
Applying quantitative semantics
to higher-order quantum computing

Michele Pagani
Université Paris 13, Sorbonne Paris Cité

Villetaneuse, France
michele.pagani@lipn.univ-paris13.fr

Peter Selinger
Dalhousie University

Halifax, Canada
selinger@mathstat.dal.ca

Benoı̂t Valiron
University of Pennsylvania

Philadelphia, U.S.A.
benoit.valiron@monoidal.net

Abstract
Finding a denotational semantics for higher order quantum com-
putation is a long-standing problem in the semantics of quantum
programming languages. Most past approaches to this problem fell
short in one way or another, either limiting the language to an un-
usably small finitary fragment, or giving up important features of
quantum physics such as entanglement. In this paper, we propose a
denotational semantics for a quantum lambda calculus with recur-
sion and an infinite data type, using constructions from quantitative
semantics of linear logic.

1. Introduction
Type theory and denotational semantics have been successfully
used to model, design, and reason about programming languages
for almost half a century. The application of such methods to
quantum computing is much more recent, going back only about
10 years [16].

An important problem in the semantics of quantum computing
is how to combine quantum computing with higher-order functions,
or in other words, how to design a functional quantum program-
ming language. A syntactic answer to this question was arguably
given with the design of the quantum lambda calculus [18, 21]. The
quantum lambda calculus has a well-defined syntax and operational
semantics, with a strong type system and a practical type inference
algorithm. However, the question of how to give a denotational se-
mantics to the quantum lambda calculus turned out to be difficult,
and has remained open for many years [17, 20]. One reason that
designing such a semantics is difficult is that quantum computation
is inherently defined on finite dimensional Hilbert spaces, whereas
the semantics of higher-order functional programming languages,
including such features as infinite data types and recursion, is in-
herently infinitary.

In recent years, a number of solutions have been proposed to
the problem of finding a denotational semantics of higher-order
quantum computation, with varying degrees of success. The first
approach [19] was to restrict the language to strict linearity, mean-
ing that each function had to use each argument exactly once, in
the spirit of linear logic. In this way, all infinitary concepts (such
as infinite types and recursion) were eliminated from the language.

[Paper accepted to POPL 2014 – Unrevised draft.]

Not surprisingly, the resulting finitary language permitted a fully
abstract semantics in terms of finite dimensional spaces; this was
hardly an acceptable solution to the general problem. The second
approach [12] was to construct a semantics of higher-order quan-
tum computation by methods from category theory; specifically, by
applying a presheaf construction to a model of first-order quantum
computation. This indeed succeeds in yielding a model of the full
quantum lambda calculus, albeit without recursion. The main draw-
back of presheaf models is the absence of recursion, and the fact
that such models are relatively difficult to reason about. The third
approach [6] was based on the Geometry of Interaction. Starting
from a traced monoidal category of basic quantum operations, Ha-
suo and Hoshino applied a sequence of categorical constructions,
which eventually yielded a model of higher-order quantum com-
putation. The problem with this approach is that the tensor prod-
uct constructed from the geometry-of-interaction construction does
not coincide with the tensor product of the underlying physical
data types. Therefore, the model drops the possibility of entangled
states, and thereby fails to model one of the defining features of
quantum computation.
Our contribution. In this paper, we give a novel denotational
semantics of higher-order quantum computation, based on meth-
ods from quantitative semantics. Quantitative semantics refers to
a family of semantics of linear logic that interpret proofs as linear
mappings between vector spaces (or more generally, modules), and
standard lambda-terms as power series. The original idea comes
from Girard’s normal functor semantics [4]. More recently, quan-
titative semantics has been used to give a solid, denotational se-
mantics for various algebraic extensions of lambda-calculus, such
as probabilistic and differential lambda calculi (e.g. [1], [2]).

One feature of our model is that it can represent infinite di-
mensional structures, and is expressive enough to describe recur-
sive types, such as lists of qubits, and to model recursion. This is
achieved by providing an exponential structure à la linear logic.
Unlike the Hasuo-Hoshino model, our model permits general en-
tanglement. We interpret (a minor variant of) the quantum lambda
calculus in this model. Our main result is the adequacy of the model
with respect to the operational semantics.
Outline. In Section 2, we briefly review some background. Sec-
tion 3 presents the version of the quantum lambda calculus that we
use in this paper, including its operational semantics. Section 4 re-
calls the completion of certain categories under infinite biproducts.
In Section 5, we apply this construction to a specific category of
completely positive maps. Section 6 presents the denotational se-
mantics of the quantum lambda calculus and proves the adequacy
theorem. Finally, Section 7 concludes with some properties of the
representable elements.

