
A funtional programming language for quantum omputationwith lassial ontrol
ByBenô�t ValironUniversity of OttawaSeptember 2004

A Thesissubmitted to the Shool of Graduate Studies and Researhin partial ful�llment of the requirementsfor the degree ofMaster of Siene in Mathematis1
 Copyright 2004by Benô�t ValironUniversity of Ottawa, Ottawa, Canada1The M.S. Program is a joint program with Carleton University, administered by the Ottawa-Carleton Institute of Mathematis and Statistis

AbstratThe objetive of this thesis is to develop a funtional programming language forquantum omputers based on the QRAM model, following the work of P. Selinger(2004) on quantum ow-harts. We onstrut a lambda-alulus without side-e�etsto deal with quantum bits. We equip this alulus with a probabilisti all-by-valueoperational semantis. Sine quantum information annot be dupliated due to theno-loning property, we need a resoure-sensitive type system. We develop it basedon aÆne intuitionisti linear logi. Unlike the quantum lambda-alulus proposedby Van Tonder (2003, 2004), the resulting lambda-alulus has only one lambda-abstration, linear and non-linear abstrations being enoded in the type system.We also integrate lassial and quantum data types within our language. The mainresults of this work are the subjet-redution of the language and the onstrution ofa type inferene algorithm.

ii

AknowledgmentsThis researh was supported by graduate sholarships from the faulty of graduatestudies and from the department of mathematis.The results were presented at the FMCS 2004 onferene in Calgary. A paper issheduled to appear in the proeedings of QPL 2004.A number of people gave me the opportunity to write this thesis. I hope the oneI forget will forgive me. I express my thanks to the following people:To my supervisor Dr. Selinger for his supervision and his advie.To my ommittee, Drs. Blute and Howe.To Dr. Sott who gave me the opportunity to do a master in Ottawa.To the administrative sta� from the department and from the international oÆe,espeially Line Bissonette.To Bob, who helps me to hek some of the spelling of this thesis.To Eri, for having supported me these two years, and to all my Preston- Sweet-land's roommates for pushing me to work eah morning.

iii

ContentsAbstrat iiAknowledgments iii1 Introdution 12 Quantum programming 62.1 Measurements . 72.2 Unitary operations and quantum iruits 92.3 Entanglement . 112.4 Simulation of a lassial omputer on a quantum omputer 122.5 Issues spei� to quantum omputers 132.6 Pratial onsiderations . 152.7 Examples . 152.8 Models for quantum omputation . 182.8.1 Quantum ontrol . 182.8.2 Classial ontrol . 203 Lambda-alulus 223.1 Untyped lambda-alulus . 223.1.1 �-redution . 263.1.2 Redution strategies . 293.2 Typed lambda-alulus . 313.2.1 Properties of typing judgments 333.2.2 Type inferene algorithm . 44iv

4 Linear Logi 555 The quantum lambda-alulus: Terms 595.1 Quantum States . 595.2 Probabilisti redution systems . 645.3 Quantum redution . 676 The quantum lambda-alulus: Types 706.1 Subtyping . 716.2 Typing rules . 746.3 Examples . 767 Properties of quantum typing judgments 797.1 Preliminary lemmas . 797.2 Subjet redution . 867.3 Progress theorem . 898 Extension of the language 908.1 Extended language . 908.2 Cartesian produt versus Tensor produt 928.3 Compatibility with the previous results 958.4 Examples . 979 Type inferene algorithm 1009.1 A �rst example . 1009.2 Syntati Skeleton . 1019.3 Template . 1129.4 A sublass of qType . 1129.5 A polynomial-time deision proedure 11410 Conlusion and further work 121Bibliography 122v

List of Tables1 Rules for onstruting quantum ow-harts 212 De�nition of the set of free variables 253 De�nition of term-substitution . 264 �-redution rules . 275 Intuitionisti all-by-value redution strategy 316 Typing rules for the simply-typed lambda-alulus 337 Type inferene algorithm for the simply-typed lambda-alulus 508 Derivation rules for intuitionisti linear logi 579 Derivation rules for exponential . 5710 Quantum all-by-value redution . 6811 Subtyping relation: First set of rules 7112 Subtyping relation: Seond set of rules 7313 Typing rules for the quantum lambda-alulus 7514 Extended terms . 9115 Extended types . 9216 Extended typing rules . 9317 Extended all-by-value redution . 9418 Indued typing rules for skeleton . 104
vi

Chapter 1Introdution13 And God said unto Noah, The end of all esh is omebefore me; for the earth is �lled with violene throughthem; and, behold, I will destroy them with the earth.14 Make thee an ark of gopher wood; rooms shalt thoumake in the ark, and shalt pith it within and without withpith. 15 And this is the fashion whih thou shalt make itof: The length of the ark shall be three hundred ubits, thebreadth of it �fty ubits, and the height of it thirty ubits.[6 Gen 13-15, King James version℄Bakground on quantum omputation. Quantum omputing has beome a fastgrowing researh area in reent years, sine Shor [22℄ has shown in 1994 that quan-tum omputers an fator an integer in polynomial time upon its number of digits.It is not known whether any lassial algorithm an solve the problem in polynomialtime. The fatoring problem has numerous impliations in ryptography. In par-tiular the most ommonly used algorithm to enode data with a publi key is theRSA algorithm, based on the present diÆulty to fatorize very large numbers [15,p.232℄. Quantum omputers would stir up the �eld of ryptography. This disov-ery has foused attention on quantum omputing, whih is able to bring hange inother domains, suh as database manipulation [15, p.248℄, with algorithms to queryelements in databases, and suh as numerial methods, with the ability to performeÆiently Fourier transform [15, p.216℄. 1

CHAPTER 1. INTRODUCTION 2The basi idea behind quantum omputation is to enode data using objets gov-erned by the laws of quantum physis. In a lassial omputer, the smallest unit ofdata is the bit. On the other hand, the smaller unit of data in a quantum omputeris a quantum bit, or qubit. The laws of quantum physis give the onstraints applyingon qubits. Bits and qubits behave in a omplete di�erent manner. For instane, alassial bit an be opied as many times as needed. On the other hand, a quan-tum bit annot be dupliated, due to the well-known no loning property of quantumstates [17, 15℄. However, quantum data types are omputationally very powerful,due to the phenomena of quantum superposition and entanglement. A qubit an bemodeled as a normalized vetor in a two-dimensional Hilbert spae. To understand itas a piee of information, one has to hoose an orthonormal basis, whih we denote as(j0i; j1i). The qubit is then written as �j0i+ �j1i, with j�j2 + j�j2 = 1, and one anunderstand it as the superposition of the bit 0 and the bit 1. A state of two qubitsis a vetor of the tensor produt of the two Hilbert spaes. There are states of theform j�1i
 j�2i, but one an also write a state of the form 1p2(j00i + j11i). Suh astate is alled an entangled state. The operations that one an perform on a quantumstate are only of two lasses, namely unitary transformations and measurements. Themeasurement of a qubit ats as a projetion on one of the basis elements. For a goodgeneral introdution to quantum omputing, see e.g. [17, 15℄.Bakground on funtional programming. A funtional programming languageis a language where programs are seen as funtions: a program is usually a piee ofode that take arguments and return a value. In a higher-order funtional program-ming language, every funtion is regarded as a value. In that sense one an speakof a program returning another program. This is a powerful way of understandingprogramming. A model of this kind of omputation is the lambda-alulus, designedin the 1930's by Churh [6℄ and Kleene [12℄. It provides an operational semantis fordesribing omputable funtions and evaluation. A omplete referene on the subjetis [2℄.

CHAPTER 1. INTRODUCTION 3The problem. At the moment, omputation using quantum omputers is mostlyunderstood as a physial proess. Very few programming languages exist for dealingwith this kind of omputer. Trying to understand the proess of quantum ompu-tation from the point of view of programming languages an help to the disoveryof new appliations and to have a better understanding of the semantis of suh aomputation.Review. Reall that a quantum system an evolve by unitary transformations andmeasurements. Many existing models of quantum omputation put an emphasis onthe former, i.e., omputation is understood as the evolution of a quantum state bymeans of unitary gates. In these models, a quantum omputer is onsidered as apurely quantum system, i.e., without any lassial parts: Measurements are doneat the end of the experiment, often outside of the formal system. One example ofsuh a model is the quantum Turing mahine [3, 8℄, where the entire mahine state,inluding the tape, the �nite ontrol, and the position of the head, is assumed to bein quantum superposition. Another example is the quantum lambda alulus of VanTonder [26, 27℄, whih is a higher-order, purely quantum language without an expliitmeasurement operation.One might also imagine a perhaps more realisti model of a quantum omputerwhere unitary operations and measurements an be interleaved. As an example,onsider the so-alled quantum random aess mahine model, or QRAM model ofKnill [13℄, also desribed by Bettelli, Calaro and Sera�ni [5℄. Here, a quantumomputer onsists of a lassial omputer with a quantum devie attahed to it. In thison�guration, the operation of the mahine is ontrolled by a lassial program whihemits a sequene of instrutions to the quantum devie for performing measurementsand unitary operations. This situation is summarized by the slogan \quantum data,lassial ontrol" [21℄. Several programming languages have been proposed to dealwith suh a model [5, 19℄, but the one on whih this paper is based is the work ofSelinger [21℄.Van Tonder has built an operational semantis based on linear logi, a resoure-sensitive logi formalized by Girard [9℄. The idea to build an operational semantis for

CHAPTER 1. INTRODUCTION 4linear logi has already been explored [1, 28, 4℄. As a matter of fat Van Tonder [26℄uses the lambda-alulus desribed by Wadler [28℄. In this alulus, the distintionbetween linear and non-linear funtions is expliit in the terms. Benton [4℄ has builta di�erent model verifying subjet redution. These two languages, however, donot allow variables to be disarded: onstant funtions annot be built. To allowvariable to be disarded, one needs a variant of linear logi, the aÆne linear logi.An interesting work on aÆne linear logi is the work of Propylov [18℄, who showedthe deidability of aÆne linear logi. A linear deoration of intuitionisti proofs aswe intend to do was done in 1995 in [7℄.The solution proposed. This thesis addresses the issue of building up a higher-order funtional quantum programming language for quantum omputation with las-sial ontrol. In our language, a program is a lambda term, possibly with some quan-tum data embedded inside. The basi idea is that lambda terms enode the ontrolstruture of a program, and thus, they would be implemented lassially, i.e., on thelassial devie of the QRAM mahine. However, some of the data on whih thelambda terms at are possibly qubits, and are stored on the QRAM quantum devie.Beause our language ombines lassial and quantum features, it is natural to on-sider two distint basi data types: a type of lassial bits and a type of quantumbits. Higher types, suh as integers or lists, an be added as neessary.The hallenge has several aspets. One part is that we want the probabilistiredution to be the only side e�et. Due to the measurement operation, the redutionrules are then probabilisti, and one problem we solve is to desribe the behavior of theprogram with respet to this probabilisti redution. A seond part of the hallengeis that due to entanglement, quantum bits annot be diretly enoded in the lambda-term. We need a way to enode the qubits of the QRAM in the lambda-term. Anotherpart of the hallenge is that there are two kind of funtions: linear and on-linear ones.In partiular, a lambda-term an be dupliable or non-dupliable. Depending on thisability, it an or annot be applied to a non-linear funtion, whih use its argumentmore than one. Unlike Van Tonder's lambda-alulus, we want to let the ompilerdeide whether or not an argument an be applied to a funtion or not. Finally, we

CHAPTER 1. INTRODUCTION 5want to be able to disard variables. This requires an aÆne type system. Neither theone of van Tonder [26℄ nor the one of Benton [4℄, whih is linear, an be used. Onemay ask whether it is possible to ful�ll these requirements.We give a positive answer to this hallenge. We build an expressive programminglanguage whih embeds quantum operations as funtions. Using the well-known teh-nique of type system [16℄, we are able to deide of the validity of a program in ourlanguage. The type system is based on aÆne linear logi. The work of Propylov [18℄shows that the problem of the typability of a term is deidable, but, sine our pro-posed type system is only a fragment of the full aÆne linear logi, we �nd a simpleralgorithm. We use a similar method to [7℄.Plan. The plan of the thesis is the following. Chapters 2 to 4 are bakground, andChapters 5 to 9 are original work. In Chapter 2, we desribe more in depth the basisof quantum omputing, and review what is already done. Then, for self-ontainedness,in Chapter 3 we develop some results on intuitionisti typed lambda-alulus, exposethe subjet redution, and develop a type inferene algorithm for this language. InChapter 4 we develop an introdution on linear logi, and explain how this is linkedto our model. The next hapters expose the results found during this master thesis:In Chapter 5 a disussion on the lambda-alulus and the redution rules, where weshow how the validity of a program is linked to the hoie of redution proedure. InChapter 6 we give a type system for the developed language, and in Chapter 7 weprove that it veri�es subjet redution. Finally in Chapter 8 and 9, we extend thelanguage and we build a type inferene algorithm, based on the intuitionisti skeletonof the type system.

Chapter 2Quantum programmingIn lassial omputation, we use lassial physis to enode the data. The basiunit of data is the bit whih an take only two values, either 0 or 1. In quantumomputation, we use objets governed by quantum physis laws instead of lassialphysis, in order to enode data. The unit of data is alled the quantum bit, orqubit. A quantum bit an be understood as a normalized vetor in a two-dimensionalHilbert spae. To understand it as a piee of information, it is ustomary to hoosean arbitrary orthonormal basis denoted (j0i; j1i), and alled the omputational basis.A qubit is then a vetor of the formj i = �j0i+ �j1i j�j2 + j�j2 = 1where � and � are omplex numbers.There are many possible physial realization of a qubit. It an be enoded in thepolarization of a photon, see Figure 1. If we hoose two orthogonal diretions as basis,one an enode superposition by setting the plane of polarization with some hosenangle of osine j�j2 and sine j�j2.The juxtaposition of two qubits in states j 1i and j 2i is represented by the tensorj 1i
j 2i, also denoted j 1 2i, whih is an element of the 4-dimensional Hilbert spaewith basis j00i; j01i; j10i; j11i. More generally, if pnqN is the binary representation of
6

CHAPTER 2. QUANTUM PROGRAMMING 7
direction
of the photon

arbitrary basis
for the plane of polarisation

|1>

|0>Figure 1: Photon polarizationn with N digits, a vetor of N qubits an be expressed as a sum:2N�1Xi=0 �ijpiqNi; with 2N�1Xi=0 j�ij2 = 1:2.1 MeasurementsTo retrieve the information stored in a qubit, one has to measure the objet thatenodes the qubit. The measurement operation is a map that will projet the vetor�j0i+ �j1i onto j0i or j1i. The measurement yields an observable result whih is 0 ifthe vetor was projeted onto j0i, or 1 if it was projeted onto j1i. The proess anbe summarized as follows: �j0i+ �j1ij�j2
yytttttttttt j�j2

%%J
JJJJJJJJJj0i j1i�j0i+ �j1i projets onto j0i with probability j�j2 and onto j1i with probability j�j2.For example, in the ase of the photon, measurement is done using a polarized glass

CHAPTER 2. QUANTUM PROGRAMMING 8and a light detetor. This proess is probabilisti and ollapses the superpositionof data stored in the qubit. When measuring several qubits, the result is similar.In a two-qubit system �00j00i+ �01j01i+ �10j10i+ �11j11i, assume that we want tomeasure the �rst qubit. To understand what will happen, we an fatorize the systemas follows: j0i
 (�00j0i+ �01j1i) + j1i
 (�10j0i+ �11j1i)The measurement will ollapse the state on one of the two subspaes of basis j00i; j01iand j10i; j11i. It will outome with probability j�00j2 + j�01j2 the state1pj�00j2 + j�01j2 j0i
 (�00j0i+ �01j1i)and with probability j�10j2 + j�11j2 the state1pj�10j2 + j�11j2 j1i
 (�10j0i+ �11j1i)Measuring the seond qubit is similar, and we an summarize the proess with thediagram �00j00i+ �01j01i+ �10j10i+ �11j11ij�00j2+j�01j2
vvnnnnnnnnnnnnnnnnnn j�10j2+j�11j2

((PPPPPPPPPPPPPPPPPP1pj�00j2+j�01j2 (�00j00i+ �01j01i)j�00j2j�00j2+j�01j2
yyssssssssssssss j�01j2j�00j2+j�01j2

%%K
KKKKKKKKKKKKK

1pj�10j2+j�11j2 (�10j10i+ �11j11i)j�10j2j�10j2+j�11j2
yyssssssssssssss j�11j2j�10j2+j�11j2

%%K
KKKKKKKKKKKKKj00i j01i j10i j11iand then eah sequene of jxyi is reahed with probability j�xyj2.More generally, in the quantum system2N�1Xi=0 �ijpiqNi; with 2N�1Xi=0 j�ij2 = 1:the probability to get jpiqNi when measuring the system is j�ij2.

CHAPTER 2. QUANTUM PROGRAMMING 92.2 Unitary operations and quantum iruitsThe other kind of operations we an apply on qubits are unitary matries, or quantumgates. A unitary matrix A is suh that AH = A�1 where AH is the omplex transposeof A: AH =AtSome important gates are the 3-qubit gate To�oli, the 2-qubit gate CNOT andthe 1-qubit gates V�=8, the Hadamard gate H and the phase ip P . They are de�nedas follows, with bases always written in the lexiographi order. For a 2-qubit systemfor example, the basis is (j00i; j01i; j10i; j11i).H = p22 1 11 �1 ! P = 1 00 i ! V�8 = 1 00 ei�=4 !NOT = 0 11 0 ! CNOT = 0BBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0
1CCCCA To�oli = id4 00 CNOT !

A typial quantum omputation would be �rst the reation of an array j000 : : :0i,then the appliation of some hosen quantum gates, and �nally the measurement ofthe result. Note arrying on the same omputation twie usually gives two di�erentresults: the results are probabilisti. Inspired by boolean iruits, a good way torepresent the list of unitary gates to apply is to write a quantum iruit. Eah qubitis represented as a wire and gates are boxes that overlap on wires. The diagram isread from left to right and from top to bottom. For example,j i G1 G2j�iomputes the state G2 Æ (G1
 id)(j i
 j�i):

CHAPTER 2. QUANTUM PROGRAMMING 10Note that if x; y and z are bits,NOT jxi = j1� xi;CNOT jxyi = jxi
 jz � xi andTo�oli jxyzi = jxi
 jyi
 jz � xyiWe write NOT as NOT = jxi � j1� xi;the CNOT as CNOT = jxi � jxijzi � jz � xi;the To�oli gate as To�oli = jxi � jxijyi � jyijzi � jz � xyiand the other gates with boxes:H = jxi H Hjxi;P = jxi P P jxi;V�=8 = jxi V�=8 V�=8jxi:This set of gates is said to be a universal set of gates, in the following sense:De�nition 2.2.1 A set B of quantum gates is said to be universal if, for any unitaryoperator U 0 on n qubits and any � > 0, there exists a �nite iruit U in those gates,and some � 2 C with j�j = 1, satisfying:jjU � �U 0jj < � with the norm to be jjAjj = minj�j=1(jA�j):There exist a lot of universal sets of gates. It is not neessary to stik to a spei�universal set sine eah universal set an simulate any other one. Moreover, one set ofgates an be suited better for a given physial implementation than another universalset.

CHAPTER 2. QUANTUM PROGRAMMING 112.3 EntanglementIt is interesting to note that the information is non-loal in an array of qubits. Indeeda 2-qubit system annot always be written as j 1i
 j 2i with 1 and 2 qubits.In partiular the notion of a pair of qubits annot be thought of as in lassialomputation, where eah element of the pair an be reahed.De�nition 2.3.1 A 2-qubit state j i is said to be entangled if it annot be writtenas j 1i
 j 2i. If we an write it under this form, then it is said to be unentangled.For example, the state 1p2(j00i+ j11i) is entangled. One annot separately determinethe values of the �rst and of the seond qubit. The �rst and the seond qubits areompletely linked one to the other: measuring the �rst will immediately allow us tosay what will be the result of the measurement of the seond one:1p2(j00i+ j11i)0:5
~~}}

}}
}}

}}
} 0:5

AA

AA
AA

AA
Aj00i1

����
��
�� 0

��
..

