or an abstraction, then its translation intoλalg is JBK 7→ λ f (f) Ψ(B). If we apply this translated
term to a certainK, we obtainλ f (f) Ψ(B) K →a K Ψ(B). We capture this by definingB : K = K Ψ(B).
In general,M : K is the reduction of theλalg termJMK K, as Lemma 3.7 states.

A. Dı́az-Caro, S. Perdrix, C. Tasson & B. Valiron 5

Definition 3.6 Let (:) : Λλlin
×Λλalg

→ Λλalg
be the infix binary operation defined as follows:

B : K = (K) Ψ(B) (with B a base term),
(M) N : K = M : λg(JNK) λh((g) h) K (with M not a value),
(M) N : K = N : λ f ((Ψ(M)) f) K (with M, but not N, being a value),
(M) N : K = ((Ψ(M)) Ψ(N)) K (with M a value, and N a base term),
(M) (N1 +N2) : K = ((M) N1 +(M) N2) : K (with M and N1+N1 values),
(M) (α .N) : K = α .(M) N : K (with M andα .N values),
(M) 0 : K = 0 (with M a value),
(M +N) : K = M : K +N : K,

α .M : K = α .(M : K),
0 : K = 0.

Lemma 3.7 If K is a value, then∀M, JMKK →∗
a M : K.

Lemma 3.8 If M →ℓ N then∀K value, M: K →∗
a N : K

The proof of the Theorem 3.5 is now stated as follows.

Proof of Theorem 3.5.From Lemma 3.7,JMK(λxx) reduces toM : (λxx). From Lemma 3.8, it reduces
to V : (λxx). We now proceed by structural induction onV.

• LetV be a base term. ThenV : (λxx) = (λxx)Ψ(V) → Ψ(V).

• Let V = V1 +V2. ThenV : (λxx) = V1 : (λxx)+V2 : (λxx), which by the induction hypothesis,
reduces toΨ(V1)+ Ψ(V2) = Ψ(V).

• Let V = α .V ′. ThenV : (λxx) = α .(V ′ : (λxx)), which by the induction hypothesis, reduces to
α .Ψ(V ′) = Ψ(V).

⊓⊔

4 Conclusion and perspectives

In this paper we proved the conjectured [2] simulation ofλalg by λlin and its inverse, on valid programs
(that is, programs reducing to values), answering an open question about the equivalence of the algebraic
λ -calculus (λalg) [9] and the linear-algebraicλ -calculus (λlin) [1].

As already shown by Plotkin [8], if the simulation of call-by-value by call-by-name is sound, it fails
to be complete for general (possibly non-terminating) programs. To make it complete, a known solution
is to consider the problem from the point of view of Moggi’s computational calculus [7]. A direction
for study is to consider an algebraic computationalλ -calculus instead of a general algebraicλ -calculus.
This raises the question of finding a correct notion of monad for capturing both algebraicity and non-
termination in the context of higher-order structures. Another direction of study is the relation between
the simulation of call-by-name by call-by-value using thunks and the CPS encoding. A first direction of
study is [5]

Concerning semantics, the algebraicλ -calculus admits finiteness spaces as a model [3]. What is the
structure of the model of the linear algebraicλ -calculus induced by the continuation-passing style trans-
lation in finiteness spaces? The algebraic lambda-calculuscan be equipped with a differential operator.
What is the corresponding operator inλlin through the translation?

6 Equivalence of Algebraicλ -calculi

References

[1] Pablo Arrighi & Gilles Dowek (2008):Linear-algebraic lambda-calculus: higher-order, encodings, and con-
fluence. In: Andrei Voronkov, editor:RTA 2008, Lecture Notes in Computer Science5117, Springer, Hagen-
berg, Austria, pp. 17–31.

[2] Pablo Arrighi & Lionel Vaux (2009):Embeding AlgLam into Lineal. Private communication.

[3] Thomas Ehrhard (2005):Finiteness spaces. Mathematical Structures in Computer Science15(4), pp. 615–646.

[4] Thomas Ehrhard & Laurent Regnier (2003):The differential lambda-calculus. Theoretical Computer Science
309(1), pp. 1–41.

[5] John Hatcliff & Olivier Danvy (1997):Thunks and the lambda-calculus. Journal of Functional Programming
7(03), pp. 303–319.

[6] Peter Zilahy Ingerman (1961):Thunks: a way of compiling procedure statements with some comments on
procedure declarations. Communication of the ACM4(1), pp. 55–58.

[7] Eugenio Moggi (1989):Computational Lambda-Calculus and Monads. In: LICS, IEEE Computer Society,
pp. 14–23.

[8] Gordon D. Plotkin (1975):Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer
Science1(2), pp. 125–159.

[9] Lionel Vaux (2009):The algebraic lambda calculus. Mathematical Structures in Computer Science19(5), pp.
1029–1059.

	Introduction
	Algebraic lambda-calculi
	Simulations
	Lineal simulates Alg
	Alg simulates Lineal

	Conclusion and perspectives