1 2013/10/2

qubit 1: |φ〉 • H

(i) (ii) M
x,y

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕
location B

location A

Uxy

(iii)

|φ〉

Figure 1: The quantum teleportation protocol.

2. Background
2.1 Quantum computation in a nutshell
Quantum computation is a computational paradigm based on the
laws of quantum physics. We briefly recall some basic notions;
please see [15] for a more complete treatment. The basic unit of
information in quantum computation is a quantum bit or qubit,
whose state is given by a normalized vector in the two-dimensional
Hilbert space C2. It is customary to write the canonical basis of C2

as {|0〉, |1〉}, and to identify these basis vectors with the booleans
false and true, respectively. The state of a qubit can therefore be
thought of as a complex linear combination of booleans α|0〉 +
β|1〉, called a quantum superposition. More generally, the state of
n qubits is an element of the n-fold tensor product C2 ⊗ . . .⊗C2.

There are three kinds of basic operations on quantum data: ini-
tializations, unitary maps and measurements. Initialization prepares
a new qubit in state |0〉 or |1〉. A unitary map, or gate, is an in-
vertible linear map U such that U∗ = U−1; here U∗ denotes the
complex conjugate transpose of U . Finally, the operation of mea-
surement consumes a qubit and returns a classical bit. If n qubits
are in state α|0〉⊗φ0 +β|1〉⊗φ1, where φ0 and φ1 are normalized
states of n− 1 qubits, then measuring the leftmost qubit will yield
false with probability |α|2, leaving the remaining qubits in state φ0,
and true with probability |β|2, leaving the remaining qubits in state
φ1.

Example 1. A small algorithm is the simulation of an unbiased
coin toss: initialize one quantum bit to |0〉, apply the Hadamard gate
sending |0〉 to 1√

2
(|0〉+|1〉) and |1〉 to 1√

2
(|0〉−|1〉), then measure.

The result is true with probability 1
2

and false with probability 1
2

.

Example 2. A slightly more involved algorithm is the quantum
teleportation algorithm (see [15] for details). The procedure is
summarized in Figure 1. Wires represent the path of quantum bits
in the computation, and time flows from left to right. The gate H

stands for an application of the Hadamard gate, whereas the gate •⊕
is a controlled-not: it flips the bottom qubit if the upper one is in
state |1〉. The box M is a measurement. The unitaries Uxy are

U00 = (1 0
0 1) , U01 = (0 1

1 0) , U10 = (1 0
0 -1) , U11 = (0 1

-1 0) .

The goal is to send a quantum bit in an unknown state |φ〉 from
Location A to Location B using two classical bits. The procedure
can be reversed to send two classical bits using a quantum bit. In
this case it is called the dense coding algorithm [15].

The algorithm consists in three parts. In (i), two quantum bits
(qubits 2 and 3) are entangled in state 1√

2
(|00〉 + |11〉). In (ii),

the input qubit 1 in state |φ〉 is entangled with qubit 2, then both
are measured. The result is sent over location B, where in (iii) an
correction Uxy is applied on qubit 3, setting it to state |φ〉.

2.2 Density matrices and completely positive maps
If we identify |0〉 and |1〉 with the standard basis vectors

(
1
0

)
and(

0
1

)
, the state of a qubit can be expressed as a two-dimensional

vector v = α|0〉 + β|1〉 =
(

α
β

)
. Similarly, the state of an

n-qubit system can be expressed as an 2n-dimensional column
vector. Often, it is necessary to consider probability distributions
on quantum states; these are also known as mixed states. Consider
a quantum system that is in one of several states v1, . . . , vk with
probabilities p1, . . . , pk, respectively. The density matrix of this
mixed state is defined to be

A =
∑
i

piviv
∗
i .

By a theorem of Von Neumann, the density matrix is a good repre-
sentation of mixed states, in the following sense: two mixed states
are indistinguishable by any physical experiment if and only if they
have the same density matrix [15]. Note that trA = p1 + . . .+ pk.
For our purposes, it is often convenient to permit sub-probability
distributions, so that p1 + . . .+ pk 6 1.

Let us write Cn×n for the space of n × n-matrices. Recall
that a matrix A ∈ Cn×n is called positive if v∗Av > 0 for all
v ∈ Cn. Given A,B ∈ Cn×n, we write A v B iff B − A
is positive; this is the so-called Löwner partial order. A linear
map F : Cn×n → Cm×m is called positive if A w 0 implies
F (A) w 0, and completely positive if F ⊗ idk is positive for
all k, where idk is the identity function on Ck×k. If F moreover
satisfies tr(F (A)) 6 trA for all positive A, then it is called
a superoperator. The density matrices are precisely the positive
matrices A of trace 6 1. Moreover, the superoperators correspond
precisely to those functions from mixed states to mixed states that
are physically possible [15, 16].