..
..

j11i0
����
��
�� 1

��
00

00
00j00i j01i j10i j11i:If the �rst qubit was measured to be j1i, then the seond one is j1i with probability1. Similarly, if the �rst qubit was measured to be j0i, then the seond one is j0i withprobability 1.Entangled states are easy to onstrut: Consider the statej�i = CNOT Æ (H
 id)(j00i):This is equal to j�i = CNOT 1p2(j00i+ j10i):CNOT maps j00i to j00i and j10i to j11i. Sine it is linear, we havej�i = 1p2(j00i+ j11i);and we reah the previously seen entangled state.

CHAPTER 2. QUANTUM PROGRAMMING 122.4 Simulation of a lassial omputer on a quan-tum omputerOne may ask whether it is possible to simulate a lassial boolean iruit on a quan-tum omputer. One ould think that the fat that we an only apply unitary gateswould be a onstraint. Indeed, a quantum omputation is always reversible. If wewant to ompute any arbitrary funtion f from f0; 1gn to f0; 1gm, there might be aproblem sine the funtion might not be reversible. We an irumvent this problemby replaing f by a reversible funtion f 0:f 0 : f0; 1gn � f0; 1gm �! f0; 1gn � f0; 1gm(x; y) 7�! (x; f(x)� y):The reversible funtion f 0 an then be implemented on qubits as a unitary transfor-mation. However we need auxiliary qubits. First we need some to store the unwantedinformation that keeps the omputation reversible, and then we need more qubits forsrath spae.Theorem 2.4.1 Any boolean funtion an be modeled using a quantum iruit.Proof. Any boolean funtion an be written in terms of AND and NOT gates. Itis suÆient to be able to simulate a AND boolean gate, a NOT boolean gate, and tobe able to dupliate a bit. We only need the To�oli gate:To�oli(jxi
 jyi
 j0i) = jxi
 jyi
 jx AND yi;and then omputing x AND y is equivalent to omputing To�olijxy0i and to onsiderthe third qubit. Similarly the NOT gate an be simulated as follows:To�oli(jxi
 j1i
 j1i) = jxi
 j1i
 j1� x� 1i = jxi
 j1i
 jNOT xi;and then omputing NOT x is equivalent to omputing To�olijx11i and to onsiderthe third qubit. To dupliate a bit x, one an omputeTo�oli(jxi
 j1i
 j0i) = jxi
 j1i
 j0� x� 1i = jxi
 j1i
 jxi

CHAPTER 2. QUANTUM PROGRAMMING 13and we dupliated the bit and plaed it in the �rst and last qubit. Note that in eahomputation, we need srath spae. Provided that we are able to initialize a givenarray of qubits (i.e. to set eah of them in some given state j0i or j1i), we are ableto ompute any boolean funtion. �Remark 2.4.2 The last quantum iruit only dupliates bits, not qubits: if jxi issome superposition �j0i+ �j1i, sine the previous omputation is linear it answers�j010i+ �j111iwhih is an entangled state.2.5 Issues spei� to quantum omputersSuperposition of states. Some issues are spei� to quantum omputers. Inpartiular, the power of quantum omputation over lassial omputation is in thesuperposition of states. Given an array of n qubits, one an superimpose the binaryrepresentations of all the numbers from 0 to 2n � 1. Sine the ation on this stateby a unitary transformation will apply it on eah one of the pure states that aresuperimposed in the qubit by linearity, we are able to do strong parallelism in oneoperation. For example, onsider the following quantum omputation:jx1i Hjx2i Hjx3i HGiven j000i it omputes the state1p23 (j0i+ j1i)
 (j0i+ j1i)
 (j0i+ j1i):If we develop, it beomes12p2(j000i+ j001i+ j010i+ j011i+ j100i+ j101i+ j110i+ j111i)

CHAPTER 2. QUANTUM PROGRAMMING 14whih is the superposition of the binary representations of all numbers from 0 to23 � 1 = 7. Let U be a unitary operatorjx1i...jx3i Ujy1i ;...jymiomputing some boolean operation f : f0; 1g3 ! f0; 1g3, on the �rst �ve qubits forsome �xed y1; : : : ym. Then if we ompose it with the �rst quantum iruit, by linearityit omputes the funtion f on eah piq3 for i = 0 : : : 7 in the state superposition:U(12p2 7Xi=0 jpiq3i
 jy1 : : : ymi) = 12p2 7Xi=0 jf(piq3)i
 jy1 : : : ymi:This is done in a simple step and would have required 8 omputations of f for eahpiq3 in a lassial omputation.Indeed, using an algorithm based on the strong parallelism ourring during quan-tum omputation, Shor [22, 23℄ proved that using a quantum omputer, fatorizationof an integer n is of omplexity O(logn), far better than any pre-existing algorithmusing lassial methods.Another harateristi is that qubits annot be dupliated, due to the no-loningproperty. Spei�ally, there is no operation whih inputs an unknown state j�i andreturns j�i
 j�i. Indeed, suh an operation would map �j0i+ �j1i to(�j0i+ �j1i)
 (�j0i+ �j1i) = �2j00i+ ��j01i+ ��j10i+ �2j11i;whih is not a linear operation (muh less unitary).

CHAPTER 2. QUANTUM PROGRAMMING 152.6 Pratial onsiderationsFor quantum omputation, a strong drawbak is the deoherene phenomenon. Aquantum partile is never alone in its world. There is always interation with otherpartiles, oming from the box where the partile is stored or from outer spae. Allthese interations at like measurements and modify the state of the partile. Thislimits the preision of the omputation. Moreover, the deoherene proess getsstronger as the number of onsidered qubits inreases. Quantum error-orretion [15℄an be used to ompensate this problem, provided the initial deoherene is not tosevere. For the purpose of this thesis, we will ignore this issue, and assume thatomputations take plae in a perfet quantum world.2.7 ExamplesThe Deutsh Algorithm. This is an algorithm to �nd out whether a booleanfuntion is balaned or onstant. In lassial omputation, two alls to the funtionare needed. In quantum omputation, one an �nd it out in only one all. Thealgorithm takes as input a two-qubit unitary operator Uf :Uf (jxi
 jyi) = jxi
 jy � f(x)i:The quantum iruit for the algorithm is the following:j0i H x x H jf(0)� f(1)ij1i H y y � f(x) :To �nd the answer, we have to measure the �rst qubit: if it is 0 then the funtion isbalaned, if it is 1 it is not.Note that the input of this algorithm is a \blak-box", in other terms a funtionfrom two qubits to two qubits.

CHAPTER 2. QUANTUM PROGRAMMING 16Proof that the proedure is orret. This will ompute the following thing:(H
 id)Uf (H
H)(j0i
 j1i)= (H
 id)Uf (1p2(j0i+ j1i)
 1p2(j0i � j1i))= (H
 id)Uf 12(j00i+ j10i � j01i � j11i)= (H
 id)12(j0i
 j0 + f(0)i+ j1i
 j0 + f(1)i�j0i
 j1 + f(0)i � j1i
 j1 + f(1)i)= 12p2((j0i+ j1i)
 jf(0)i+ (j0i � j1i)
 jf(1)i�(j0i+ j1i)
 j1 + f(0)i � (j0i � j1i)
 j1 + f(1)i)= 12p2(j0i
 (jf(0)i+ jf(1)i � j1 + f(0)i � j1 + f(1)i)+j1i
 (jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i):If f(0) = f(1), then jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i = 0 and the result is12p2 j0i
 (jf(0)i+ jf(1)i � j1 + f(0)i � j1 + f(1)i):If f(0) = 1+ f(1), then jf(0)i+ jf(1)i � j1+ f(0)i � j1+ f(1)i = 0 and the result is12p2 j1i
 (jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i):So the value of the measurement of the �rst qubit is 0 if the funtion f is balaned,and 1 in the other ase. �The teleportation algorithm. It is a good example of algorithm that is hardlywritten in term of quantum iruits: A measurement needs to be done as a part ofthe formalism. The proedure an be written as follows:j�i � H M
��

j0i H � �j0i � Uxy j�i:
_ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _The proedure \teleports" the state of the �rst qubit to the third one. The dashed-box M represents the measurement of the two �rst qubits. The gate Uxy depends on

CHAPTER 2. QUANTUM PROGRAMMING 17two lassial bits x and y, whih are the result of this measurement:If M outputs 00; U00 = 1 00 1 !If M outputs 01; U01 = 0 11 0 !If M outputs 10; U10 = 1 00 �1 !If M outputs 11; U11 = 0 1�1 0 ! :The whole proedure is summarized in four steps:1. Create an entangled state 1p2(j00i + j11i) with the two last qubits using theiruit j0i H �j0i � :2. Rotate the two �rst qubits, using the iruit� H� :3. Then measure the resulting two qubits.4. Finally, upon the result, apply the right transformation U to the third qubit.Proof that the proedure is orret. The rotation proesses the following om-putation CNOT H
 idj00i 7! j00i 7! 1p2(j00i+ j10i);j01i 7! j01i 7! 1p2(j01i+ j11i);j10i 7! j11i 7! 1p2(j01i � j11i);j11i 7! j10i 7! 1p2(j00i � j10i):

CHAPTER 2. QUANTUM PROGRAMMING 18If we apply it to the two �rst qubits of(�j0i+ �j1i)
 1p2(j00i+ j11i)= 1p2(�j000i+ �j011i+ �j100i+ �j111i)we get12(�(j000i+ j100i) + �(j011i+ j111i) + �(j010i � j110i) + �(j001i � j101i))= 12(j00i
 (�j0i+ �j1i) + j01i
 (�j0i+ �j1i)+j10i
 (�j0i � �j1i) + j11i
 (�j1i � �j0i))If we measure the two �rst qubits, the third qubit beomes�j0i+ �j1i if 00 was measured;�j0i+ �j1i if 01 was measured;�j0i � �j1i if 10 was measured;�j1i � �j0i if 11 was measured:Finally note that if Uxy is applied in the ase where x; y was measured, the the stateof the last qubit is �j0i+ �j1i. �2.8 Models for quantum omputationModels of quantum omputations essentially fall into two lasses. In some models,there is a quantum devie whose operations is ontrolled by a lassial omputer.We refer to suh models as having lassial ontrol. In some other models, there isno lassial devie. The measurement takes plae at the end, it is not part of theformalism. We refer to those models as having quantum ontrol.2.8.1 Quantum ontrolOne an onsider that all the parts of the omputation our in an array of quantumbits: an algorithm may be written only in terms of quantum iruits. There is nolassial omputer to interat with; the whole proess is modeled by quantum gates.The anonial example is the algorithm written in terms of quantum iruits.

CHAPTER 2. QUANTUM PROGRAMMING 19The quantum Turing mahine. A way to understand lassial omputation isthe universal Turing mahine. Desribed by Turing [25℄, it is an automaton togetherwith an in�nite tape divided into ells and a ursor. Eah ell is either blank orontains a symbol from a �nite alphabet. The tape should ontain only �nitely manynon-blank symbols. The automaton is allowed to read or write what is under theursor, or to move the ursor to the right or to the left upon testing the ontent ofthe ell. This very simple mahine an model any omputation.Deutsh and Benio� [8, 3℄ have desribed a Quantum Turing mahine, whereeverything is enoded in quantum data: the tape, the ursor, and the states of theautomaton are enoded as a quantum state.Van Tonder's lambda-alulus. This model of quantum iruit is a more ab-strat way for visualizing an algorithm. Van Tonder [26, 27℄ desribes a higher orderlanguage for writing quantum algorithms. His language does not have a measurementoperation, and is enoded in an array of quantum bits. It an then be implementedin a quantum Turing mahine.The terms are de�ned as follows:Term M;N; P ::= xj j !Mj �x:Mj �!x:Mj (MN);where ranges over a set of onstants, inluding 0, 1 as well as onstants from unitarygates suh as H, the Hadamard gate. The term !M is deorated with ! to indiatethat the term an be dupliated: it is said to be non-linear. �!x:M is an funtionthat requires a non-linear term as argument.An example of redution ould be:j(�x:x)(H0)i �!� p22 (j(�x:x)0i+ j(�x:x)1i)�!� p22 (j0i+ j1i)

CHAPTER 2. QUANTUM PROGRAMMING 20Van Tonder de�nes the notion of well-formed term, onstruts a omputationalmodel for his language and proves that given a well-formed term M , if Pi �iMi is aredution of M , then the Mi may di�er only in the onstants 0 and 1. Moreover:Theorem 2.8.1 The omputational model provided by the lambda-alulus desribedby van Tonder is equivalent to the quantum Turing mahine. �2.8.2 Classial ontrolAnother way to see the quantum omputation proess is to imagine that a quantumomputation is a ombination of lassial omputation, measurements and unitaryoperations over quantum bits.QRAM model. The QRAM model for a quantum omputer was desribed byKnill [13℄. In this model, an array of quantum bits is stored in a speial devie,and the devie is linked to a universal lassial omputer, see Figure 2. The las-sial devie ats on the quantum devie by sending to it a sequene of ommandsto perform initializations (setting a qubit to j0i or j1i), built-in unitary operationsand measurements. All the lassial operations are allowed, they are ontained inthe lassial omputer. One an imagine that there is a speial library to talk withthe quantum devie, with speial funtions to measure, alloate and free qubits, andapply unitary transformations.Selinger's ow-harts. A language that is based on the use of a QRAM model isthe ow-harts language from Selinger [21℄. This model uses the ow-hart notationto write programs: it is a super-set of a lassial ow-hart language. A program isa graph together with a ursor that follows the wires, with data attahed to it.The graph is onstruted from the rules in Table 1. Adding the notion of loopsand the notion of reursion make the language powerful enough to desribe the set ofsuperoperators.

CHAPTER 2. QUANTUM PROGRAMMING 21
linked on the
network with access
to the quantum device

 accessible from the network
Quantum device

Computer

Figure 2: A model of quantum omputer
�new bit b = 0b: bit;� �new bit b = 1b: bit;� �new qbit q = 0q: qbit;� �new qbit b = 1q: qbit;�q1: qbit;:::;qn: qbit ;�q1; : : : qn �= Unq1: qbit;:::;qn: qbit ;� �permute ��(�)q: qbit;�meas q1q: qbit;�IIIIIIIIIq: qbit ;�0

uuuuuuuuu

� ??
??

??
? ���

��
��

��� b: bit;�branh b1b: bit;�JJJJJJJJJ
Jb: bit;�0

tt
tt

tt
tt

ttTable 1: Rules for onstruting quantum ow-harts

Chapter 3Lambda-alulusFor self-ontainedness, we give a brief introdution to the lambda-alulus. For amore detailed desription, see e.g. [2℄. We desribe a lambda-alulus for writingboolean funtions, and we present the de�nitions and results that will be used inlater hapters.3.1 Untyped lambda-alulusThe lambda-alulus is an expression language: a program is an expression whihevaluate to a value. A lambda-expression, or lambda-term, evaluates similarly to3 + 5: The addition takes two values as arguments, and redues to a value:3 + 5! 8:This notion of redution is the basis of lambda-alulus.Also, in lambda-alulus, we have a notation for the notion of funtion. We writefor example �x:x + 3in plae of x 7! x + 3:We all �x:M an abstration. 22

CHAPTER 3. LAMBDA-CALCULUS 23The appliation of 5 to the previous funtion is written(�x:x + 3) 5 :In general, MN represent the argument N applied to the funtion M .A higher-order example is the omposition operation. It an be written asC = �f:�g:�z:g(fz);so that Cfg = f Æ g. It takes two arguments g and f and returns g Æ f . Note that afuntion in two arguments is expressed as a funtion in one argument whih returnsanother funtion. This notation is alled urrying [16, p. 58℄We add the notion of pair hP;Qi. To be able to reover the ontent of a pairhP;Qi, we use the term let hx; yi=hP;Qi in N . It evaluates to N with P in plae ofx and Q is plae of y. This operator is linear in x and y.A speial symbol � is provided, alled a unit. This term does not evaluate toanything.We formally de�ne a �-term using an abstrat syntax alled the Bakus-Naurform [14℄. Given Vterm a ountable set of variables and Cterm a set of onstants,Term M;N; P ::= xj j �x:Mj (MN)j if (P ;M ;N)j �j hM;Nij let hx; yi=M in Nwhere x 2 Vterm a set of variable and 2 Cterm a set of onstants. Sine this alulusis for representing boolean funtions, we want the onstants 0 and 1 to be in Cterm ,for representing the boolean values. The term if (P ;M ;N) is the test operator. Theterm �x:M is a funtion of an argument x. It is also alled abstration. The term(MN) is the appliation of N to M . The term hM;Ni is the pair of �rst element Mand seond element N . The term let hx; yi=M in N is used to retrieve the ontentof a produt. Finally, � is the unit.

CHAPTER 3. LAMBDA-CALCULUS 24Conventions and notations. Given a pair M , we de�ne two terms �1(M) and�2(M) by �1(M) = let hx; yi=M in x and�2(M) = let hx; yi=M in y;to represent the �rst and the seond projetion.We ombine several variable in the same abstration for larity:�x1x2x3:M = �x1:�x2:�x3:M:The appliation proedure is assoiative to the left:M1M2M3M4M5 = (((M1M2)M3)M4)M5:Finally, the �-abstration has priority over the appliation:�x:MN = �x:(MN) :Free variables. We an de�ne a boolean AND operator by:�x:let hy; zi=x in if (y; if (z; 1; 0); 0)This is a funtion (an abstration), with argument x, supposed to be a pair hy; zi,and returning y AND z. We say that x; y and z are bound by the abstration. Moregenerally, a variable ourrene x in a term M is bound if there is an abstration ofvariable x that ontains it. A variable that is not bound by any abstration is alled afree variable. A term that doesn't have free variables is alled losed. More formally,we will denote FV (M) the set of the free variables of a term M , de�ned in Table 2.�-equivalene. Two terms are alled �-equivalent, written M =� N , if they di�eronly in the names of bound variables, e.g.�x:x =� �y:y:For details on renaming of bound variables, see [2℄. From now on, we will identify�-equivalent terms and onsider terms to be equal without further mention.

CHAPTER 3. LAMBDA-CALCULUS 25
FV (x) = fxgFV (MN) = FV (M) [FV (N)FV (�x:M) = FV (M) n fxgFV () = ;FV (if (P ;M ;N)) = FV (P) [FV (M) [FV (N)FV (�) = ;FV (hM1;M2i) = FV (M1) [FV (M2)FV (let hx; yi=M in N) = FV (M) [(FV (N) n fx; yg)Table 2: De�nition of the set of free variablesTerm substitution To evaluate the programs de�ned by lambda terms, we needthe notion of term substitution. A term substitution is a funtion from Vterm toterms suh that �(x) = x for all but �nitely many variables x1 : : : xn. We write� = fxi 7! Mi; i = 1 : : : ng, and we all j�j the set fx1 : : : xng. We extend it to ��funtion from terms to terms, de�ned in Table 3.Convention. Given a set Y of variables, we write �jY the substitution de�ned by�jY (x) = (�(x) if x 2 Y;x elseFor full details on the de�nition of substitution, see [2℄.Conventions. If � = fx1 7!M1; : : : xn 7!Mng, we often write M [M1=x1; : : :Mn=xn℄in plae of ��(M).Fresh variable. Sometimes we need a new variable in a proof. We will all thisvariable a fresh variable. By \fresh", we mean that it has never ever our anywhere.Whatever term, substitution or set of variables we may have talked about, the freshvariable wasn't there.

