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Abstract

La théorie des algèbres d’opérateurs est jointe à la fois au monde du calcul quantique, car celui-ci
est basé sur les espaces de Hilbert, et aux modèles de la logique linéaire, les espaces d’opérateurs,
de part leur richesse en terme topologique, offrant des possibilités extraordinaires pour caractériser
finement les structures logiques. Le projet de recherche est le suivant. Le calcul quantique donnant
un sens calculatoire à des processus physiques, la question est de donner un sens logique, sous
l’angle d’une correspondance de Curry-Howard, au calcul ainsi obtenu. C’est une question qui, si
elle est difficile, peut du moins se laisser attaquer en utilisant un modèl algébrique et vectoriel.
En particulier, deux premières questions qui méritent qu’on s’y attarde sont les suivantes. Les
catégories différentielles donnent une interprétation fine de la notion de linéarité. Quelle est la
relation avec le calcul quantique ? Enfin, comme le calcul quantique trouve son interprétation
dans les espaces d’opérateurs, peut-on construire une correspondance de Curry-Howard dans ce cas
restreint ?

1 Introduction

My research interests are in the foundations of computer science. I enjoy working on the semantics of
typed programming languages and on models of intuitionistic linear logic. I like applying categorical
tools to these fields to examine the fundamental structures underlying them.

The main focus of my research has been the semantics of programming languages related to quan-
tum computation. I am particularly interested in the combination of structures arising from the theory
of operator spaces with logical structures. Much of my research has been concerned with studying a
quantum lambda calculus and its type system, using methods from linear algebra, domain theory, and
category theory. I am now working on the semantics of a lambda-calculus together with a structure
of vector space.

These works on quantum and algebraic structures convinced me that research need to be done in
order to relate in details the theory of operator spaces and proof theory, and that a ladder to get there
is quantum computation.

2 Background

Semantics of programming languages. A semantics for a programming language is a mathe-
matical representation of the set of valid terms. It serves several purposes: one can use it do decide
on the validity of a given program, or to understand the possibilities of what can be done with the
language in general.

Functional programming languages are languages intepreting programs as processes on wires, in-
putting some data and outputting some other data and without modifying the overall environment. In
a typed setting, a program is a “function” whose domain is the datatype of input and whose codomain
is the datatype of output. But, through the Curry-Howard correspondence (Howard, 1980), a pro-
gram is also the proof of a proposition in a particular logic. The study of the corresponding logic gives
precious informations on the language, and conversely, the study of the language helps understanding
the structure of proofs in the logic.
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A rich enough logic admits a notion of conjunction and a notion of implication. In the type system,
these correspond to product and function types: this is the realm of higher-order computation. A
higher order function is a function that inputs or outputs a “black box”, which is itself a function.
The canonical formalism for expressing higher order functions is the lambda-calculus developed by
Church (1936) and Kleene (1935a,b) to characterize computable functions.

Quantum computation. In classical computation, the boolean structure is a finite, discret struc-
ture, usually composed of two elements. In quantum computation, the boolean structure is a smooth
structure issued from the theory of Hilbert spaces. A quantum boolean is a normalized vector in a two-
dimensional Hilbert space. The operations one can performed on a quantum boolean are well-known
and described by the laws of quantum physics. One can perform unitary operations, that is, linear,
isometric maps of Hilbert spaces, and measurements, which are probabilistic, destructive operations
(Nielsen and Chuang, 2002). In particular, there is no possibility of cloning a quantum bit (Wootters
and Zurek, 1982). From a programmer perspective, there are two potential problems: the mix of
duplicable and non-duplicable data, and the probabilistic side-effect.

Semantics of quantum computation. Several authors have been studying the mathematical
structure of quantum computation.

(Abramsky and Coecke, 2004) and (Selinger, 2005b) explore the logical structures behind Hilbert
spaces using monoidal categories with coproduct and dagger compact closed structures. In a relatively
general framework, notions of base, unitary maps, scalars and duals naturally appear. In (Coecke and
Pavlovic, 2007), this setting is even more precised using the notion of “classical objects” to model
measurements without the coproduct requirement. (Coecke and Paquette, 2006) is able to prove an
abstract version of the theorem of Naimark in this categorical framework.

Without measurement, the question of duplicability versus non-duplicability vanishes since there
is no classical object anymore. (Altenkirch, Grattage, Vizzotto, and Sabry, 2005) provides a full and
complete semantics for a first-order functional language without measurements. This semantics is
based on the category of finite dimensional Hilbert spaces and isometries, and the paper highlights
its relation with the category of finite sets. Regarding higher order, (van Tonder, 2004) describes a
purely quantum lambda-calculus but does not provide any denotational semantics.

In the case of quantum computation with measurements, a non-duplicable type (the quantum bit)
and a duplicable type (the classical bit) appear. (Selinger, 2004b) shows that the notion of superop-
erator provides a full and complete model for first-order quantum computation with measurements.
However, as shown in (Selinger, 2004c) this interpretation does not generalize easily at higher order.
Indeed, the notion of normed vector space used in the first-order situation does not provide a satis-
factory category for modelling higher-order quantum computation. (Valiron, 2004a,b) and (Selinger
and Valiron, 2006a, 2005) describes a typed quantum lambda-calculus and its operational semantics.
(Valiron, 2008a,b) and (Selinger and Valiron, 2006b, 2008) solve the many problems that occurs while
defining a higher-order language and describing its semantics.