CHAPTER 3. LAMBDA-CALCULUS 26
��(x) = �(x)��() = ��(MN) = ��(M)��(N)��(if (P ;M ;N)) = if (��(P); ��(M); ��(N))��(�) = ���(hM1;M2i) = h��(M1); ��(M2)i��(�x:M) = �x:�jj�jnfxg(M)��(let hx; yi=N in M) = let hx; yi=��(N) in �jj�jnfx;yg(M)Table 3: De�nition of term-substitution3.1.1 �-redutionHow an we run a program ?Intuitively, to run a program, we need to redue the number of appliations thatour, by applying arguments to funtions. For example, in arithmeti, to ompute(3 + 5) � 7one need to �rst redue eah side of the multipliation to an integer, then to omputethe multipliation. One ould write(3 + 5) � 7! 8 � 7! 56We say that we redue the term 3 + 5, We need to redue it �rst, sine the multipli-ation is only de�ned on values.Formally, we de�ne the single-step �-redution in Table 4We extend this relation to �!��, transitive and reexive losure of �!�, and to=� symmetri, transitive and reexive losure of �!�.The notion of redex is de�ned as follows:De�nition 3.1.1 A term Q is alled a redex if it is of one of the following forms:(�x:M)N; let hx; yi=hM;Ni in P;if (0;M ;N); if (1;M ;N):

CHAPTER 3. LAMBDA-CALCULUS 27
(�) (�x:M)N �!� M [N=x℄(if 1) if (1;M ;N) �!� M(if 0) if (0;M ;N) �!� N(let) let hx1; x2i=hM1;M2i in N �!� N [M1=x1;M2=x2℄M �!� M 0MN �!� M 0N (ong1) N �!� N 0MN �!� MN 0 (ong2)M �!� M 0�x:M �!� �x:M 0 (��)P �!� P 0if (P ;M ;N)�!� if (P 0;M ;N) (�1if) M �!� M 0if (P ;M ;N)�!� if (P ;M 0;N) (�2if)N �!� N 0if (P ;M ;N)�!� if (P ;M ;N 0) (�3if)M �!� M 0hM;Ni �!� hM 0; Ni (�1�) N �!� N 0hM;Ni �!� hM;N 0i (�2�)M �!� M 0let hx; yi=M in N �!� let hx; yi=M 0 in N (�1let)N �!� N 0let hx; yi=M in N �!� let hx; yi=M in N 0 (�2let)Table 4: �-redution rules

CHAPTER 3. LAMBDA-CALCULUS 28(�x:M)N is alled �-redex. This allows us to speak of di�erent redexes in a giventerm Q when di�erent subterms of Q are redexes.Example. Consider the redution of the following term, where M is any term:(�x:�y:x)MHere we have an appliation: a funtion of argument x, fed withM . This applia-tion is alled a redex. We have to substitute all free ourrenes of x by M in what'safter the ':'. By doing so, we get �y:M . We have to be areful: M ould ontain freeourrenes of y. So we have to substitute the bound variable y by a fresh variable zin �y:x before reduing. The result would be: �z:M . This is the reason why we need�-equivalene of terms.An other problem an our when there is several subterms that are redexes in aterm. We have to make a hoie.To illustrate it, onsider the following example. Suppose we want to use thisfuntion to ompose the boolean funtion not and and in order to build the booleanor funtion. One an onstrut them as follows:not = �x: if (x; 0; 1);and = �xy: if (x; if (y; 1; 0); 0):The boolean funtion or an be onstruted as follow:or = not�xy:and(not x)(not y)= (�x: if (x; 0; 1))�xy:(�xy: if (x; if (y; 1; 0); 0))((�x: if (x; 0; 1)); x)((�x: if (x; 0; 1)) y)Consider the omputation of or(1)(0). At eah step of the redution of this termwe have to make a hoie of whih subterm to redue. Starting by reduing andbefore applying the arguments:not(�xy:and(not x)(not y))(1)(0)�!� not(�xy:(�z: if ((not x); if (z; 1; 0); 0))((not y)))(1)(0)�!� not(�xy: if ((not x); if ((not y); 1; 0); 0))(1)(0)�!� not(�y: if ((not 1); if ((not y); 1; 0); 0))(0)�!� not if ((not 1); if ((not 0); 1; 0); 0)

CHAPTER 3. LAMBDA-CALCULUS 29If we start by reduing (not 1):�!� not if ((if (1; 0; 1)); if ((not 0); 1; 0); 0)�!� not if (0; if ((not 0); 1; 0); 0)One an either ontinue with (not 0), or redue the �rst or, or redue diretlyif (0; if ((not 0); 1; 0); 0):If we redue diretly: �!� not 0�!� if (0; 0; 1)�!� 1With this redution hoie, or 1 0 = 1.Lemma 3.1.2 If M is losed, and if M �!� M 0, then M 0 is losed.Proof. By easy indution on the derivation of M �!� M 0, it is suÆient to provethat FV (M) � FV (M 0). �A entral property of �-redution is the onuene, also known as the ChurhRosser Theorem:Theorem 3.1.3 Given M and N two lambda-terms suh that M =� N , there existsa term P suh that M �!�� P and N �!�� P . �One an �nd a omplete disussion for this result in [2, p.54℄.3.1.2 Redution strategiesAs we have seen, there an be several di�erent redexes in a lambda-term, and thequestion arises in whih order to redue them. The order of redution often doesmatter. For example, onsider (�x:0)M , with M reduing to a value in 100 steps.We an hoose to �rst redue the argument M , and the redution takes 101 steps to

CHAPTER 3. LAMBDA-CALCULUS 30reah a value. On another hand, one an start by reduing the lambda-abstration.Then we reah in one step (�x:0)M �!� 0Therefore, when speifying a programming language, it is ustomary to �x a redutionstrategy. A redution strategy spei�es, for any given term, whih redex, if any, toredue in the next step.A standard redution strategy, or way to hoose whih subterm to redue �rst, isalled all-by-value. For a more omplete disussion, see [16℄. The idea is to start byreduing arguments before applying them. This is the strategy we applied on (3+5)�7:we need to �rst redue 3 + 5 to a value before omputing the multipliation. Thekey-point in all-by-value is an abstration is onsider as being a value: that we neverredue an abstration. The values are de�ned as follows:Value U; V ::= xjj �x:Mj hU; V ij � :Let M , M 0, N and N 0 be terms, x a variable and V , V1 and V2 values. The all-by-value redution rules are found in Table 5. These rules implements a all-by-valuestrategy: A �-redex is redued only if its argument is already a value. Similarly, inan appliation MN , the redution always ours �rst in the argument N if it is notalready a value. Hene M starts reduing only when N is redued to a value.Lemma 3.1.4 If V is a losed value, there is no term M suh that V �!CBV M .Proof. No rules an be applied, so no redution is possible. �Lemma 3.1.5 the all-by-value redution strategy is deterministi: If M �!CBV M 0and M �!CBV M 00, then M 0 =M 00.Proof. By strutural indution on M and inspetion of the possible rules, only onerule an be applied for eah ase. �

CHAPTER 3. LAMBDA-CALCULUS 31
(�) (�x:M)V �!CBV M [V=x℄(if 1) if (1;M ;N) �!CBV M(if 0) if (0;M ;N) �!CBV N(let) let hx1; x2i=hV1; V2i in N �!� N [V1=x1; V2=x2℄M �!CBV M 0MV �!CBV M 0V (ong1) N �!CBV N 0MN �!CBV MN 0 (ong2)P �!CBV P 0if (P ;M ;N)�!CBV if (P 0;M ;N) (�if)M �!CBV M 0hM;Ni �!CBV hM 0; Ni (�1�) N �!CBV N 0hM;Ni �!CBV hM;N 0i (�2�)M �!CBV M 0let hx; yi=M in N �!CBV let hx; yi=M 0 in N (�let)Table 5: Intuitionisti all-by-value redution strategy3.2 Typed lambda-alulusThe notion of lambda-term is a powerful way of representing funtions and programs.But we need a way to prevent run-time errors as muh as possible. For example,if (�x:x; 1; 1) annot be redued, but it is not a value. It is a run-time error. Theusual way to prevent them is to use what is alled a type system. A type is astruture that we assoiate with a term to de�ne the behavior of this term in a pieeof ode. For example, in a program, you may want to know if a variable is a string,to hek if you are allowed to onatenate it with another string. You may also wantto know if a variable refers to a funtion, and what kind of funtion. This notationmakes the program more readable by the programmer to determine exatly how touse an expression. A term whih admits a type is alled typable. A term together witha type is alled well-typed. A powerful enough type system must verify two things.It should verify the safety property. This inlude the preservation theorem, alsoknown as subjet redution, and the progress theorem. A programming languagethat veri�es subjet redution is suh that any program keeps the same type whilereduing. The progress theorem states that a well-typed term is either a value or an

CHAPTER 3. LAMBDA-CALCULUS 32be redued.It should also have a type inferene algorithm. Given a term, the algorithm hasto answer whether or not the term is typable. If it is typable, the algorithm ouldalso give bak, if possible, a haraterization of the set of all possible types for theterm. This algorithm is useful for the programmer sine he does not have to speifythe type manually.In this setion, we desribe a type system for the lambda-alulus de�ned above,and disuss the safety property and a type inferene algorithm.Type system. Following the mathematial intuition, denotationally a type is a aset of �-terms. We have a notion of funtion, a notion of produt and some basiterms. We need at least Type A;B ::= Xj �j (A)B)j >j (A�B);where � spans Ctype a set of type onstants and X spans Vtype , a ountable set of typevariables. Ctype needs to ontain at least bit , to store the term onstants 0 and 1. Thenotation (A)B) stands for the set of funtions of domain A and o-domain B, and(A � B) for the set of pairs of an element in A and an element in B. > is the typewith a single element �.Typing rules. A term with free variables an only be well typed if its free variableshave a well-known type. This is the reason why we de�ne what is alled a typingjudgment. A typing judgment is a tuple�IM : Bwhere M is a term, B is a type, and � is a set of variables j�j = fx1; : : : xngtogether with a funtion �f from j�j to the set of types. We usually denote � by

CHAPTER 3. LAMBDA-CALCULUS 33
�I : A () �; x : AI x : A (x)�; x : AIM : B�I �x:M : A)B (�) �IM : A)B �IN : A�IMN : B (app)�I P : bit �IM : A �IN : A�I if (P ;M ;N) : A (if)�IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � Ak (�)�I � : > (>) �IM : C �D �; x:C; y:D IN : A�I let hx; yi=M in N : A (let)Table 6: Typing rules for the simply-typed lambda-alulusfx1 : A1; : : : xn : Ang, with Ai = �f(xi). � is alled a typing ontext. A typingjudgment is said to be valid if it an be derived from the rules in Table 6.We write �1;�2 for �1 [�2 with j�1j \ j�2j = ;. We also write �; x:A for�; fx:Ag.For eah term onstant 2 Cterm , �x a type A, suh that A0 = A1 = bit .3.2.1 Properties of typing judgmentsLemma 3.2.1 (Weakening) If x 62 FV (M) and �; x:AIM :B is valid, then�IM :Bis also valid.Proof. By strutural indution on the typing-tree of �; x:AIM :B.() M = and B = A. Then �IM : B is an appliation of the () rule.

CHAPTER 3. LAMBDA-CALCULUS 34(x) M = y, y 6= x sine x 62 FV (M). From the rule, y 2 j�j. So �IM : B is valid,applying (x).(�) M = �y:P . The typing tree starts with�; x:A; y:C I P :D�; x:AI �y:P :C)D:From the de�nition of ontexts, y 6= x. Then sine x 62 FV (M), x 62 FV (P).Applying indution hypothesis, one gets that �; y:C IP :D is valid. (�) an beapplied: �I �y:P :C)D is valid.(app) M = NP , and the typing tree starts with....�; x:AIN :C)D�; x:AI P : C�; x:AINP :D (app):Sine FV (NP) = FV (N) [FV (P), x 62 FV (N) and x 62 FV (P). Then wean apply the indution hypothesis: �IN :C)D and �; x:AIP :C are valid.Applying (app), one gets that �INP :D is valid.(if) M = if (N ;P ;Q), and the typing tree starts with....�; x:AIN :bit�; x:AI P :A�; x:AIQ:A�; x:AI if (N ;P ;Q):A (if)Sine FV (if (N ;P ;Q)) = FV (N) [FV (P) [FV (Q), x 62 FV (N), x 62 FV (P)and x 62 FV (Q). Then we an apply the indution hypothesis: � I N :bit,�I P :A and �IQ:A are valid typing judgments. With rule (if) we get that�I if (N ;P ;Q):A is valid.(�) M = hM1; : : : ;Mki, and the typing tree starts with....�; x:AIM1 : A1�; x:AIM2 : A2�; x:AI hM1; : : : ;Mki : A1 � : : :� Ak

CHAPTER 3. LAMBDA-CALCULUS 35Sine FV (hM1;M2i) = FV (M1) [FV (M2), the indution hypothesis apply oneah branh of the typing tree, and �IMi : Ai is valid for all i. One an apply(�), and we get �I hM1;M2i : A1 � A2is valid.(>) M = � and the typing tree is �; x:AI � : >Applying this rule, one see that �I � :> is valid.(let) The typing tree starts with....�; x:AIM :C �D�; x:A; y:C; z:D IN :A�; x:AI let hy; zi=M in N :A :Sine FV (let hy; zi=M in N) = FV (M) [(FV (N) n fy; zg) and from thede�nition of ontext, x 62 FV (N) and x 62 FV (M). Then we an apply theindution hypothesis: �; y:C; z:DIN :A and �IM :C�D are valid. Applying(let), one gets that �I let hy; zi=M in N :A is valid.�Lemma 3.2.2 (Renaming of variables) Given a valid typing judgment�; x:C IM :Aand z a fresh variable, �; z:CIM [z=x℄:A is valid with a typing-tree of the same depthas the typing tree of �; x:C IM :A.Proof. By indution on the typing tree of �; x:C IM :A.() M = , A = A and the typing tree is�; x:C I : AMoreover, M [z=x℄ = Applying this rule from srath, �; z:C I : A is valid.Hene the result is true in this ase, and the typing tree has a depth of 1.

CHAPTER 3. LAMBDA-CALCULUS 36(x) M = y, so there are two ases. First, one an have y = x. A = C and the typingtree is �; x : C I x : CM [z=x℄ = z, so diretly from (x)�; z : C I z : Cis valid with typing tree of depth 1.(�) M = lambday:N . The typing tree starts with.... !�; x:C; y:AIN :B�; x:C I �y:N :A)BFrom the de�nition of onatenation in typing judgment, x 6= y. From indutionhypothesis, �; z:C; y:AIN [z=x℄:B is valid with typing tree !0 of depth the depthof !. Applying (�), one get�; z:C I �y:(N [z=x℄):A)Bsine y 6= x, �y:(N [z=x℄) = (�y:N)[z=x℄. So �; z:C IM [z=x℄:A) B is validwith a typing-tree of the same depth as the typing tree of�; x:C IM :A)B:(app) M = NP . The typing tree ! starts with.... !1�; x:C IN : B) A !2�; x:C I P : B�; x:C INP : A (app)d(!) = 1 + max(d(!1); d(!2)). From indution hypothesis�; z:C IN [z=x℄ : B)A and �; z:C I P [z=x℄ : Bare valid and of depth d(!1) and d(!2).From (app) and the fat that (NP)[z=x℄ = N [z=x℄P [z=x℄,

CHAPTER 3. LAMBDA-CALCULUS 37
�; z:C I (NP)[z=x℄ : Ais valid of depth d(!).(if) M = if (P ;Q;N). The typing tree ! starts with.... !1�; x:C I P : bit !2�; x:C IQ : A !3�; x:C IN : A�; x:C I if (P ;Q;N) : A (if)d(!) = 1 + max(d(!1); d(!2); d(!3)). From indution hypothesis,�; z:C I P [z=x℄:bit; �; z:C IQ[z=x℄:A and �; z:C IN [z=x℄:Aare valid of depth d(!1), d(!2) and d(!3). Applying (if) and from the de�nitionof substitution, �; z:C I if (P ;Q;N)[z=x℄:Ais valid of depth d(!).(�) M = hM1;M2i, and typing tree ! starts with.... !1�; x:C IM1 : A1 !2�; x:C IM2 : A2�; x:C I hM1;M2i : A1 � Ak (�)d(!) = 1 + max(d(!1); d(!2)). From indution hypothesis,�; z:C IM1[z=x℄:A1 and �; z:C IM2[z=x℄:A2are valid of depth d(!1) and d(!2). Applying (�) and from the de�nition ofsubstitution, �; z:C I hM1;M2i[z=x℄:A1 � A2is valid of depth d(!).

CHAPTER 3. LAMBDA-CALCULUS 38(let) The typing tree starts with....�; x:AIM :C �D�; x:A; y:C; t:D IN :A�; x:AI let hy; ti=M in N :A :By indution hypothesis,�; z:AIM [z=x℄:C �D and �; z:A; y:C; t:D IN [z=x℄:Aare valid. From the de�nition of ontext, x is di�erent from y and t, so(let hy; ti=M in N)[z=x℄ = (let hy; ti=M [z=x℄ in N [z=x℄). Then applyingthe (let) rule, �; z:AI (let hy; ti=M in N)[z=x℄:Ais valid.(>) M = �, A = > and the typing tree is�; x:C I � :>Moreover, M [z=x℄ = � Applying this rule from srath, �; z:C I � :> is valid.Hene the result is true in this ase, and the typing tree has a depth of 1.�Lemma 3.2.3 (Substitution) Given�; x1:C1; : : : xn:Cn IM :A;�INi:Ci 8i = 1 : : : n;and � = f xi 7! Ni; i = 1 : : : n g;the typing judgment �I ��(M):A is valid.Proof.The typing-tree of � I ��(M):A is onstruted by indution on the struture ofthe typing tree.

CHAPTER 3. LAMBDA-CALCULUS 39() ��() = , then applying the same rule (), �I :Ais valid.(x) In this ase, M = x. Sine ��(x) = �(x), there are 2 ases: either x 62 j�j, and sox 2 j�j and �(x) = x: from the rule (x), � I x:A is valid. In the other ase,x = xi 2 j�j, so A = Ci and �(x) = Mi. But from the hypothesis, �IMi : Ciis valid. So in both ase, the result is valid.(�) In this ase, M = �x:N . The typing tree starts with:�; x:C IN :D�I �x:N :C)D��(�x:N) = �z:��0(N) =, with z a fresh variable and �0 = � Æ fx7!zg. FromLemma 3.2.2, �; z:C I N [z=x℄:D is valid, and the typing tree have the samedepth as the one of �; x:C IN :D. By indution hypothesis,�; z:C I ��(N [z=x℄):D:Sine ��(N [z=x℄) = ��0(N), applying (�),�I ��(�x:N):C)Dis valid(app) In this ase M = NP . The typing tree is:�IN :C)D �I P :C�INP : DFrom indution hypothesis, �I ��(N):C)D and �I ��(P):C Applying (app),�I ��(N)��(P) : D is valid. Sine ��(NP) = ��(N)��(P).(if) In this ase M = if (N ;P ;Q). The typing tree is:�IN : bit �I P : C �IQ : C�I if (N ;P ;Q) : CFrom indution hypothesis,�I ��N : bit ; �I ��P :C and �I ��Q:C:

CHAPTER 3. LAMBDA-CALCULUS 40Then, applying (if), �I if (��N ; ��P ; ��Q):C is valid. Sineif (��N ; ��P ; ��Q) = ��(if (N ;P ;Q));the result is true in this ase.(�) M = hM1;M2i. The typing tree starts with�IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � A2By indution hypothesis, for all i, � I ��(Mi) : Ai is valid. Applying (�) andusing the relation ��(hM1;M2i) = h��(M1); ��(M2)i, the typing judgment�I ��(hM1;M2i) : A1 � A2is valid(let) The typing tree starts with....�; x1:C1; : : : xn:Cn IM :C �D�; x1:C1; : : : xn:Cn; y:C; t:D IN :A�; x1:C1; : : : xn:Cn I let hy; ti=M in N :A :By indution hypothesis,�I ��M :C �D and �; y:C; t:D I ��N :Aare valid. From the de�nition of ontext, x is di�erent from all xi, so��(let hy; ti=M in N) = (let hy; ti=��M in ��N):Then applying the (let) rule,�I ��(let hy; ti=M in N):Ais valid.(>) M = � and the typing judgment is �I � : >��(�) = � so the typing judgment �I ��(�):> is valid.

CHAPTER 3. LAMBDA-CALCULUS 41�Theorem 3.2.4 (Subjet Redution) If � IM :A is valid and M �!�� N then�IN :A is valid.Proof.It is suÆient to prove it for �!�. We will do that by strutural indution onthe derivation of M �!� N : For all valid typing judgments � IM : A, the typingjudgment �IN : A is valid.(�) In that ase, the rule is (�x:P)Q�!� P [Q=x℄and (�x:P)Q has for unique typing tree....�; x:AI P :B�I �x:P :A)B�IQ:A�I (�x:P)Q:B :From Lemma (3.2.3) one an dedue that �I P [Q=x℄:B is well typed.(if 0) The rule is if (0;M ;N)�!� Nand if (0;M ;N) has for unique typing tree�I 0 : bit �IM : A �IN : A�I if (1;M ;N) : A :There is nothing to do: �IN :A(if 1) For the same reason as above, �IM :A(let) In this ase the rule islet hx; yi=hM1;M2i in N �!� N [M1=x;M2=y℄

CHAPTER 3. LAMBDA-CALCULUS 42and let hx; yi=hM1;M2i in N has for unique typing tree�IM1:C �IM2:D�I hM1;M2i : C �D �; x:C; y:D IN : A�I let hx; yi=hM1;M2i in N : A (let):Applying Lemma 3.2.3, one an onlude that�IN [M1=x;M2=y℄is valid.(ong1) The rule is M �!� M 0MN �!� M 0N (ong1)and MN has for unique typing tree....�IM :A)B�IN :A�IMN :B :By indution hypothesis, �IM 0:A)B is valid. Applying (app), one get�IM 0N :B(ong2) The proof is similar as for (ong1): the rule isM �!� M 0MN �!� MN 0 (ong1)and MN has for unique typing tree the same as above. From the indutionhypothesis, �IN 0:A. Applying (app), one get�IMN 0:B(if i) and (�i) The proof is the same as the one for (ong i).

CHAPTER 3. LAMBDA-CALCULUS 43(�) The (�) rules are all on the same model. Here is the proof for (��).P �!� P 0�x:P �!� �x:P 0 (�)and �x:P has for unique typing tree�; x : AI P : B�I �x:P :A)B:By indution hypothesis, �; x : AI P 0 : B. Applying (�) one get the result:�I �x:P 0:A)B�Corollary 3.2.5 If �IM :A and M �!CBV � N then �IN :A.Proof. Using Theorem 3.2.4 and the fat that every all-by-value redution is alsoa �-redution, the orollary is true. �Theorem 3.2.6 (Progress) If IM :A is valid, either M is a value, or M reduesto some term N by all-by-value.Proof. We prove it by indution of the derivation of IM :A. If M is a value, thereis nothing to prove. If it is not, then there are the following asesM = NP . By the (�) rule, IN :B) A is valid for some type B, and � I P :B isvalid. By indution hypothesis, either N or P redues, or they are both values.If they are both values, then N = �x:N 0 sine this is the only value that anhave type B) A. And thus all-by-value redution applies with rule (�). Ifone of N or P is not a value, then a all-by-value redution an also be applied,by rule (ong1) or (ong2).M = if (N ;P ;Q). By the (if) rule, IN : bit is valid. Either N is a value, in whihase N = 0 or N = 1 and M redues by the (if 0) or (if 1) rule, or it is not, and(�if) an be applied.

CHAPTER 3. LAMBDA-CALCULUS 44M = let hx; yi=N in P . By the (let) rule, IM :A is valid and omes fromIN :C�D and x:C; y:D I P :A:First ase N ould be a value, and then N = hV1; V2i. In this ase, the (let)redution an be applied. In the other ase, by indution N an be redued.Then �let an be applied.�3.2.2 Type inferene algorithmWith the subjet redution and the progress theorems, we are able to ertify thewell-behavior of a program during redution using a type system: A well-typed terman never produe a run-time error. In onsequene, we are interested to know ifgiven a lambda-term, this term an be well-typed.Given a typable term, there exist a lot of possible types for this term. Considerthe term �xy:xy. All these are valid typing judgments:I�xy:xy:(�)X)) (�)X);I�xy:xy:((�� bit)) �)) ((�� bit)) �);I�xy:xy:((�) Y)) (�� A))) ((�) Y)) (�� A));I�xy:xy:(C) bit)) (C) bit):One an see that there is a general form form this typing judgment, namely:I�xy:xy:(A)B)) (A)B):More generally, every term in the simply-typed lambda-alulus has a most generaltype. We now make this notion preise.

CHAPTER 3. LAMBDA-CALCULUS 45Type substitution We de�ne a type substitution to be a funtion from Vtype totypes. We extend this notion to a funtion �� from types to types as follows:��(X) = �(X)��(�) = ���(>) = >��(A)B) = ��(A)) ��(B)��(A� B) = ��(A)� ��(B)Given a typing judgment � = fx1:A1 : : : xn:Ang, we write��� = fx1:��A1 : : : xn:��AngWith the de�nition of type substitution, we are able to say that a type A is saidto be more general than a type B, if there exists a type substitution � suh that��(A) = B. We also say that B is an instane of A. We an also de�ne this oneptfor typing judgments, type derivation and substitutions: � is more general than � ifthere exists � suh that �� Æ � = � .In the previous example, the typing judgmentI�xy:xy:(X) Y)) (X) Y)is more general than all the other ones we gave.Lemma 3.2.7 Given � and � two type substitutions, �� Æ �= �� Æ �� . �Lemma 3.2.8 Given a valid typing judgment �IM : A, for any substitution �, thetyping judgment ���IM : ��A is valid.Proof.by strutural indution on the typing tree of �IM : A.() The rule is �I :A. For all 2 Vterm , ��(A) = A. Hene �� I :��A is valid.(>) is similar as the previous ase.

CHAPTER 3. LAMBDA-CALCULUS 46(x) The rule is �; x:AI x:A. the image of this typing judgment by � is���; x:��AI x:��Awhih is valid applying (x).(�) The rule is �; x : AIM : B�I �x:M : A)BBy indution hypothesis ���; x:��AIM :��Bis valid. Applying (�) and from the de�nition of ��,���I �x:M : ��(A)B)is valid.(app) The rule is �IM : A)B �IN : A�IMN : BBy indution hypothesis ���IM : ��(A)B) and���IN : ��AFrom the de�nition of �� ���IM : ��A) ��Bis valid. Applying (app) ���IMN : ��Bis valid.(if) The rule is �I P : bit �IM : A �IN : A�I if (P ;M ;N) : A

CHAPTER 3. LAMBDA-CALCULUS 47By indution hypothesis���I P : �� bit ; ���IM : ��A and���IN : ��Aare valid. Sine �� bit = bit , one an apply (if) and���I if (P ;M ;N) : ��Ais valid.(�) The rule is �IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � AkBy indution hypothesis ���IM1:��A1 and���IM2:��A2Sine ��(A1 � Ak) = ��A1 � ��A2,���I hM1;M2i : ��(A1 � Ak)is valid.(let) The rule is �IN :C�D �; x:C; y:D I P :A�I let hx; yi=N in P :A :By indution hypothesis,���IN :��(C�D) and ���; x:��C; y:��D I P :��A:Sine ��(C�D) = ��C���D, one an apply (let) and���I let hx; yi=N in P : ��Ais valid.�

CHAPTER 3. LAMBDA-CALCULUS 48Uni�ers Given two types A and B, we de�ne a uni�er of A and B to be a typesubstitution � suh that ��(A) = ��(B). We say that � is prinipal, or most general, ifany uni�er �0 of A and B is less general than �. For a omplete disussion on uni�ers,see [16, p.326℄.Given two types A and B, we onstrut a substitution unify(A;B) from the al-gorithm, provided that a uni�er exists for A and B (else the algorithm fails), asfollows: unify(X;X) = ;;unify(�; �) = ;;unify(>;>) = ;;unify(X;B) = fX 7! Bg if X 62 FV (B);unify(B;X) = fX 7! Bg if X 62 FV (B);unify(A)B;C)D) = �� Æ � � = unify(A;C) and� = unify(��(B); ��(D));unify(A�B;C �D) = �� Æ � � = unify(A;C) and� = unify(��(B); ��(D));else fails:For example, a uni�er for X) (Y � bit) and (W) bit))W is(X 7�! (Y � bit)) bit ;W 7�! Y � bit)It maps both types to ((Y � bit)) bit)) (Y � bit).The uni�er is a substitution on types: sometimes it doesn't exist. For example,there is no uni�er forX)Y andW�Z. Sine we do not have a reursive type system,there is no uni�er for Y and X � Y . Suh a uni�er would give X � (X � (X � (: : :)))and suh an in�nite type is not allowed.Lemma 3.2.9 (Uni�ation) unify(A;B) gives a most general uni�er of A and B,or fails if there is no uni�er.Proof. A sketh of the proof is given. A omplete proof an be found in [16, p.328℄.First we show that unify(A;B) is a uni�er for A and B. We prove it by indution

CHAPTER 3. LAMBDA-CALCULUS 49on the derivation of unify . Then suppose there exists a uni�er � for A and B. Weprove by indution on the derivation of unify(A;B) that � = �� Æ unify(A;B). And sounify(A;B) exists and is more general than any other uni�er, if any: it is a prinipaluni�er. �Type inferene algorithm. Now, extending the notion of prinipal uni�er to typ-ing judgments, infer(�IM : A) is de�ne in Table 7. This de�nition and the followinglemma ome from [20, p.60℄Lemma 3.2.10 Given any (valid or non valid) typing judgment � I M :B, � =infer(�IM :B) returns the prinipal substitution suh that ���IM :��B is valid, orfails if there is no substitution suh that ���IM :��B is valid. Suh a substitution isalled a uni�er for the typing judgment.Proof.We prove the lemma in two steps:1. If � = infer(� IM :A) exists, then ��� IM :��A is valid, proved by indutionon the derivation of infer(�IM :A).infer(�; x:AI x:B) returns � = unify(A;B). So ��A = ��B, and���; x:��AI x:��B is valid.infer(�I � :B) returns � = unify(B;>). Sine ��> = >, ��B = >.Hene ���I � :��B is valid.infer(�I :B) returns � = unify(B;A). For all 2 Vterm , ��A = A for anytype substitution � . Thus ��B = A, and ���I :��B is valid.infer(�IMN :B) returns �� Æ �, with� = infer(�IM : X)B);� = infer(���IN : ��X) andX a fresh variable:By indution hypothesis, � and � are suh that ��� I M : ��X) ��Band �� ��� I N : �� ��X are valid. ��� I M : ��X) ��B) is valid then by

CHAPTER 3. LAMBDA-CALCULUS 50
infer(�; x:AI x:B) = unify(A;B)infer(�I � :B) = unify(B;>)infer(�I :B) = unify(B;A)infer(�IMN :B) = �� Æ �� = infer(�IM : X)B)� = infer(���IN : ��X)X fresh variableinfer(�I �x:M :B) = �� Æ �� = unify(B;X) Y)� = infer(���; x:��X IM :��Y)X; Y fresh variablesinfer(�I hM;Ni:B) = �� Æ �� Æ �� = unify(B;X � Y)� = infer(���IM :��X)� = infer(�����IN :����Y)X; Y fresh variablesinfer(�I if (P ;M ;N):B) = �� Æ �� Æ �� Æ �� = infer(�I P :Y)� = unify(�Y; bit)� = infer(�����IM :����B)� = infer(�� �����IN :�� ����B)infer(�Ilet hx; yi=M in N :A) = �� Æ �� = infer(�IM :X1 �X2)� = infer(���; x:��X1; y:��X2 IN :��A)X1; X2 fresh variablesTable 7: Type inferene algorithm for the simply-typed lambda-alulus

CHAPTER 3. LAMBDA-CALCULUS 51Lemma 3.2.8 �� ���IM : �� ��X) �� ��B is valid. Applying (app),�� ���IMN : �� ��Bis valid.infer(�I �x:M :B) returns �� Æ �, with � = unify(B;X) Y),� = infer(���; x:��X IM :��Y)and X,Y fresh variables. By indution hypothesis, � and � are suh that��(B) = ��(X)) ��(Y) and�� ���; x:�� ��X IM :�� ��Yis valid. Applying (�) and sine �� ��(B) = �� ��(X)) �� ��(Y),�� ���I �x:M :�� ��Bis valid.infer(�I hM;Ni:B) returns �� Æ �� Æ �, with� = unify(B;X � Y);� = infer(���IM :��X);� = infer(�����IN :����Y) andX; Y fresh variables:From indution hypothesis, �����IM :����Xand �� �����IN :�� ����Yare valid, and ��B = ��X � ��Y . Thus�� �����IM :�� ����Xis valid using Lemma 3.2.8, and �� ����B = �� ����X � �� ����Y . Thus, applying(�), �� �����I hM;Ni:�� ����Bis valid.

CHAPTER 3. LAMBDA-CALCULUS 52infer(�I if (P ;M ;N):B) returns �� Æ �� Æ �� Æ �, with� = infer(�I P :Y);� = unify(�Y; bit);� = infer(�����IM :����B) and� = infer(�� �����IN :�� ����B):So by indution hypothesis,���I P :��Y;�� �����IM :�� ����B and���� �����IN :���� ����Bare valid, with ����Y = bit . Applying Lemma 3.2.8,���� �����I P :���� ����Y and���� �����IM :���� ����Bare valid, and ���� ����Y = bit . Applying (if),���� �����I if (P ;M ;N):���� ����Bis valid.infer(�Ilet hx; yi=M in N :A) returns �� Æ �, with� = infer(�IM :X1 �X2)� = infer(���; x:��X1; y:��X2 IN :��A):So by indution hypothesis,���IM :��X1 � ��X2 and�����; x:����X1; y:����X2 IN :����Aare valid. From Lemma 3.2.8,�����IM :����X1 � ����X2is also valid. Applying (let),�����Ilet hx; yi=M in N :����Ais valid.

CHAPTER 3. LAMBDA-CALCULUS 532. If there exists a substitution � suh that���IM :��Ais valid, then � = infer(� IM :A) exists and �� Æ � = �, proved by struturalindution on M .() Sine A does not ontain any type variables and sine ��� I :��A is equalto ���; x:A I :A, we have the equality �A = A, or A = A. Sineunify(A; A) = id , � exists and is equal to id . In partiular, �� Æ � = �.(>) This ase is done similarly, replaing A with >.(x) The typing judgment ���; x:��AIx:��B is valid, then ��A = ��B. In partiular,� is a uni�er for A and B. Then a most general uni�er an be found fromLemma 3.2.9, and it is given by unify(A;B). From the de�nition,infer(�; x:AI x:B) = unify(A;B):Hene it exists, and from the property of unify , �� Æ � = �.(app) If ���1; ���2; ��!�INP :��Ais valid, then from the rule (app),���1; ��!�IN :B) ��A���1; ��!�I P :Bare valid. In partiular, given a fresh type variable Z, the substitution�0 = � [fX 7! Bg is suh that��0�1; ��0!�IN : ��0(Z) A)��0�1; ��0!�I P : ��0Zare valid. By indution hypothesis, the inferene algorithm sueeds on�1; !� I N :Z) A, and returns a substitution �1 suh that ��0 Æ �1 = �0.Sine ��0�1; ��0!�I P : ��0Z

CHAPTER 3. LAMBDA-CALCULUS 54is equal to ��0 Æ �1�1; ��0 Æ �1!�I P : ��0 Æ �1Z;by indution hypothesis, the inferene algorithm sueeds also on��1�1; ��1!�I P : ��1Z;and returns a substitution �2 suh that ��0 Æ ��1 Æ �2 = ��0 Æ �1 = �0. Thesubstitution infer(�1;�2; !�INP :A) is de�ned to be ��1 Æ �2.The proof is similar for the remaining ases�Theorem 3.2.11 (Type inferene algorithm) A given term M is typable if andonly if � = infer(x1:X1; : : : xn:Xn IM : Y)with FV (M) = fx1 : : : xng doesn't fail. Moreover, a prinipal typing judgment for Mis x1:�X1; : : : xn:�Xn IM : �YProof.If M is typable and x1:A1; : : : xn:An IM : Bis a valid typing judgment, then� = fX1 7! A1; : : :Xn 7! An; Y 7! Bgis a uni�er for x1:X1; : : : xn:Xn IM : Yhene, infer won't fail, and will return a most general uni�er, from Lemma 3.2.10.On the onverse, if the algorithm does not fail, it gives bak a prinipal uni�er, sothe term is typable. �

Chapter 4Linear LogiThe type system used in Chapter 3 is based on intuitionisti logi. Linear logiwas introdued by Girard [9℄ as a resoure sensitive logi. One of the basi rules ofordinary logi is the ontration rule whih states that given a valid proposition Aone an dedue A^A. This rule an be viewed as a dupliation of the formula (or ofthe resoure) A. In linear logi, the dupliation of resoure is in general not allowed,and the ontration rule is dropped. Formulas for whih dupliation is allowed areexpliitly written as !A.In intuitionisti logi, there are two ways for introduing a onjuntion:�I A �I B�I A ^ B �I A �IB�;�I A ^ BThey are in fat di�erent: the �rst one is a superposition, and the seond one is ajuxtaposition. In intuitionisti linear logi they yield two di�erent onjuntions: the�rst is alled the additive onjuntion and is written & , the seond is alled themultipliative onjuntion and is written
. � is the additive disjuntion, and(isthe linear impliation:0 for �; > for & ; 1 for
:For a more omplete disussion, see [11℄.More formally, a formula in intuitionisti linear logi is de�ned by the following55

CHAPTER 4. LINEAR LOGIC 56abstrat syntax: A;B;C ::= !Aj (A
B)j (A(B)j (A & B)j (A�B)j 0 j 1 j >:A sequent in intuitionisti linear logi is a pair�B Awhere � is a set of intuitionisti linear logi formulas and A is an intuitionisti linearlogi formula.The rules are found in Table 8. Note the absene of strutural rules of weakeningand ontration.To be able to manipulate dupliable elements in linear logi, a speial unaryonnetive is provided. We denote !A a term on whih one an apply weakening andontration. We say \bang A" for !A. The rules we need to add are in Table 9A sequent A1; : : : ; AnBB in intuitionisti linear logi an be interpreted as a rulefor transforming resoures A1 : : : An into a resoure B. The point is that A1 : : : Anare used up in this proess, and annot in general be used more than one.A good example is the example of the restaurant, inspired by Girard and La-font [10℄. Consider the following menu:fruit or seafood (in season)main ourseall the hips you an eattea or o�eeYou have two kinds of hoie: the hoie between fruit and seafood is made for you,depending on what is available, and the hoie of tea or o�ee is let to you. Only onemain ourse will be brought to you, but you an eat as many hips as you want. Thismenu translates into:(fruit� seafood)
main
 !hips
 (tea & o�ee)

CHAPTER 4. LINEAR LOGIC 57
Logial axiom CUT ruleAB A �B A �; AB B�;�BBMultipliative fragment�B A �B B�;�B A
 B B; A�B�B A(B B1�; A; B B C�; A
 B B C �; B B C �B A�;�; A(B B C �B A�; 1B AAdditive fragment�B A �B B�B A & B �B B�B A�B B�;>�; Ai B B�; A1 & A2 B B �; AB C �; B B C�A� B B C �; 0B ATable 8: Derivation rules for intuitionisti linear logi

derelition weakening ontration�; ABB�; !AB B (D) �B B�; !AB B (W) �; !A; !AB B�; !ABB (C) �; !AB B�; !AB!B (!)Table 9: Derivation rules for exponential

CHAPTER 4. LINEAR LOGIC 58In intuitionisti linear logi, if a sequent �BA is provable then all the resouresin � are used. This might be too strong: If the resoures represents variables in aprogram, one might want not to use all of them. We need a weaker logi: We willreplae the axiom rule AB Awith �; AB AIn other words, a element an be disarded even if it is not of the form !A. The logibeomes the aÆne intuitionisti linear logi, or AILL. This �ts better our needs asomputer sientists. Indeed we want to be able to reate a funtion that will not useits argument. This fragment is therefore the one on whih the type system of thelanguage we develop is based: we are able to state whether or not an element an bedupliated, but we may forget any variable we wish to.