Algebra in logic. The study of the relation between algebraic and logical structure is not restricted
to the realm quantum computation. Indeed, many works on semantics of linear logic, a resource-
sensitive logic introduced by Girard (1987), make use of topological vector space and functional analysis
to solve questions related to resource-sensitivity. The question of duplicability is captured in linear
logic by controlling the occurrence of non-linear behavior (weakening, contraction) in the construction
of the proof. In functional analysis and theory of operator spaces, the distinction between linearity
and non-linearity is controlled by continuity and differentiability with the use of topological vector
spaces.

(Blute, Panangaden, and Seely, 1993b) and (Girard, 2004) describe models of the exponential
“!” of linear logic using a category of complex vector spaces and holomorphic functions. In this
setting, linearity in the logic is interpreted as linear maps in the model and non-linearity in the logic
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as differentiable maps in the model. In a similar vein, (Ehrhard and Regnier, 2003) proposes an
algebraic lambda-calculus with explicit sums and differential operators. (Blute, Cockett, and Seely,
2006) axiomatizes this differential calculus and describes the notion of differential categories, capturing
a categorical analog of differentiation in an additive symmetric monoidal category.

The notion of duality in linear logic is very important: each connective admits a dual one through
the use of the negation operator. A notion of dual can be expressed algebraically in the theory of Hopf
algebra (Kassel, 1995). (Blute, 1996; Blute and Scott, 1998; Ehrhard, 2002) draw a correspondence
between the two approaches and model duality in linear logic using Hopf algebras.

In its work on geometry of interaction, Girard (1989a,b) provides an algebraic characterization
of the “invariant” of a proof. In particular, it interprets proofs and cut elimination as operators on
Hilbert spaces, and use the existence of traces on these spaces. The use of norms on operator spaces
allows the interpretation of the subtle behavior of proof normalization in the context of the exponential
operator “!”. Many works such as (Danos and Regnier, 1995; Girard, 1995; Haghverdi and Scott, 2004,
2006) extend these ideas and study the algebraic invariants of proofs issued from this interpretation.

(Vaux, 2008) and (Arrighi and Dowek, 2008) are both concerned with untyped lambda-calculi
endowed with a structure of vector space. The main issue they try to address is the question of
normalization and confluence in such a system. Although they consider similar questions, these works
come from very different approaches: the former paper builds on the differential calculus (Ehrhard and
Regnier, 2003) whereas the latter one considers a generalization of the calculus of van Tonder (2004).
(Valiron, 2009) develops a semantics for a typed algebraic language and sketches an understanding of
the notion of divergence in the context of linear combinations of terms, using denotations based on
the adjunction between the category of sets and various categories of modules. This study catches the
subtle distinctions existing between the several notions of divergence occuring in the language.

3 Research Proposal

As stated by Deutsch (1985), quantum computation allows one to have “every finitely realizable phys-
ical system perfectly simulated by a universal model computing machine operating by finite means”,
this machine being a quantum Turing machine. In a sense, quantum Turing machines give an compu-
tational meaning to physical processes.

If quantum Turing machines provide an operational meaning to quantum physics, they are not
giving a denotational semantics to it. In a Curry-Howard sense, what does “computable” mean for
physical processes ? In particular, what is the logic behind a given physical system ? On another
level, what about the computational power of a given physical system versus the a quantum one,
versus classical computation ? What sense to give to the word “powerful” ? And what about the
power of the mathematical description of a world “close enough” to ours ?

These questions are not new, are very hard, and maybe form a project for several lives. The
proposed research project is, if not getting answers to all of these questions, at least looking at them
with the powerful tool of algebraic structures and notions issued from the theory of operator spaces:
norms, topological vector space, category theory. . . Indeed, quantum computation is a lense that
gives computational meaning to these mathematical objects, and therefore, computational meaning to
the quantum world. Second, these mathematical structures have already been heavily used in logic,
as their structures reflect many structures encountered along the study of logical systems. I strongly
believe that important pieces of information can be gathered by attacking these problems with this
semantical lever.

As first steps towards these long-term objectives, the following can already be examined and sketch
the beginning of a research path.

• Study the relation between differential categories and models of quantum computation. Since
differential categories distinguish between linear and non-linear functions, it is natural to in-
vestigate how they relate to models provided by quantum computation, whether they consider
measurement or not.
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• Develop a Curry-Howard correspondence between resource-sensitive logical systems and algebraic
structures issued from the theory of operator spaces. Quantum computation provides a natural
computational interpretation of operators whereas the theory of operator spaces provide a rich
variety of structures.

Having been in a competitive university in Canada for several years gives me a solid knowledge
in mathematics and theoretical computer science, and a serious methodology. I worked on models of
quantum computations and on various higher-order systems dealing with vectorial structures, I feel
therefore confident in being able to attack this project. Bridging semantics of programming languages,
physics and mathematics, this research is open to many collaboration from researchers in mathematics,
computer science and physics, and should bring novel ideas and challenging twists and turns.
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Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation with classical control.
Mathematical Structures in Computer Science, 16:527–552, 2006a.
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