Chapter 5The quantum lambda-alulus:Terms
5.1 Quantum StatesWe now turn to the question of de�ning a lambda-alulus for quantum omputationwith lassial ontrol.We would like to extend the lambda alulus with the ability to manipulate quan-tum data. We �rst need a syntax to express quantum states in the lambda alulus.In simple ases, we might simply insert quantum states into a lambda term, suh as�x:(�j0i+ �j1i):However, in the general ase, suh a syntax is insuÆient. Consider for instane thelambda term (�y:�f:fpy)(q);where p and q are quantum bits whih are jointly in the entangled state jpqi =�j00i+ �j11i. Suh a state annot be represented loally by replaing p and q withsome onstant expressions of type qubit. The non-loal nature of quantum states thusfores us to introdue a level of indiretion into the representation of a state. Thus, torepresent a program, we should have a lambda-termM to enode the operations, butalso an exterior n-qubit state Q to store the quantum data of the program. Further,59

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 60to link both parts, we need a third element, whih is a funtion L from FV (M) tof0; : : : ; n� 1g, suh that if L(x) = i, the variable x represents the i-th qubit in Q.We also provide several built-in operations for quantum bits. The operator newrepresents a funtion that takes a bit (0 or 1) and alloates a new qubit of theorresponding value. We also need to be able to at on qubits via unitary operations;thus, we will assume a given set U1 of unitary gates. For simpliity we �rst onsiderour language without tuples so we will restrit ourselves to unary quantum gates fornow; tuples and n-ary gates will be onsidered in Chapter 8.In the following examples, we will often use the Hadamard gate H, whih weassume to be an element of U1:H = 1p2 1 11 �1 !Finally, we equip the language with an operation meas, whih takes a quantum bit,performs a measurement, and returns the lassial bit 0 or 1 whih is the result of themeasurement. Of ourse, the outome of this operation is probabilisti. If U rangesover U1 and x over Vterm , we de�ne a term by the following:RawTerm M;N; P ::= xj MNj �x:Mj if (M ;N ;P)j 0 j 1j measj newj UNote that ompare to the lambda-alulus from Chapter 3, we have removedpairing, unit and the let operator. These will be re-introdued in Chapter 8.As usual, terms are identi�ed up to �-equivalene. In that sense we will write�x:x = �y:y.De�nition 5.1.1 A quantum state is a triple[Q;L;M ℄

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 61where� Q is a normalized vetor of
n�1i=0 C 2 , for some n � 0� M is a lambda-term,� L is a funtion from W to f0; : : : ; n � 1g, where FV (M) � W � Vterm . L isalso alled the linking funtion.We denote the set of quantum states by S. If n = 0, then we denote the trivialstate vetor Q = 1 2 C by Q = ji.A useful subset of S is the subspae V of value states:V = f [Q;L; V ℄ 2 S j V is a value gHere, a value is de�ned to be a onstant, a variable or a lambda-abstration as inChapter 3.The notion of �-equivalene extends naturally to quantum states, for instane,the states [j1i; fx 7! 0g; �y:x℄ and [j1i; fz 7! 0g; �y:z℄are equivalent. More formally, the �-equivalene on quantum states is the smallestequivalene relation suh that if x 2 FV (M) and z 62 FV (M), then[Q;L [fx 7! ig;M ℄ =� [Q;L [fz 7! ig;M [z=x℄℄:We will work under this equivalene when speaking of quantum states.Convention 5.1.2In order to simplify the notation, we will often use the following trik: we use pito denote the free variable x suh that L(x) = i. A quantum state is abbreviated by[Q;M 0℄withM 0 =M [pi1=x1℄ : : : [pin=xn℄ if the domain of L is fx1; : : : ; xng, where ik = L(xk).

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 62Redution of the quantum state. We should now address the question of how aquantum state should be redued. One restrition is that it is forbidden to dupliatea quantum bit, due to the no-loning property of quantum physis. Let us illustratethis with an example, using a all-by-value redution proedure. Let us de�ne abinary and operation in our language: and = �xy: if (x; if (y; 1; 0); 0). Now onsiderthe following term: (�x:and(meas(x)(meas(H x)))) (j0i):Na��vely, we expet this to redue toand(meas(j0i))(meas(H j0i));then to measure the right argument H j0i, then the left argument whih redues to 0with probability 1, and then apply the and funtion. We expet to obtain the result0 with probability 1. Using the quantum state notation, let us redue this term moreformally: [j0i; (�x:and(meas(x))(meas(H x)) (p0)℄�!CBV [j0i; and(meas(p0))(meas(H p0))℄In the QRAM, applying H to a qubit is modifying the atual state of the qubit. Letus redue the right argument (H p0):�!CBV [1p2 (j0i+ j1i) ; and(meas(p0))(meas(p0))℄:Reduing the right argument again, we obtain 1 with probability 0:5, assuming thatthe measurement is non-destrutive. (Indeed, if we used destrutive measurement,the program would not even be well-de�ned, sine we would have a p0 alone):�!CBV [j0i; and(meas(p0))(0)℄:and with probability 0:5: �!CBV [j1i; and(meas(p0))(1)℄:

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 63This redues to [j0i; 0℄ with probability 0:5 and to [j1i; 1℄ with probability 0:5. Clearly,this is not the intended result.The program is unpreditable due to the dupliation of p0. The problem derivesfrom the fat that a value suh as p0 does not represent a onstant, as in the lassiallambda alulus, but rather it is a pointer into the quantum state. We never at onp0, we at on the value it points to. To ensure the preditability of programs, it isneessary to disallow the dupliation of terms that ontain pi's.We will all an abstration �x:M linear if x appears at most one as a free variablein M . We also say that M is linear in x in this ase.Another problem an our: let us all plus the funtion whih ats as the additionmodulo 2 on lassial bits. We an easily onstrut suh a funtion in our language:plus = �xy: if (x; if (y; 0; 1); if (y; 1; 0))Consider the state [ji; (�x:plus x x)(meas(H(new 0)))℄Now redue this state using all-by-value redution. Intuitively this shall redue to:�!CBV [j0i; (�x:plus x x)(meas(H p0))℄�!CBV [1p2(j0i+ j1i); (�x:plus x x)(meas p0)℄and then with probability 0:5:[ji; (�x:plus x x)(0)℄ or [ji; (�x:plus x x)(1)℄[ji;plus 0 0℄ or [ji;plus 1 1℄whih evaluate both with probability 1 to [ji; 0 ℄Had we redued the same term under a all-by-name strategy, we would haveobtained in the �rst step[ji;plus (meas(H(new 0))) (meas(H(new 0))))℄;and then [ji; 0 ℄ with probability 0:5 and [ji; 1 ℄ with probability 0:5.

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 64Moreover, if we had mixed the all-by-value and all-by-name strategies, the pro-gram ould have led to an ill-de�ned result: reduing by all-by-value until[p22 (j0i+ j1i); (�x:plus x x)(meas p0)℄and then hanging to all-by-name, we would obtain in one step:[p22 (j0i+ j1i); (plus (meas p0) (meas p0)℄;whih is not a valid program sine there are 2 ourrenes of p0.In other words, it does not make sense to speak of a general �-redution proedurefor the whole quantum state. It is neessary to hoose a redution strategy beforewriting programs.5.2 Probabilisti redution systemsDe�nition 5.2.1 We de�ne a probabilisti redution system as a tuple (X;U;R; prob)where X is a set of states, U � X is a subset of value states, R � (X n U) � X isa set of redutions, and prob : R ! [0; 1℄ is a probability funtion, where [0; 1℄ is thereal unit interval. Moreover, we impose the following onditions:� For any x 2 X, Rx = f x0 j (x; x0) 2 R g is �nite.� Px02Rx prob(x; x0) � 1We all prob the one-step redution, and we use the following notation:x�!p y when prob(x; y) = pLet us extend prob to the n-step redution:prob0(x; y) = (0 if x 6= y1 if x = yprob1(x; y) = (prob(x; y) if (x; y) 2 R0 elseprobn+1(x; y) = Pz2Rx prob(x; z)probn(z; y)

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 65We use the following notation:x�!np y when probn(x; y) = pWe say that y is reahable in one step with non-zero probability from x, denotedx �!>0 y when x �!p y with p > 0. We say that y is reahable with non-zeroprobability from x, denoted x �!�>0 y when there exists n suh that x �!np y withp > 0.We an then ompute the probability to reah u 2 U from x: It is a funtion fromX � U to R de�ned by: probU(x; u) = 1Xn=0 probn(x; u)The total probability for reahing U from x is:probU(x) = 1Xn=0Xu2U probn(x; u)On the other hand, there is also the probability to diverge from x, or never reahinganything. This value is: prob1(x) = limn!1Xy2X probn(x; y)Lemma 5.2.2 For all x 2 X, probU(x) + prob1(x) � 1.We de�ne the error probability of x to be the numberproberr(x) = 1� probU(x)� prob1(x)De�nition 5.2.3 We an de�ne a notion of equivalene in X:x � y i� 8u 2 U (probU(x; u) = probU(y; u)prob1(x) = prob1(y)

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 66De�nition 5.2.4 In addition to the notion of reahability with non-zero probability,there is also a weaker notion of reahability, given by R: We will say that y is reahablefrom x if xRy. By the properties of prob,x�!>0 y implies x ywith x y for xRy. Let us denote by �!� the relation suh thatx � y i� 9n xRnywith Rn de�ned as the n-th omposition of R. Similarly,x�!�>0 y implies x � yConsistent states and error-states. In a probabilisti redution system, a statex is alled an error-state if x 62 U andXx02X prob(x; x0) < 1An element x 2 X is onsistent if there is no error-state e suh that x � eLemma 5.2.5 If x is onsistent, then proberr(x) = 0.However, the onverse is false: De�ne� X = f0; 1; 2g� U = f2g� prob and R are de�ned by 0R0 and 0�!0:5 00R1 and 0�!0 10R2 and 0�!0:5 2Here (X;U;R; prob) is a probabilisti redution system. 1 is an error state, so 0 isnot onsistent but proberr(x) = 0.

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 67Remark 5.2.6 We need the weaker notion of reahability x � y, in addition toreahability with non-zero probability x�!>0�y, beause a null probability of gettinga ertain result is not an absolute warranty of its impossibility. In the QRAM, supposewe have a qubit in state j0i. Measuring it annot theoretially yield the value 1,but in pratie, this might happen with small probability, due to impreision of thephysial operations and deoherene. What will happen if we measure this qubitand get 1? We need to be sure that even in this ase the program will not rash.Hene we separate in a sense the null probability of getting a ertain result, and theomputational impossibility.5.3 Quantum redutionWe need a deterministi proedure to hoose whih redex to redue. Let us analyzea all by value proedure, sine this is the most intuitive proedure. Note that theredution itself is probabilisti, but the hoie of redex is deterministi.Call-by-value redution. We de�ne a probabilisti all-by-value redution proe-dure in Table 10. We write M�!CBV pN if M redues to N with probability p, orM �!pN for short. As said before, the redution in the lassial part of the alulusis the usual one. Reall that we write [Q;M 0℄ as an abbreviation for a quantum state[Q;L;M ℄ by Convention 5.1 on page 61.Disussion. In the rule (meas), if Q = �jQ0i+ �jQ1i is normalized withjQ0i =Pi �ij�0i i
 j0i
 j 0i i;jQ1i =Pi �ij�1i i
 j1i
 j 1i i;and j0i and j1i being the i-th qubit, we write �0 = j�j2 and �1 = j�j2. In the rule(new), Q is in a spae of dimension 2n. In the rule (U), if Q is in a spae of dimension2n, let Q0 = (Ij
 U
 In�j�1)(Q). In any ase, V is a value.A weaker relation. We de�ne a weaker relation . This relation models thetransformations that an happen due to deoherene and impreision of physial

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 68

[Q; (�x:M)V ℄�!1 [Q;M [V=x℄℄ (�)[�jQ0i+ �jQ1i;meas pi℄�!�0 [jQ0i; 0℄ (meas)[�jQ0i+ �jQ1i;meas pi℄�!�1 [jQ1i; 1℄ (meas)[Q; new 0℄�!1 [Q
 j0i; pn℄ (new0)[Q; new 1℄�!1 [Q
 j1i; pn℄ (new1)[Q;U pj℄�!1 [Q0; pj℄ (U)[Q;N ℄�!p [Q0; N 0℄[Q;MN ℄�!p [Q0;MN 0℄ (ong1)[Q;M ℄�!p [Q0;M 0℄[Q;MV ℄�!p [Q0;M 0V ℄ (ong2)[Q; if (0;M ;N)℄�!1 [Q;N ℄ (if 0)[Q; if (1;M ;N)℄�!1 [Q;M ℄ (if 1)[Q;P ℄�!p [Q0; P 0℄[Q; if (P ;M ;N)℄�!p [Q0; if (P 0;M ;N)℄ (�if)Table 10: Quantum all-by-value redution

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 69operations. We de�ne [Q;M ℄ � [Q0;M 0℄ is [Q;M ℄ �!� p[Q0;M 0℄, even when p = 0,plus the additional rule, if Q and Q0 are in the same vetor spae:[Q;M ℄ [Q0;M ℄Lemma 5.3.1 Let prob be the funtion suh that prob(x; y) = p if x �!p y and 0else. If x; y 2 S (S;V; ; prob) is a probabilisti redution system. �Evidently, this probabilisti redution system has error states, for example,[Q;H(�x:x)℄:Suh error states orrespond to run-time errors. In the next hapter, we introdue atype system designed to rule out suh error states.

Chapter 6The quantum lambda-alulus:TypesAs we saw in Chapter 3, a type system is a powerful tool to prove the good behaviora program during the redution. In our language, there are two lass of expressions:Those whih an be dupliated, suh as for example [ji; �x:x℄, and those who annot,for example [j0i; p0℄. A suitable type system would take this onstraint in aount.As seen in Chapter 4, the linear logi is a resoure sensitive logi. Let us base ourtype system on this logi. A well-typed term M :!A means that M an be dupliated.We need also some type onstants. In Chapter 3 there was only one onstant typeneeded, namely bit . In this language, we need bit , but also a type onstant qbit tobe able to manipulate qubits.A di�erene with the simply-typed lambda-alulus of Chapter 3 is the following:A well-typed term M of type !A an be regarded as non-dupliable. In partiular, ifx is a dupliable variable, it an appear in a term whih will use x only one. Thenotion we need to add is the notion of subtyping, noted <:. A<:B means that ifM [x℄is typable when x is of type A, then M is also typable when x is of type B.
70

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 71
� <: � (ax) A<: B!A <:B (D) X <:X (var)!A<:B!A<:!B (!) A <: A0 B <: B0A0(B <: A(B0 (()Table 11: Subtyping relation: First set of rules6.1 SubtypingLet us de�ne a type system. We are going to de�ne it together with an subtypingrelation <:. We need onstant types and types for abstrations (the funtions). More-over, we need a notion of dupliability of term. We want to be able to say whetheror not a term an be dupliated. For this, we use the notation of linear logi. Let usde�ne: qType A;B ::= �j Xj !Aj (A(B)where � ranges over a set of type onstants, X ranges over a ountable set of typevariables, and A(B stand for \funtion with argument of type A whih returns aresult of type B". We want at least two type onstants, namely bit and qbit . Thenotation \!" is a ag to state that the typed term is dupliable. We will all a type\exponential" if it is written \!A".Notation. If n � 0, the notation (n)(A) stands for!!! : : :!!| {z }n timesALet us de�ne a subtyping relation <: on this type system.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 72Lemma 6.1.1 For any type A and B, if A <: B and (m = 0) _ (n � 1), then(n)(A)<: (m)(B).Proof. By indution on m:� If m = 0: let us show by indution that for all n integer, (n)(A)<: B{ If n = 0, by hypothesis A<: B.{ If it is true for n, we have: (ind:hyp:)(n)(A)<: B(n+ 1)(A)<:B (D)� m > 0: n � 1 by hypothesis, and so: (ind:hyp:)(n)(A)<: (m)(B)(n)(A)<: (m+ 1)(B) (!)� Notie that one an rewrite types using the notation:qType A;B ::= (n)(�i)j (n)(X); (n)(Y) : : :j (n)(A(B)with n 2 N .The rules an be re-written:The two sets of rules are equivalent.Proof that rules on Table 12 implies rules on Table 11(var) Follows diretly from Lemma 6.1.1.(�) Follows diretly from Lemma 6.1.1.((2) We know that A<:A0 and B<:B0. So by (() we have A0(B<:A(B0. Andby Lemma 6.1.1 we have obtained the desired result.�

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 73
(m = 0) _ (n � 1)(n)(X)<: (m)(X) (var2)�i � �j (m = 0) _ (n � 1)(n)(�i)<: (m)(�j) (�)A<: A0 B <:B0 (m = 0) _ (n � 1)(n)(A0(B) <: (m)(A(B0) ((2)Table 12: Subtyping relation: Seond set of rulesProof that rules on Table 11 implies rules on Table 12 By indution on theproof that A<: B:� If the last rule is (var) or (ax), then use it also in the new proof.� If the last rule is ((), use ((2), with m = n = 0.� If the last rule is (!) or (D), then the proof will have a sequene of these tworules, up to either (var) or (ax), or (().(var) A = (n)(X) and B = (m)(X) for X some type variable, and m = 0 orn � 1. We an onatenate this sequene with the rule (var2).(ax) A = (n)(�i) and B = (m)(�j) with �i<:�j and n � 1. We an onatenatethis sequene with the rule (�).(() A = (n)(A1(A2) and B = (m)(B1(B2) with A2 <: B2, B1 <: A1 andm = 0 or n � 1. We an onatenate this sequene with the rule ((2).�Lemma 6.1.2 A <:B has a unique derivation within the rules from Table 12. �Lemma 6.1.3 (qType; <:) is reexive and transitive.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 74Proof. By indution using the rules from Table 12, and the transitivity of theimpliation in the equivalene:(m = 0) _ (n � 1) i� (m � 1)) (n � 1)� We an de�ne an equivalene relation + byA + B i� (A<: B and B <: A)Lemma 6.1.4 (qType= +; <:) is a poset. �Lemma 6.1.5 If A<:!B, then there exists C suh that A =!C.Proof. Using the �rst set of rules, A<:!B an only ome from (D) or (!). In bothases, A is of the form !C. �6.2 Typing rulesWe need to de�ne what it means for a quantum state [Q;L;M ℄ to be typable. It turnsout that the typing does not depend on Q and L, but only on M . Now, given a termM , we need to be able to say whether or not it is typable. As usual, we introduetyping judgments to deal with terms that may have free variables. Note that the freevariables of M whih are in the domain of L have to be of type qbit .A quantum typing judgment is a tuple�BM : Bwhere M is a term, B is a qType, and � is a typing ontext. As usual we denote� by fx1 : A1; : : : xn : Ang, with Ai = �f (xi). If � = fx1:A1; : : : xn:Ang, we denote!� = fx1:!A1; : : : xn:!Ang.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 75
For A and B in qType:The axioms: For a onstant term,A<: B�; x : AB x : B (ax1) A <:B�B : B (ax2)For the if term,�1; !�B P : bit �2; !�BM : A �2; !�BN : A�1;�2; !�B if (P ;M ;N) : A (if)The appliation:�1; !�BM : A(B �2; !�BN : A�1;�2; !�BMN : B (app)The lambda, where x 62 j�j: If FV (M) \ j�j = ;:x : A;�BM : B�B �x:M : A(B (�1) �; !�; x : ABM : B�; !�B �x:M : (n + 1)(A(B) (�2)Table 13: Typing rules for the quantum lambda-alulusBefore we give the typing rules, we give the types for term onstants Let us �x atype assignment 7! A, from the set of onstant terms to qType:8>>>>>>><>>>>>>>:

0 7! ! bit1 7! ! bitnew 7! !(bit(qbit)U 7! !(qbit(qbit)meas 7! !(qbit(! bit)Remark 6.2.1 we set new :!(bit(qbit). We ould also have put !bit in plae ofbit, sine we want a bit to be always dupliable. However, this will be a orollary ofthe typing rules, and we therefore put the most general type for the onstant.The rules for onstruting valid quantum typing judgments are shown in Table 13.We will say that a quantum state [Q;L;M ℄ is typable if there exists a type A suh

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 76that x1: qbit ; : : : xn: qbit BM :Ais valid, with fx1 : : : xng to be the domain of Q.6.3 ExamplesFirst let's illustrate the lambda-rules. Consider the following state:[ji; �x:H(new x)℄:This is a funtion fed with an argument x, supposed to be a bit, whih returns aqubit equal to Hjxi. One an guess a type for the lambda-term:bit(qbitIf the term is well-typed, then the following typing judgment is derivable:B�x:H(new x): bit(qbit :Indeed, a typing derivation is:!(qbit(qbit)<: qbit(qbitBH: qbit(qbit () !(bit(qbit)<: bit(qbitB new : bit(qbit () bit <: bitx: bit Bx: bit (x)x: bit B(new x): qbit (app)x: bit BH(new x): qbit (app)B�x:H(new x):(bit(qbit): (�1)Remark that in this example, the funtion is linear in x. Even if a bit is alwaysdupliable, we don't need this feature in this term. This is expressed by the abseneof exponential on the argument bit . Remark that !(bit(qbit) is also a valid type forthis term: sine the ontext is empty, one an apply the typing rule (�2). Indeed, wean dupliate as needed the funtion: it is already a value, and there is no refereneto any pre-existing qubit.However sometimes a funtion an be non-dupliable. Consider the quantumstate: [1p2(j0i+ j1i); fx 7! 0g; �y:x℄:

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 77This is a well-de�ned quantum state, but the funtion is non-dupliable. The variablex free in the lambda-term is a pointer to the �rst qubit in the QRAM. This shoulddisallow us to dupliate the term. Indeed, the typing judgmentx: qbit B�y:x:A(qbitis valid with typing derivationx: qbit ; y:AB x:A(qbit (x)x: qbit B�y:x:A(qbit ; (�1)but x: qbit B�y:x:!(A(qbit)is not: the variable x is free in the term but appear to be non-dupliable in theontext: the rule (�2) annot be applied.Sine the redution strategy is all-by-value, a term is dupliable if and only ifits value is dupliable. A term is always redued to a value before any possibledupliation. As an example, onsider the state [ji; (new 1)℄. This state does notontain any non-dupliable element, but it redues in one step to [j1i; p0℄. And as amatter of fat, if it was dupliable, the typing tree would have been:!(bit(qbit)<: bit(! qbitB new : bit(! qbit ! bit <: bitB1: bitB new 1:! qbit :But !(bit(qbit)<: bit(! qbit is not derivable, sine qbit is not a subtype of ! qbit .However, the state [j0i; fx 7! 0g;meas x℄ is dupliable, even if a qubit appears tobe embedded inside the lambda-term. This state redues in one step to [j0i; fx 7!0g; 0℄, and x: qbit B1:! bit is perfetly derivable, from the rule for onstants.Let's onsider a higher-order term:�xy:x(xy):This is a funtion of two arguments whih is not linear in x. It an be typed in thefollowing way: B�xy:x(xy):!(A(A)(!(A(A):

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 78The argument x of the funtion has to be dupliable. For example the term(�xy:x(xy))His typable. A valid typing judgment isB(�xy:x(xy))H:!(qbit(qbit):The typing judgment x: qbit B(�xy:x(xy))�y:x: qbit(qbitis not, however, sine �y:x is not dupliable.

Chapter 7Properties of quantum typingjudgments
7.1 Preliminary lemmasLemma 7.1.1 If x 62 FV (M),�; x : ABM : B implies �BM : B:Proof. We prove this by strutural indution on the proof �; x:A BM : B, as wedid it in Chapter 3, Lemma 3.2.1. �Lemma 7.1.2 If A is in qType,�BM : A implies �;�BM : A:Proof. By indution on the size on the proof of �BM : A. �De�nition 7.1.3 We extend the subtyping relation to ontexts by:�<: �0 i� j�0j = j�j and 8x 2 j�0j �f (x) <: �0f (x):Note that this relation is reexive and transitive.79

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 80Lemma 7.1.4 If the typing judgement �BN : A is valid and if �<: � and A<:B,then �BN : Bis also valid.Proof. By indution on the struture of N :� If N is a onstant term, we get the result by the axiom rule.� If N is a variable x, then �f(x) = A0, with A0 <: A. If A <: B, by transitivity,A0<:B �<:� so sine x belongs to j�j, x 2 j�j, and �f(x)<:A0. By transitivity�f(x) <:B is true. Hene, by the (ax1) rule,�B x : Bis veri�ed.� If N =MP , �BN : A omes from�01; !�BM : C(A �02; !�B P : C�01;�02; !�BMP : A; (app)with the split � = (�01;�02; !�). Sine �<: �, � splits in (�01;�02; !) suh that�01 <: �01;�02 <: �02;	 <: �:Sine A<:B, C(A<: C(B. So by indution hypothesis:�01; !	 B M : C(B and�02; !	 B P : C:Applying (app) we get �01;�02; !	BMP : B;whih is exatly �BMP : B:And we get the result.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 81� If N = if (M ;P ;Q), the idea is the same as for the produt: we have to ut �and � in piees and to apply the indution hypothesis. Then apply again thelaw (if).� If N = �x:M then only 2 rules an apply: (�1) or (�2). In both ases, A =(n)(C (D). Sine A <: B, from the reversibility of the set (2) of subtypingrules, B is of the form (m)(E(F), m = 0 or n � 1, E <: C and D <: F . Letus study the 2 ases:(�1): n = 0, so m = 0, and the rule says:�; x : C BM : D�B �x:M : C(D: (�1)Then sine �<: � and E <: C,(�; x : E)<: (�; x : C):By indution hypothesis we get�; x : E BM : F:Applying (�1) we have the result.(�2): n � 1. The rule is: !�1;�2; x : C BM : D!�1;�2 B �x:M : (n)(C(D); (�2)where � = (!�1;�2), and j�2j \ FV (M) = ;. Let us split � in (�1;�2),with j�1j = j�1j and j�2j = j�2j. For all x in j�1j, �1f(x)<:!�1f(x). FromLemma 6.1.5, �1f(x) is banged. Thus �1 an be re-written as !�1, and wehave (!�1;�2; x : E)<: (!�1;�2; x : C);!�1;�2; x : C BM : D;D <: F:Applying the indution hypothesis,!�1;�2; x : E BM : F:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 82Sine j�2j = j�2j, j�2j \ FV (M) = ;. So either (�2) or (�1) an apply. Ineither ase, !�1;�2;B�x:M : (m)(E(F):�Lemma 7.1.5 If V is a value suh that` �B V :!AThen 8x 2 FV (V) 9U 2 qType �f(x) =!U:Proof.� If V is a onstant : The term is losed, hene by vauity we have the result.� If V = �x:M , the only rule that applies is (�2), and � splits into (�1; !�2) withFV (M)\j�1j = ;. So every free variable y exept maybe x inM is exponential.Sine FV (�x:M) = (FV (M) n fxg), the Lemma is also true in this ase.�Lemma 7.1.6 For A and B qType, and V a value, if !�;�2; x : A B M : B and!�;�1 B V : A are valid, then �1;�2; !�BM [V=x℄ : Bis valid.Proof. Let ! be a proof for !�;�2; x : ABM : B:We prove it by strutural indution on !. Let !�;�1 B V : A be a valid typingjudgment.� If ! is an axiom, there are three ases.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 831) We an have M = y, y 6= x. Then y 2 j!�;�2j, with (!�;�2)f(y) = A0.A0 <: B by the axiom rule. y 2 j�1;�2; !�j then�1;�2; !�B y : Bis a result of (ax1). Sine M [V=x℄ = y, the lemma is veri�ed.2) We an have M = x. Then A <: B by the hypothesis of (ax1). ByLemma 7.1.2, sine !�;�1 B V : A we get that�1;�2; !�B V : A:By Lemma 7.1.4, �1;�2; !�B V : B:And sine M [V=x℄ = V , the lemma is veri�ed.3) Finally, M an be a onstant: M = . So A <:B. (ax2) says that�1;�2; !�B : Bis also true. Sine M [V=x℄ = =M . we have also the result.� Else, if M = �y:P . Sine M is �-equivalent to �z:P [z=y℄, z a fresh variable,we an suppose without lost of generality that y 6= x, y 62 j�1j, y 62 j�2j andy 62 j�j. And so M [V=x℄ = �y:P [V=x℄. M is a lambda-abstration, so the �rstrule to apply is: �x : A;�2; !�; y : C B P : Bx : A;�2; !�B �y:P : (n)(C(B): (�i)for some n integer: if n = 0, we apply (�1), else we apply (�2)n = 0) Then we apply (�1). By indution hypothesis, the lemma is true for � .Then we have: �1;�2; !�; y : C B P [V=x℄ : B:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 84And by applying the (�1) rule,�1;�2; !�B �y:P [V=x℄ : C(Band thus �1;�2; !�BM [V=x℄ : C(B;and the lemma is veri�edn > 0) Then we apply (�2): If x is a free variable of P , then A is exponential bythe (�2) rule, and applying the indution hypothesis,�1;�2; !�; y : C B P [V=x℄ : Bis valid. Let us write � = (�1;�2; !�):Sine A is exponential, by Lemma 7.1.5, for all z in FV (V), �f (z) isexponential. By the (�2) rule, any free variable z of P is exponential. SineFV (P [V=x℄) = FV (V) [(FV (P) n fxg), one an split � into (!�1;�2),with j�1j = FV (P [V=x℄). Then the hypothesis for rule (�2) is veri�ed,and we an apply it:�1;�2; !�;B�y:P [V=x℄ : (n)(C(B);and the lemma is veri�ed.If x is not a free variable of P , then the substitution let the term unhanged,and we only add to the ontext some variables that are not free in P usingLemma 7.1.2: we an still apply (�2), and get the result.� or if M = PR.(�2; !�; x : A) splits in (�21;�22; !�0) with the rule:�1 �2�21;�22; !�0 B PR : B; (app)and �1 = �1�21; !�0 B P : C(B;�2 = �2�22; !�0 B R : C:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 85There are 3 ases:1) x an be element of j!�0j. The A =!A0 and (x :!A0) is both in �1 and �2.By indution hypothesis, if we split !�0 in (!�00; x :!A0), we an onludethat �1;�21; !�00 B P [V=x℄ : C(B and�1;�22; !�00 BR[V=x℄ : C:A is exponential, so by Lemma 7.1.5, �1 splits in 2 parts: (!�11;�12) withFV (V) \ j�12j = ;. Sine no free variable of PR is in j�1j, and sineFV (P [V=x℄) = (FV (P) n fxg) [FV (V), we haveFV (P [V=x℄) \ j�12j= FV (R[V=x℄) \ j�12j= ;:By Lemma 7.1.1, one an then �nd a proof for!�11;�21; !�00 B P [V=x℄ : C(Band !�11;�22; !�00 BR[V=x℄ : C:Then applying (app) we get!�11;�21;�22; !�00 B P [V=x℄R[V=x℄ : B:Applying Lemma 7.1.2, and sine (PR)[V=x℄ = P [V=x℄R[V=x℄, we get:�1;�21;�22; !�00 B (PR)[V=x℄ : B:And renaming the ontext, sine(�2; !�; x : A) = (�21;�22; !�00; x : A);we have what we want:�1;�2; !�B (PR)[V=x℄ : B:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 862) x an be element of j�21j. That means that x is only free in P . In thisase, R[V=x℄ = R. In this ase, (x : A) ours only in �1. We apply theindution hypothesis on �1 and get�1;�021; !�0 B P [V=x℄ : C(B;where �21 = (�021; x : A). Applying (app) we get the result.3) If x is element of j�22j, the proess is the same as in the previous ase:That means that x is only free variable of R. In this ase, P [V=x℄ = P . Inthis ase, x : A our only in (�2). We apply the indution hypothesis on�2 and get �022; !�0 B R[V=x℄ : C;where �22 = (�022; x : A). Applying (app) we get the result.� at last, if M = if (P ;N ;R), we apply the same ases as above.�Corollary 7.1.7 If� �1; !�; x : ABM : B,� �2; !�B V : (�)A,then �1;�2; !�BM [V=x℄ : B.Proof. From Lemma 7.1.6 and Lemma 7.1.4. �7.2 Subjet redutionTheorem 7.2.1 If � BM :U is valid and [Q;L;M ℄ � [Q0; L0;M 0℄ then �0 BM 0:Uis valid, where �0 = �; x1: qbit ; : : : xn: qbit and jL0j n jLj = fx1; : : : xng.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 87Proof We are going to restrit the study to all-by-value, it extends easily to .Sine it is a relation de�ned by indution, we prove it by indution on the derivationof the redution.� For the rule [Q; (�x:M)V ℄�!1 [Q;M [V=x℄℄:The typing judgment �B (�x:M)V : B is derived by the typing tree!�;�1 B V : A !�;�2; x : ABM : B!�;�2 B �x:M : A(B!�;�1;�2 B (�x:M)V : B;when � splits into (!�;�1;�2). Using Lemma 7.1.7, sine!�;�1 B V : A and !�;�2; x : ABM : B;the typing tree !�;�1;�2BM [V=x℄:B is valid. the theorem is true, with L = L0.� The rules for meas are[�jQ0i+ �jQ1i;meas pi℄�!�0 [jQ0i; 0℄;[�jQ0i+ �jQ1i;meas pi℄�!�1 [jQ1i; 1℄:We study the �rst ase, the seond is similar. If �; !�; x : qbit Bmeas x : B isvalid it must ome from:!(qbit(bit)<: A(B�1!�Bmeas : A(B (ax) qbit <:A�2; !�; x : qbit Bx : A (ax1)�; !�; x : qbit Bmeas x : B; (app)with � = (�1;�2).From the subtyping rule ((2), bit <:B and A <: qtype. Hene A = qbit andB = bit , and �1;� B 0: bit is a valid typing judgment. Using Lemma 7.1.2,�1; !�; x: qbit B0: bit is also valid: The theorem is true in this ase.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 88� The rules for new are, if Q is in a spae of dimension 2n,[Q; new 0℄�!1 [Q
 j0i; pn℄;[Q; new 1℄�!1 [Q
 j1i; pn℄:We study the �rst ase, the seond is similar.If �B new 0:B is valid it omes from!(bit(qbit)<: A(B�1; !�B new :A(B ! bit <:A�2; !�B 0:A�1;�2; !�B new 0:B; (app)for some splitting � = (�1;�2; !�). Thus qbit <:B, and then B = qbit . Thestate [Q
 j0i; pn℄ is [Q
 j0i; L [fx 7! ngx℄, if [Q; new 0℄ = [Q;L; new 0℄.In partiular one an hoose a variable x whih is not in j�j, by �-equivalene.Then the typing judgment �; x: qbit Bx: qbit is valid, and the theorem is true inthis ase.� The idea is the same for H.� The �rst indution rule is: N �!N 0MN �!MN 0:Sine N and N 0 have the same type by indution hypothesis, MN and MN 0have the same type by (app).� The seond indution rule is: M �!M 0MV �!M 0V:Sine M and M 0 have the same type by indution hypothesis, MV and M 0Vhave the same type by (app).� For the if rules, it follows diretly from the typing rule.�

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 897.3 Progress theoremDe�nition 7.3.1 A program is de�ned as a quantum state [Q;L;M ℄, where thereexists a type B suh that, if � = fx : qbit j x 2 FV (M)g,�BM : Bis a valid quantum typing judgment.Theorem 7.3.2 (Progress) Let [Q;M ℄ be a typable program, then it is onsistent,as de�ned in Setion 5.2 on page 66, i.e. it an never redue to an error state. Heneany losed well-typed term either onverges to a value, or diverges.Proof We prove that for all programs [Q;M ℄, either it is a value, or there exists atleast one M 0 suh that M �!M 0. We do it by indution on the proof of validity ofthe typing judgment. There are two ases. Either it is a value, in whih ase there isnothing to do, or it is not, and the only 2 rules that apply are (app) and (if).(app) In this ase M = PQ. �1 B P : B(A �2 BQ : B�B PQ : A;with � = (�1;�2) = fx : qbit jx 2 FV (M)g:Sine FV (M) = FV (P) [FV (Q), and they are disjoint, the two typing judg-ments we have are of the form required by the theorem. So by indution hy-pothesis, either we an redue Q, and we are done, or it is a value. If it is avalue, let us study P : P is also either reduible, and then we are done, or it isa value. If it is a value, then either it is an abstration and PQ is reduible, orit is a onstant funtion, new , meas or H. Sine the typing judgment is valid,we are done, we an redue in this last ase.(if) The if statement is similar: M = if (P ;Q;R), and either we an redue P , orit is a value, so 0 or 1 and we an redue M in Q or R.So by indution any losed well-typed term is onsistent. �

Chapter 8Extension of the language
8.1 Extended languageLet us extend the language with produt types . Extended terms and types arede�ned in Tables 14 and 15. In this ase we allow the Un to be unitary operations ofn qubits. For example if U2 is a binary unitary gate, we use it as follows:U2 :!(qbit
 qbit(qbit
 qbit)We add to the previous de�nition a notion of pairs: as in simply-typed lambda-alulus, we will denote a pair by hM1;M2i:Tuples are de�ned as
ni=0Ai = A1
 (A2
 (A3 : : :) : : :);hM1; : : :Mni = hM1; hM2; hM3 : : : i : : : ii:Free variable, substitution We extend the notion of free variable and substitutionwith the same de�nition as in Chapter 3, Tables 2 and 3.Typing rules and redution steps The typing rules to add are in Table 16. Theredution proedure for these new terms is found in Table 1790

CHAPTER 8. EXTENSION OF THE LANGUAGE 91

RawTerm M;N; P ::= xj MNj �x:Mj if (M ;N ;P)j 0j 1j measj newj Unj �j hM;Nij let hx; yi=M in NV alue U; V ::= xj �x:Mj 0j 1j measj newj Unj �j hU; V iTable 14: Extended terms

CHAPTER 8. EXTENSION OF THE LANGUAGE 92
qType A;B ::= (n)(�)j (n)(>)j (n)(X)j (n)(A(B)j (n)(A
 B)The subtyping relation is extended to(m = 0) _ (n � 1)(n)(>) <: (m)(>) (>)(m = 0) _ (n � 1) A1 <: B1 A2 <:B2(n)(A1
 A2)<: (m)(B1
 B2) (
)Table 15: Extended types8.2 Cartesian produt versus Tensor produtWe use in our language the tensor produt instead of a artesian produt. The reasonis the following: If we de�ne our produt as artesian, we need 2 projetions �1 and�2: �1 : A�B ! A�2 : A�B ! BThen there has to be a bijetionh�1(M); �2(M)i $MBut suh a projetion annot exists: if M is not dupliable, we do not have the rightto write h�1(M); �2(M)i. This is not linear in M .Thus, we have to take are of the fat that we an have non-dupliable terms ina tuple. Let us take an example:� 1p2(j00i+ j11i); hp0; p1i�is a perfetly valid quantum state: in the term M = hp0; p1i we have stored twoqubits. Let us say we want to apply the H gate on p1 and then the CNOT gate on

CHAPTER 8. EXTENSION OF THE LANGUAGE 93
First let us de�ne the type of the new term onstants:� 7! !>Un 7! !(
ni=1 qbit(
ni=1 qbit)If A1 and A2 are not exponential,!�;�1 BM1 : (n+m)(A1) !�;�2 BM2 : (n+ l)(A2)!�;�1;�2 B hM1;M2i : (n)((m)(A1)
 (l)(A2)) (
:I)!�;�1BM :(n)(A1
 A2) !�;�2; x1:(n)(A1); x2:(n)(A2)BN :A!�;�1;�2 B let hx1; x2i =M in N :A (
:E)Table 16: Extended typing rulesboth of them. The CNOT gate is:0BBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0

1CCCCAUsing projetions �1 and �2, we would have to write this as:CNOT hH(�1M); �2Miand that is not a valid program sine we are dupliatingM . If we want to stay linear,we have either to forget p1 in doing �2 or to forget p2 in doing �1. So we annot useartesian produts to model all the programs we need.With tensor produt, the linearity is kept: we an retrieve information in both Aand B of a produt A
B in a linear manner usinglet hx; yi=M in N;as we do in Chapter 3.

CHAPTER 8. EXTENSION OF THE LANGUAGE 94
If V1; V2 are values,[Q; let hx1; x2i = hV1; V2i in N ℄�!1 [Q;N [V1=x1; V2=x2℄℄One redues a tuple from left to right:[Q;M1℄�!p [Q0;M 01℄[Q; hM1;M2i℄�!p [Q0; hM 01;M2i℄[Q;M2℄�!p [Q0;M 02℄[Q; hV1;M2i℄�!p [Q0; hV1;M 02i℄Table 17: Extended all-by-value redutionThe above problem has the following solution:let hx; yi =M in (CNOT h(Hx); yisine linearity of the produt's elements is preserved.Remark. We have obtained the struture for a monoidal ategory. Indeed we ande�ne linear funtions: � : A
 B(B
 A� : (A
B)
 C(A
 (B
 C)� : A
>(A� : A(A
>as follows: � = �p:(let hx; yi = p in hy; xi)� = �p:(let hx; yi = p inlet hz; ti = x inhz; ht; yii)� = �p:(let hx; yi = p in x)

CHAPTER 8. EXTENSION OF THE LANGUAGE 95� = �x:hx; �iAnd moreover, given f : A(Bg : C(Done an de�ne f
 g : A
 C(B
Dlike this: f
 g = �p:(let hx; yi = p inhfx; gyi)8.3 Compatibility with the previous resultsLemma 8.3.1 All the previous lemmas still hold in the extended language.Proof. the lemmas we need to prove are 7.1.1, 7.1.2, 7.1.4, 7.1.5, 7.1.6 and 7.1.7.Lemmas 7.1.1 and 7.1.2 are ompletely similar to the ones in the bakgroundhapter.Proof of Lemma 7.1.4. We want to show that if �BN : A is valid and if �<: �and A<:B, then �BN : B is also validWe do it by indution on the struture of N . We have to hek for the new ases.If N = hM1;M2i, then �B hM1;M2i:(n)(A1
 A2) omes from!�1;�2 BM1 : (n)(A1) !�1;�3 BMk : (n)(A2)!�1;�2;�3 B hM1;M2i : (n)(A1
 A2)
:ISine � <: �, � = (!�1;�2;�3) with !�1<:!�1, �2 <: �2 and �3 <: �3. There isa bang on !�1 sine !�1<:!�1. Sine A <: B, B = hB1; B2i with A1 <: B1 andA2 <:B2. Hene the indution hypothesis an be applied, and!�1;�2 BM1 : (n)(B1) and !�1;�3 BM2 : (n)(B2)are valid. Applying (
:I), we obtain the result.

CHAPTER 8. EXTENSION OF THE LANGUAGE 96If N = let hx1; x2i=M in P , then the typing judgement omes from!�1;�2BM :(n)(A1
 A2) !�1;�3; x1:(n)(A1); x2:(n)(A2)BN :A!�1;�2;�3 B let hx1; x2i =M in P :A
:ESine �<: �, � = (!�1;�2;�3) with !�1<:!�1, �2 <: �2 and �3 <: �3. There is abang on !�1 sine !�1<:!�1. Applying indution hypothesis,!�1;�2BM :(n)(A1
 A2) and !�1;�3; x1:(n)(A1); x2:(n)(A2)BN :Bare valid. Applying (
:E) gives the resultIf M = �, the proof is done similarly to the axioms already done.Proof of Lemma 7.1.5. We want to prove that if V is a value suh that �BV :!Ais valid then for all x in FV (V) there exists U in qType suh that �f (x) =!U .The proof was started by strutural indution on V .If V = >, the term is losed. So by vauity the result is true.If V = hV1; V2i with V1 and V2 values, the typing tree starts with!�;�1 B V1 : (n + 1)(A1) !�;�2 B V2 : (n + 1)(A2)!�;�1;�2 B hV1; V2i : (n+ 1)(A1
 A2)
:IBy indution hypothesis,FV (V1) \ j�1j = FV (V2) \ j�2j = ;:Sine FV (hV1; V2i) = FV (V2)[FV (V1), FV (hV1; V2i) = ;. And so the result isalso true in that ase.Proof of Lemma 7.1.6. We want to prove that for A and B elements of qTypeand V a value, if !�;�1BV : A and !�;�2; x : ABM : B are valid, then �1;�2; !�BM [V=x℄ : B is valid.The proof was done by indution on the typing tree of !�;�2; x : ABM : B. Wehave 3 ases to add:

CHAPTER 8. EXTENSION OF THE LANGUAGE 97(
:I) is done as in the (app) ase.(
:E) is like ombination of an appliation and an abstration rule.(�) is done as in the onstant ase.Proof of Corollary 7.1.7. We want to prove that if �1; !�; x : A BM : B and�2; !�B V : (�)A then �1;�2; !�BM [V=x℄ : BThis is still a orollary from Lemma 7.1.6 and Lemma 7.1.4.�Theorem 8.3.2 Subjet redution still holds.Proof.We have to hek that the new strutures added have rules that are ompatiblewith subjet redution.� The rules for the pairing are just an extension of the appliation rules, so usinga similar method, it is working.�Theorem 8.3.3 The progress theorem still hold.Proof. By inspetion of the new rules. �8.4 ExamplesExample: implementing the Deutsh algorithm. The formalism of higher-order funtional programming language is adequate for writing the Deutsh's algo-rithm. Indeed it an be done in that way:let Deutsh Uf =let tens f g hx; yi = hfx; gyiin let hx; yi =(tens H (�x:x))(Uf hH(new 0); H(new 1)i)in meas x;

CHAPTER 8. EXTENSION OF THE LANGUAGE 98in ML notations. Note that Uf is a variable that stands for a funtion from a two-qubit state to a two-qubit state. And indeed the funtion Deutsh is a higher-orderfuntion: BDeutsh:!((qbit
 qbit(qbit
 qbit)(bit)is a well-typed typing judgment. Note that Deutsh is dupliable, and that Uf doesnot need to be dupliable, sine it is used only one.Example: implementing the teleportation proedure. We an embed eahquantum iruit part of the proedure in a funtion. There is a funtion EPR :!(>((qbit
 qbit)) that reates an entangled state, as in the step (1):EPR = �x:CNOT hH(new 0); new 0i:There is a funtion BellMeasure : !(qbit((qbit(bit
 bit)) that takes two qubits,rotates and measures them, as in steps (2) and (3):BellMeasure = �q2:�q1:(let hx; yi = CNOT hq1; q2i in hmeas(Hx);meas yiWe also an de�ne a funtion U : !(qbit((bit
 bit(qbit)) that takes a qubit q andtwo bits x; y and returns Uxyq, as in step (4):U = �q:�hx; yi:if x then (if y then U11q else U10q)else (if y then U01q else U00q);where Uxy are de�ned as on page 16 when the measured qubits were x and y.The teleportation proedure an be seen as the reation of two non-dupliablefuntions f and g f : qbit(bit
 bit ;g : bit
 bit(qbit ;suh that f Æ g(x) = x for an arbitrary qubit x. We an onstrut suh a pair offuntions by the following ode:let hx; yi=EPR �in let f = BellMeasure xin let g = U y:in hf; gi:

CHAPTER 8. EXTENSION OF THE LANGUAGE 99Note that, sine f and g depend on the state of the qubits x and y, respetively, thesefuntions annot be dupliated, whih is reeted in the fat that the types of f andg do not ontain a top-level \!".

Chapter 9Type inferene algorithmUp to now we have de�ned a quantum programming language, mixing quantum andlassial data types, together with a type system to ertify the good behavior ofprograms during redution. However, a big problem is not solved: how an we saywhether or not a program is well-typed ? An algorithm that an solve suh a problemis alled a type inferene algorithm.9.1 A �rst exampleOur goal is to �nd an inferene algorithm. One an try to base it on the one fromthe simply-typed lambda-alulus from Chapter 3. Reall that one key-point in thisalgorithm was, given a well-typedM , the existene of a most general typing judgment�BM : A suh that eah possible typing judgment would be an instane of �BM : AHowever, in MAILL, suh a type does not exists. Indeed, onsider the followingexample: let M = �xy:xybe a lambda term. Note that M is a well-typed losed term. Here are some validtyping judgments: BM : (U(Y)((U(V);BM :!(U(V)(!(U(V);BM :!(U(V)((U(V):100

CHAPTER 9. TYPE INFERENCE ALGORITHM 101The most general type W suh that �W = !(U (V)(!(U (V) and �W =(U(V)((U(V) for some substitutions � and � is X(Y . ButBM : X(Yis not valid: the notion of substitution is therefore not suÆient to desribe thevalidity of a typing judgment.On linear types, there is another natural ordering relation: the subtyping relation.For example, (U (V)(!(U (V) is the greatest element smaller than all typesabove, but BM : (U(V)(!(U(V)is not a valid typing judgment. So there is no smallest type for this typing judgmentusing the subtyping relation.However, one an onsider the exponential symbols as deorations on linear types,as suggested by V. Danos, J.-B. Joinet and H. Shelling [7℄. One an note that allpossible types of M are of the form (X(Y)((X(Y). If one replae(with),this type gives a valid typing judgment IM : (X)Y))(X)Y) in the simply-typedlambda-alulus of Chapter 3. The type in quantum lambda-alulus is therefore adeoration of a simple-type. We de�ne these notions formally in the next setion.This work is similar to [7℄.9.2 Syntati SkeletonWe de�ne the lass of type skeletons bySkel A;B ::= �j Xj (A)B)j (A� B)j >;

CHAPTER 9. TYPE INFERENCE ALGORITHM 102where � ranges over the type onstants and X over the type variables. We de�ne thetyping-skeleton of A in qType to be:y(n)(�) = �y(n)(X) = Xy(n)(A(B) = yA) yBy(n)(A
 B) = yA� yBy(n)(>) = >:It orresponds to the struture of the type, or to erasing all \!".Lemma 9.2.1 If U <: V , then yU = yV .Proof. By indution on the derivation of U <:V using set (2) of rules from page 72.(var 2) y(n)(X) = X = y(m)(X). Hene it is true in that ase.(�) The only type variables we have are bit and qbit , and they are not omparableusing the subtyping relation. So if � � �, then � = �. So if (n)(�) <: (m)(�),then y(n)(�) = � = � = y(n)(�).((2) If the derivation starts withA <: A0 B <: B0 (m = 0) _ (n � 1)(n)(A0(B) <: (m)(A(B0);by indution hypothesis, yA = yA0 and yB = yB0. Using the de�nition of theskeleton, y(n)(A0(B) = y(m)(A(B0).(>) By de�nition of skeleton, y(n)(>) = y(m)(>).(
) If the derivation starts with(m = 0) _ (n � 1) A1 <:B1 A2 <:B2(n)(A1
 A2)<: (m)(B1
 B2);then by indution hypothesis,yA1 = yB1 and yA2 = yB2

CHAPTER 9. TYPE INFERENCE ALGORITHM 103Using the de�nition of the skeleton,y(n)(A1
 A2) = y(m)(B1
 B2)� We extend the notion to ontexts and typing judgment as follows:yfx1:A1; : : : ; xn:Ang = fx1:yA1; : : : ; xn:yAngy(�BM :A) = (y�B� M :yA):If �BM : A is a valid typing judgment in the quantum lambda-alulus, the followingremark shows that y(�BM : A) = (y� B� M : yA) is a valid typing judgment in theskeleton lambda-alulus. The rules of the skeleton lambda-alulus are shown inTable 18. They are equivalent to the rules of simply-typed lambda-alulus fromTable 7 in Chapter 3, modulo appliation of the weakening property. The reasonfor this slight reformulation of the rules is so that the skeleton alulus is the exatimage of the quantum lambda-alulus under the skeleton operations, as shown inthe following remark:Remark 9.2.2 If a typing judgment T is valid, then its skeleton admits a proof treeonstruted with the rules in Table 18. Suh a proof tree is the exat image of thetyping tree of T by y. �Lemma 9.2.31. The weakening property is veri�ed: if �B� M : A is true, then �;�B� M : A isalso true.2. If �; x:B B� M : A with x 62 FV (M) is true, then �B� M : A is also true.Proof. The proof is done by indution on the typing derivation of �B� M : A, as itwas for the quantum-typed ase. �Lemma 9.2.4 Given a term M of the quantum lambda-alulus, � B� M :A if andonly if �IM :A

CHAPTER 9. TYPE INFERENCE ALGORITHM 104
�B� : yA�; x : AB� x : A�; x : AB� M : B�B� �x:M : A)B�1;�B� M : A)B �2;�B� N : A�1;�2;�B� MN : B�1;�B� P : bit �2;�B� M : A �2;�B� N : A�1;�2;�B� if(P ;M ;N) : A�;�1 B� M1 : A1 �;�2 B� M2 : A2�;�1;�2 B� hM1;M2i : A1 � A2�;�1 B� M : A1 � A2 �;�2; x1 : A1; x2 : A2 B� N : A�;�1;�2 B� let hx1; x2i =M in N : ATable 18: Indued typing rules for skeletonProof. First note that the set of quantum lambda-terms is the set of the simply-typed lambda-terms.(Eah rule of the simply-typed lambda-alulus is an instane of the orrespondingrule in skeleton lambda-alulus.) Using the weakening property of Lemma 3.2.1, one an prove by indution on thetyping derivation of �B� M :A that �IM :A is true.�Remark 9.2.5 Given a well-typed quantum term M , there exists a most generaltyping judgment for x1 : X1 : : : xn : Xn B� M : Y , j�j = fx1 : : : xng.

CHAPTER 9. TYPE INFERENCE ALGORITHM 105Proof. Given the previous lemma, if �IM : A is a most general typing judgmentfor x1 : X1 : : : xn : Xn IM : Y , a most general typing judgment for x1 : X1 : : : xn :Xn B� M : Y is �B� M : A. �De�nition 9.2.6 Given A 2 Skel , one de�ne a quantum type with the followingindutive de�nition: |X = X|� = �|(A)B) = |A(|B|(A� B) = |A
 |BLemma 9.2.7 A = y|AProof. by indution on the derivation of |A. �We now turn to the question of how a skeleton type an be \deorated" withexponentials to yield a quantum type. These deorations are going to be the heart ofthe quantum type inferene algorithm.De�nition 9.2.8 Given U 2 qType and A 2 Skel , we de�ne the deoration A #U 2 qType of A along U by1) A# (n)(U) = (n)(A# U) where U is not banged;2) (A)B)# (U(V) = (A# U(B # V);3) (A� B)# (U
 V) = (A# U
B # V);and in all other ases;4) A# U = |A:Lemma 9.2.9 If A 2 Skel and U; V 2 qType, then the following are true:a) A# (n)(U) = (n)(A# U);b) (A)B)# (U(V) = A# U(B # V ;) (A� B)# (U
 V) = A# U
B # V ;d) If yU = A then A# U = U;e) y(A# U) = A;f) If U <: V then A# U <: A# V:

CHAPTER 9. TYPE INFERENCE ALGORITHM 106Proof.a) U = (m)(V) with V not banged. Then (n)(U) = (m+ n)(V).A# (n)(U)= A# (n)(m)(V)= A# (n+m)(V)= (m+ n)(A# V)= (n)((m)(A# V))= (n)(A# (m)(V))= (n)(A# U):b) and) are the de�nition.d) By indution on the derivation of A# U :1) The formula isA# (n)(U), U not exponential. By de�nition, A# (n)(U) =(n)(A# U). By indution hypothesis, A# U = U . Then A# (n)(U) =(n)(U).2) The formula is (A) B) # U (V with y(U(V) = (A) B). From thede�nition of the skeleton, yU = A and yV = B. So by indution hypothesisA# U = U and B # V = V . So (A)B)# (U(V) = (A# U(B #V) = (U(V)3) This ase is similar, replaing(with
 and) with �.4) If A = yU then this ase is reah only if A = U = �;> or X a type variable.Then |A = U , and A# U = U .e) By indution on the derivation of A# U :1) The formula is A # (n)(U), U not exponential. Sine A # (n)(U) =(n)(A # U), y(A# (n)(U)) = y(A# U). By indution hypothesis, thisis equal to A.

CHAPTER 9. TYPE INFERENCE ALGORITHM 1072) The formula is (A)B)# (U(V). By indution hypothesis,y(A# U) = A and y(B # V) = B:So y(A# U(B # V) = y(A# U)) y(B # V) = A)B.3) This ase is similar, replaing(with
 and) with �.4) A# U = |A. By Lemma 9.2.7, y(A# U) = A.f) By indution on the derivation of U <: V .(ax) In this ase, sine � an only be bit or qbit , the rule is U <: U . ThenA# U = A# V . By reexivity, A# U <: A# V .(var) The rule is X <:X. By reexivity, A# X <: A# X.(>) is similar to the previous ase.(D) The rule is U <: V:!U <: VBy indution hypothesis, A # U <: A # V . Applying (D), !(A # U) <:A# V . From (a), !(A# U) = (A#!U). Hene A#!U <: A# V .(!) The rule is !U <: V:!U<:!VBy indution hypothesis, A#!U<:A# V . From (a), !(A# U)<:A# V .Applying (!), !(A# U)<:!(A# V). And from (a), A#!U <: A#!V .(() The rule is V <: U U 0 <: V 0U(U 0 <: V (V 0By indution hypothesis, A # V <: A # U and A # U 0 <: A # V 0.Applying ((), A # U (A # U 0 <: A # V (A # V 0. From (b),A# (U(U 0)<: A# (V (V 0)

CHAPTER 9. TYPE INFERENCE ALGORITHM 108(
) The rule is U <: V U 0 <: V 0U
 U 0 <: V
 V 0Using the same method as for the (() ase, and from (), one have A#(U
 U 0)<: A# (V
 V 0)� The following lemma is the key to the quantum type inferene algorithm:Lemma 9.2.10 If M is well-typed in the quantum lambda-alulus with typing judg-ment � B M : U , then for any valid typing judgment � B� M : A in simply-typedlambda-alulus with j�j = j�j, the typing judgment �# �BM : A# U is valid inthe quantum lambda-alulus and admits a proof whih has for skeleton the proof of�B� M : A.Proof. By strutural indution on the typing-tree of �BM : U .() M = and the typing judgment is �B : U , A<:U . Any valid typing judgmentin simply typed �-alulus is of the form �B� : yA. Sine A <: U , yA = yU .Then from Lemma 9.2.9.d one an dedue that yA # U = U . And so theLemma is true in that ase: �# �B : U(x) M = x and the typing judgment is �; x : U B x : V , with U <: V . A typingjudgment in simply typed lambda-alulus is of the form �; x : AB� x : A. FromLemma 9.2.9.f, A# U <: A# V . And then �# �; x : A# U B x : A# V isvalid in qType. And so the Lemma is true in this ase.(�1) M = �x:N and the last rule of the typing derivation is�; x : U BM : V:�B �x:M : U(VThe typing tree in simply typed lambda-alulus starts with�; x : AB� M : B:�B� �x:M : A)B

CHAPTER 9. TYPE INFERENCE ALGORITHM 109The indution hypothesis applies for �; x : U BM : V and �; x : A B� M : B.We have: �# �; x : A# U BM : B # V:One an apply (�1), and from Lemma 9.2.9.b, we obtain�# �B �x:M : (A)B)# (U(V):(�2) Given �2; !�1; x:U BM :V�2; !�1 B �x:M :(n+ 1)(U(V)with FV (�x:N) 2 j�1j and �; x:AB� M :B�B� �x:M :A)B;sine j�j = j�2; !�1j, one an split � in (�1;�2), with j�ij = j�ij. By indutionhypothesis �2 # �2;�1 #!�1; x:A# U BM :B # Vis valid. From Lemma 9.2.9.a, � #!�1 is of the form !�01. The free variable of�x:N are still in j�01j, and then (�2) apply in plae of (�1) in the previous ase:we obtain �# �B �x:M : (A)B)# (n+ 1)(U(V):(app) M = NP and the typing tree starts with!�1;�2 BN : U(V !�1;�3 B P : U!�1;�2;�3 BNP : VIn simply typed lambda alulus the typing tree is:�1;�2 BN : A)B �1;�3 B P : A�1;�2;�3 BNP : BWe have from the hypothesis that j�1;�2;�3j = j!�1;�2;�3j. From the weak-ening property of Lemma 9.2.3.1 we an �nd a proof tree starting with:�1;�2;�3 BN : A)B �1;�2;�3 B P : A�1;�2;�3 BNP : B

CHAPTER 9. TYPE INFERENCE ALGORITHM 110The variable in �3 are not free in N , and the variable in �2 are not free in P .Using the strength property of Lemma 9.2.3.2, one an remove these variablesto obtain �01;�02 BN : A)B �01;�03 B P : A�01;�02;�03 BNP : B ;with j�0ij = j�ij. The indution hypothesis allows us to write that�01 #!�1;�02 # �2 BN : (A)B)# (U(V)and �01 #!�1;�03 # �3 B P : A# Uare valid. Sine (A) B) # (U (V) = A# U (B # V and �01 #!�1 is ofthe form !�01 using Lemma 9.2.9.a, we an apply the appliation rule and get�01 #!�1;�02 # �2;�03 # �3 BNP : B # Vand see that the lemma is veri�ed in that ase.(if) M = if (P ;N ;Q) and the typing tree starts with!�1;�2 B P : bit !�1;�3 BN :U !�1;�3 BQ:U!�1;�2;�3 B if (P ;N ;Q) : UIn simply typed lambda alulus the typing tree is:�1;�2 B P : bit �1;�3 BN :A �1;�3 BQ:A�1;�2;�3 B if (P ;N ;Q) : AUsing the same trik as in the (app), one an rearrange the ontexts to obtain�01;�02 B P : bit �01;�03 BN :A �01;�03 BQ:A�01;�02;�3 B if (P ;N ;Q) : Awith j�0ij = j�ij. The indution hypothesis allows us to write that�01 #!�1;�02 # �2 B P : bit ;�01 #!�1;�03 # �3 BN :A# U;

CHAPTER 9. TYPE INFERENCE ALGORITHM 111and �01 #!�1;�03 # �3 BQ : A# Uare valid. Sine �01 #!�1 is of the form !�01 using Lemma 9.2.9.a, we an applythe (if) rule and get�01 #!�1;�02 # �2;�03 # �3 B if (P ;N ;Q) : A# Uand see that the lemma is veri�ed in that ase.(
) M = hN;P i and the typing tree starts with!�1;�2 BN :(m + n)(U) !�1;�3 B P :(n+ l)(V)!�1;�2;�3 B hN;P i : (n)((m)U)
 (l)(V))In simply typed lambda alulus the typing tree is:�1;�2 BN :A �1;�3 B P :B�1;�2;�3 B hN;P i : A� BUsing the same trik as in the (app), one an rearrange the ontexts to obtain�01;�02 BN :A �01;�03 B P :B�01;�02;�3 B hN;P i : A� Bwith j�0ij = j�ij. The indution hypothesis allows us to write that�01 #!�1;�02 # �2 BN :A# (n+m)(U);and �01 #!�1;�03 # �3 B P : B # (n+ l)(V)are valid. Sine �01 #!�1 is of the form !�01 using Lemma 9.2.9.a, we an applythe (
) rule and get�01 #!�1;�02 # �2;�03 # �3 B hN;P i : (A� B)# (n)(U
 V)and see that the lemma is veri�ed in that ase.� The proof for let is based on the same model as the ones above. The proof for(�) is the same as the one for the onstant terms.�

CHAPTER 9. TYPE INFERENCE ALGORITHM 1129.3 TemplateWe want to be able to say whether a given term is typable. Note that if M is not ty-pable in simply typed lambda alulus theM is not quantum typable by Remark 9.2.On the other hand, if M admits an intuitionisti typing judgment � B� M : A (withtyping derivation �, say), thenM is quantum typable if and only ifM has a quantumderivation whose skeleton is �. Thus we an perform type inferene in the quantumlambda-alulus in two steps:1. Find an intuitionisti typing derivation �, if any,2. and �nd a deoration of � whih is a valid quantum typing derivation, if possible.Step (1) is already deidable, using Remark 9.2. In step (2), note that the set ofdeorations of � is in general in�nite, due to the presene of multiple exponentials ofthe form (n)(N) for arbitrary n. However, as we show in the next setion, it suÆesto onsider the ases n = 0 and n = 1 making the searh spae for step (2) �nite.We de�ne formally the template of a term M and a term variables set E to bethe set T(E;M) = � ��BM : A valid typing tree with j�j = E �
9.4 A sublass of qTypeWe de�ne a SqType to be a quantum type without repeated exponentials. Formally:SType C;D ::= !Aj AAqType A ::= �j Xj (C(D)j (C
D)j >

CHAPTER 9. TYPE INFERENCE ALGORITHM 113There is a anonial projetion:# : qType 7�! SqTypede�ned by the following, using the set of rules (2):#(A(B) = #(A)(#(B)#((n+ 1)(A(B)) = !(#(A)(#(B))#(�) = �#((n + 1)(�)) = !�#(A
 B) = #(A)
 #(B)#((n+ 1)(A
 B)) = !(#(A)
 #(B)))#(>) = >#((n+ 1)(>)) = !>We extend this funtion to typing judgments, proofs and type substitutions in aanonial way. We de�ne �n to be 0 if n = 0, 1 else.Lemma 9.4.1 For all A in qType, #A + A.Proof. By strutural indution on A, where �n = 0 if n = 0, 1 else:#((n)(X)) = (�n)(X) + (n)(X);#((n)(�)) = (�n)(�) + (n)(�);#((n)(>)) = (�n)(>) + (n)(>);from the set (2) of subtyping rules, and by indution hypothesis: #((n)(C(D)) +(n)(C(D) and #((n)(C
D)) + (n)(C
D), using the de�nition of subtyping. �Lemma 9.4.2 Any given skeleton is the image by y of only a �nite number of ele-ments of SqType.Proof. By strutural indution on a skeleton A.A is X, � or >. The only two possible qType of suh a skeleton are A and !A. Thenthere is a �nite number of them.

CHAPTER 9. TYPE INFERENCE ALGORITHM 114A = B)C a type U in SqType suh that yU = A an only be of the form (�)(V(W),with V being one of the �nitely many SqType of skeleton B and W being oneof the �nitely many SqType of skeleton C, and � being 0 or 1. So there are only�nitely many U satisfying this ondition.A = B
 C is similar to the) ase, replaing(with
.�Lemma 9.4.3 Given any valid typing judgment �BM : U in qType with typing tree!, the projetion #(!) is a valid typing tree for the typing judgment #�BM : #U . Soa term M is valid in qType if and only if there is a typing tree for it in the o-domainof #.Proof. Follows diretly from Lemma 9.4.1 and Lemma 7.1.4. �Theorem 9.4.4 There is a deterministi algorithm to hek if a given term M isvalid:� Find a typing derivation for M . For example the one given by the type inferenealgorithm of Chapter 3.� There is only a �nite number of possible deoration, and M is valid if and onlyif one one �nd a valid proof tree for one of those deorations.Now we have a deterministi algorithm to deide if a term M is well-typed ornot. However this algorithm is exponential in the size of the typing-tree of the mostgeneral uni�er.9.5 A polynomial-time deision proedureThe naive appliation of the proedure from Theorem 9.4.4 yields a searh spae whihis �nite, but exponential in the size of the intuitionisti typing derivation. However,it is easy to organize the searh in a more eÆient way.

CHAPTER 9. TYPE INFERENCE ALGORITHM 115Let xSqType be an extension of qType:xSqType V;W ::= (�)(U);xAqType U ::= X j � j V (W j V
 W;when � ranges over a ountable set of variables, alled ags.Let � be a map from Skel to xSqType, de�ned reursively, where � is a fresh agat eah step: �(X) = (�)(X)�(�) = (�)(�)�(A)B) = (�)(�(A)(�(B))�(A� B) = (�)(�(A)
 �(B))One an anonially extend � to skeleton judgments and skeleton typing-proofs.Let A be an xSqType, and let F be the set of ags ourring in A. Given a funtion� from xSqType to SqType, we an de�ne an SqType �(A) by:If A is in xAqType�((�)(A)) = (��)AIf V;W are in xSqType�(X) = X�(�) = ��(V (W) = �(V)(�(W)�(V
W) = �(V)
 �(W)One an anonially extend � to the domain of �.Given a skeleton typing tree, an inferene algorithm needs only to plae onstraintson � in order to obtain a valid typing tree in SqType. Given a valid skeleton typingjudgment (� B� M : A) with its typing tree, one onstrut a set of onstraints for �in the following manner:(x) The typing tree of (�B� M : A) isx1 : A1; : : : xn : An B� xi : Ai:� outputs x1 : U1; : : : xn : Un B� xi : V

CHAPTER 9. TYPE INFERENCE ALGORITHM 116The onstraint for � is (it is fully explained in the proof of Lemma 9.5.1):�(Ui)<: �(V)() The typing tree of (�B� M : A) isx1 : A1; : : : xn : An B� : yA:� outputs x1 : U1; : : : xn : Un B� : V:The onstraint for � is (it is fully explained in the proof of Lemma 9.5.1):A <: �(V)(�) The typing tree of (�B� M :A) is !�; x:C B� N :D�B� �x:N :C)D:One must make mathing the output of � with the form.... �(!)�0; x:U B� N :V�0 B� �x:N :(�)(U(V):If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the onstraints for � are the ones of theprevious all to � together with:8yi �(�) = 1) �(�i) = 1(app) The typing tree of (�B� M :A) is.... !1�1;�2 B� N :A)B !2�1;�3 B� P :A�1;�2;�3 B� NP :B :

CHAPTER 9. TYPE INFERENCE ALGORITHM 117One must make mathing the output of � with the form.... �(!1)�01;�02 B� N :(�)(U(V) �(!2)�01;�03 B� P :U�01;�02;�03 B� NP :V :If �01 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the onstraints for � are the ones of thetwo previous alls to � together with�(�) = 08yi �(�i) = 1(if) The typing tree of (�B� M :A) is.... !1�3;�1B�P :bit !2�2;�1B�Q:A !3�2;�1B�N :A�1;�2;�3 B� if(P ;Q;N) : A :One must make mathing the output of � with the form.... �(!1)�03;�01B�P :(�)(bit) �(!2)�02;�01B�Q:U �(!3�02;�01B�N :U�01;�02;�03 B� if(P ;Q;N) : U :If �01 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the onstraints for � are the ones of thethree previous alls to � together with�(�) = 08yi �(�i) = 1(�:I) The typing tree of (�B� M :A) is.... !1�;�1 B� M1 : A1 !2�;�2 B� M2 : A2�;�1;�2 B� hM1;M2i : A1 � A2

CHAPTER 9. TYPE INFERENCE ALGORITHM 118One must make mathing the output of � with the form.... �(!1)�0;�01 B� M1 : (�01)(A1) �(!2)�0;�02 B� M2 : (�02)(A2)�0;�01;�02 B� hM1;M2i : (�)((�1)(A1)� (�2)(A2))If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the onstraints for � are the ones of thetwo previous alls to � together with8yi �(�i) = 1;�(�) = 1) �(�01) = 1 and �(�) = 1) �(�02) = 1;�(�1) = 1) �(�01) = 1 and �(�2) = 1) �(�02) = 1:(�:E) The typing tree of (�B� M :A) is.... !1�;�1 B� M : A1 � A2 !2�;�2; x1 : A1; x2 : A2 B� N : A�;�1;�2 B� let hx1; x2i=M in N :AOne must make mathing the output of � with the form.... �(!1)�0;�01 B� M : (�0)(A1 � A2) �(!2)�0;�02; x1 : (�0)(A1); x2 : (�0)(A2)B� N : (�)(A)�0;�01;�02 B� let hx1; x2i=M in N :(�)(A)If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the onstraints for � are the ones of thetwo previous alls to � together with8yi �(�i) = 1;Lemma 9.5.1 This algorithm is well-de�ned and given �B� M : A a skeleton typingjudgment, the set of � that satisfy the onstraints is in 1 to 1 orrespondene with theset of quantum typing derivations, using SqType, whose images by y are (�B� M : A).Moreover, the set of onstraints for � are all of the form�(�) = 1;�(�) = 0 or�(�) = 1) �(�0) = 1

CHAPTER 9. TYPE INFERENCE ALGORITHM 119Proof. By indution on the typing-tree, any typing judgment (� B M :U) usingSqType whose image by y is (� B� M : A) will give a map � suh that ��(� B� M :A) = (� BM :U). On the onverse, all the onstraints plaed for � are suÆient tomake the image valid, by inspetion of the rules.Finally, the only onstraints that are not of the laimed form are the ones thatare for the variables and for the onstants: �(U) <: �(V) and A <: �(V) But suh aonstraint an be re-written, using this reursive proedure whih is a translation ofthe set (2) of subtyping rules on page 72:(�) Sine � is only bit and qbit , and sine there is no subtyping relation betweenthem, the rule is �((�)(�)) <: �((�0)(�)) if and only if �(�0) = 1) �(�) = 1(X) �((�)(X)) <: �((�0)(X)) if and only if �(�0) = 1) �(�) = 1(() �((�)(U(V))<: �((�0)(U 0(V 0)) if and only if �(V)<: �(V 0) and �(U 0)<: �(U)and �(�0) = 1) �(�) = 1(
) �((�)(U
 V)) <: �((�0)(U 0
 V 0)) if and only if �(V) <: �(V 0) and �(U) <: �(U 0)and �(�0) = 1) �(�) = 1and this gives a set of onstraints that are of the right form. The onstraint A<:�(V)are translated with a similar algorithm. �Theorem 9.5.2 The algorithm gives a deidability riterion for the quantum typa-bility of M , and given a valid skeleton typing judgment � B� M :A, the algorithm ispolynomial in the size of skeleton typing tree of �B� M :A.Proof. From Lemma 9.2.10 and Lemma 9.5.1, ifM is intuitionisti-typable, then itis quantum typable if and only if the set of onstraints for � is onsistent. This anbe done in a polynomial manner on the number of elements in the set. Indeed, analgorithm based on tableau-system is the following:� Set all the values to 1 and 0 aording to the lauses �(�) = : : :. If there is aontradition there, then fail.

CHAPTER 9. TYPE INFERENCE ALGORITHM 120� For eah formula �(�) = 1) �(�0) = 1, if the value of � is 1, remove �(�) =1) �(�0) = 1 and set �0 to 1 if it is not set to 0.� If it was, then fails.� Continue until nothing an be done anymore, and then output suess.Sine the number of onstraints is polynomial in the size of the typing derivation,and sine the algorithm given in this proof is polynomial in the size of the numberof onstraints, the quantum typability of a given valid M in simply-typed lambdaalulus an be deided in polynomial time on the size of the intuitionisti typingderivation. �

Chapter 10Conlusion and further workIn this thesis, we have de�ned a higher-order quantum programming language basedon a linear typed lambda alulus. Compared to the quantum lambda alulus of vanTonder [26, 27℄, our language is haraterized by the fat that it ombines lassial aswell as quantum features; thus, we have lassial data types as well as quantum ones.We also provide both unitary operations and measurements as primitive featuresof our language. As the language shows, linearity onstraints do not just exist atbase types, but also at higher types, due to the fat that higher-order funtion arerepresented as losures whih may in turns ontain embedded quantum data. We haveshown that aÆne intuitionisti linear logi provides preisely the right type systemto deal with this situation.There are many open problems for further work. An interesting question iswhether the syntax of this language an be extended to inlude reursion. In ad-dition to the multipliative types, one an wonder whether it is possible to extend thetype system to additive types, as in linear logi. Another question is to study morearefully the relation with aÆne intuitionisti linear logi, and ompare with a type-system for a all-by-name redution strategy. A very important open problem is to�nd a satisfatory denotational semantis for a higher order quantum programminglanguage. One approah for �nding suh a semantis is to extend the framework ofSelinger [21℄ and to identify an appropriate higher-order version of the notion of asuperoperator. 121

Bibliography[1℄ S. Abramsky. Computational interpretations of linear logi. Theoretial Com-puter Siene, 111(1-2):3{57, 1993.[2℄ H. P. Barendregt. The Lambda-Calulus, its Syntax and Semantis, volume 103of Studies in Logi and the Foundation of Mathematis. North Holland, seondedition, 1984.[3℄ P. Benio�. The omputer as a physial system: A mirosopi quantum me-hanial Hamiltonian model of omputers as represented by Turing mahines.Journal of Statistial Physis, 22:563{591, 1980.[4℄ N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term alulus forintuitionisti linear logi. In M. Bezem and J. F. Groote, editors, Proeedings ofthe International Conferene on Typed Lambda Caluli and Appliations, volume664 of Leture Notes In Computer Siene, pages 75{90. Springer Verlag, 1993.[5℄ S. Bettelli, T. Calaro, and L. Sera�ni. Toward an arhiteture for quantumprogramming. The European Physial Journal D, 25(2):181{200, August 2003.[6℄ A. Churh. An unsolvable problem of elementary number theory. AmerianJournal of Mathematis, 58(2):345{363, 1936.[7℄ V. Danos, J.-B. Joinet, and H. Shellinx. On the linear deoration of intuitionistiderivations. Arhive for Mathematial Logi, 33:387{412, 1995.
122

BIBLIOGRAPHY 123[8℄ D. Deutsh. Quantum theory, the Churh-Turing priniple and the universalquantum omputer. Proeedings of the Royal Soiety of London. Series A, Math-ematial and Physial Sienes, 400(1818):97{117, July 1985.[9℄ J.-Y. Girard. Linear logi. Theoretial Computer Siene, 50(1):1{101, 1987.[10℄ J.-Y. Girard. La logique lin�eaire. Pour La Siene, 150:74{85, April 1990.[11℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of CambridgeTrats in Theoretial Computer Siene. Cambridge University Press, 1990.[12℄ S. Kleene. A theory of positive integers in formal logi. Amerian Journal ofMathematis, 57:153{173 and 219{244, 1935.[13℄ E. Knill. Conventions for quantum pseudoode. Tehnial Report LAUR-96-2724, Los Alamos National Laboratory, 1996.[14℄ P. Naur, J. W. Bakus, F. L. Bauer, J. Green, C. Katz, J. MCarthy, A. J. Perlis,H. Rutishauser, K. Samelson, and B. Vauquois. Report on the algorithmi lan-guage ALGOL 60. Communiations of the Assoiation of Computing Mahinery,3(5):299{314, May 1960.[15℄ M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-tion. Cambridge University Press, 2002.[16℄ B. C. Piere. Types and Programming Languages. The MIT Press, 2002.[17℄ J. Preskill. Leture notes for Physis 229, quantum omputation. Available fromhttp://www.theory.alteh.edu/people/preskill/ph229/#leture, 1999.[18℄ A. P. Propylov. Deidability of linear aÆne logi. In Proeedings, Tenth AnnualIEEE Symposium on Logi in Computer Siene, pages 496{504, San Diego,California, June 1995. IEEE, IEEE Computer Soiety Press.[19℄ J. W. Sanders and P. Zuliani. Quantum programming. In R. Bakhouse andJ. N. Oliveira, editors, Mathematis of Program Constrution: 5th International

BIBLIOGRAPHY 124Conferene, volume 1837 of Leture Notes in Computer Siene, pages 80{99,Ponte de Lima, Portugal, July 2000. Springer-Verlag.[20℄ P. Selinger. Leture notes on the lambda alulus. Available from the web sitehttp://quasar.mathstat.uottawa.a/�selinger/papers/, 2001.[21℄ P. Selinger. Towards a quantum programming language. Mathematial Struturesin Computer Siene, 14(4):527{586, 2004.[22℄ P. W. Shor. Algorithms for quantum omputation: Disrete log and fatoring. InProeedings of the 35th Annual Symposium on Foundations of Computer Siene,pages 124{134. Institute of Eletrial and Eletroni Engineers Computer SoietyPress, November 1994.[23℄ P. W. Shor. Polynomial-time algorithms for prime fatorization and disretelogarithms on a quantum omputer. SIAM Journal on Computing, 26(5):1484{1509, 1997. This is an expanded version of [22℄.[24℄ A. Turing and J.-Y. Girard. La mahine de Turing, volume 131 of Points Si-enes. Editions du Seuil, 1995.[25℄ A. M. Turing. On omputable numbers, with an appliation to the Entshei-dungsproblem. Proeedings of the London Mathematial Soiety, Series 2, 42,1936. Can be found ommented by J.-Y. Girard in [24℄.[26℄ A. van Tonder. Quantum omputation, ategorial semantis and linear logi.On arXiv: quant-ph/0312174, 2003.[27℄ A. van Tonder. A lambda alulus for quantum omputation. SIAM Journal ofComputing, 33(5):1109{1135, 2004. Available from arXiv:quant-ph/0307150.[28℄ P. Wadler. A syntax for linear logi. In S. Brookes, M. Main, A. Melton, M. Mis-love, and D. Shmidt, editors, 9th International Conferene on the MathematialFoundations of Programming Semantis, volume 802 of Leture Notes in Com-puter Siene, pages 513{529, New Orleans, Louisiana, 1993. Springer Verlag.