2.3 The category CPM
The category CPMs is defined as follows: the objects are natural
numbers, and a morphism F : n → m is a completely positive
map F : Cn×n → Cm×m. Let CPM be the free completion of
CPMs under finite biproducts; specifically, the objects of CPM are
sequences ~n = (n1, . . . , nk) of natural numbers, and a morphism
F : ~n → ~m is a matrix (Fij) of morphisms Fij : nj → mi of
CPMs. The categories CPMs and CPM are symmetric monoidal,
and in fact, compact closed [16].

2.4 Limitations of CPM as a model
The category CPM can serve as a fully abstract model for a simple,
strictly linear, finitary quantum lambda calculus [19]. For example,
the type bit is interpreted as (1, 1), and the type qubit is inter-
preted as (2). Measurement, as a map from qubit to bit, sends
(a bc d) to (a, d). The coin toss is a map (1) → (1, 1) sending (p)
to (p

2
, p

2
). Function spaces are interpreted via the compact closed

structure.
As mentioned in the introduction, the semantics of [19] is ex-

tremely limited, because it is completely finitary. Thus recursion,
infinite data types, and non-linear functions (i.e., those that can use
their argument more than once) had to be completely removed from
the language in order to fit the model. For example, even the sim-
ple squaring function f 7→ λx.f(f x) is not representable in CPM.
Similarly, CPM cannot express infinite types, such as the type of
lists of qubits.

The purpose of the present paper is to remove all of these
restrictions. As an example, consider the following pseudo-code
(in ML-style):

val qlist : qubit -> qubit list
let rec qlist q = if (cointoss ()) then q

else let (x,y) = entangle q in x::(f y)

2 2013/10/2

Terms M,N,P ::=

x λxA.M MN skip M ;N

M ⊗N let xA ⊗ yB = M in N

in` M inr M match P with (xA : M |yB : N)

splitA letrec fA(Bx = M inN meas new U

Values V,W ::=

x c λxA.M V ⊗W in` V inr W

Types A,B,C ::=

qubit A(B !(A(B) 1 A⊗B A⊕B A`.

Table 1: Grammars of terms, values and types.

Here, the function cointoss is a fair coin toss, and the function
entangle sends α|0〉+ β|1〉 to α|00〉+ β|11〉.

So if the function qlist is applied to a qubit α|0〉 + β|1〉,
the output is α|0〉 + β|1〉 with probability 1

2
, α|00〉 + β|11〉 with

probability 1
4

, α|000〉 + β|111〉 with probability 1
8

, and so on. Its
semantics should be of type 2→ (2, 4, 8, . . .), mapping

(a bc d) 7→
(

1

2
(a bc d) ,

1

4

(
a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d

)
, . . .

)
.

The category CPM is “almost” capable of handling this case, but
not quite, because it cannot express infinite tuples of matrices. The
model we propose in this paper is essentially an extension of CPM
to infinite biproducts, using methods developed in [5, 9, 10, 14].

3. A quantum lambda calculus
We define a typed quantum lambda calculus that is a variant of
the quantum lambda calculus previously defined in [20]. The main
difference is that the language in this present paper is a true exten-
sion of linear logic (see the type assignment system of Table 2).
In particular, in contrast with [20], !(A ⊗ B) (!A ⊗ !B is not
provable and there is no need for a subtyping relation. The opera-
tional semantics implements a call-by-value strategy. An untyped
call-by-name variant has been studied in [8].

The classes of terms, values and types are defined in Table 1.
The symbol c ranges over the set of term constants {skip, splitA,
meas, new, U}. The constant U ranges over a set of elementary
unitary transformations on quantum bits. In the examples below,
we will be using the Hadamard gate H and the controlled-not gate
Nc, defined as follows [15]:

H =
1√
2

(
1 1
1 −1

)
Nc =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
(1)

Notice that bound variables are given in Church-style, i.e., with
a type annotation. This allows Proposition 4, and simplifies the se-
mantic interpretation of the typed terms. We omit such annotations
in the sequel if uninteresting or obvious.

We have two kinds of arrows: the linear arrow A(B, and the
intuitionistic arrow !(A(B), which is obtained by the call-by-
value translation of the intuitionistic implication into linear logic
[3]. Intuitively, only the terms of type !(A(B) represent func-
tions that can be iterated, whereas terms of type A(B must be
used at most once. A type of the form !A is called a !-type or non-
linear type, and all other types are called linear. The distinction
between linear and non-linear types is crucial for allowing the type
system to enforce the no-cloning property of quantum physics.

By convention, (is associative to the right, while application
and tensor are associative to the left. We use the notationA⊗n forA
tensored n times. The type A` denotes finite lists of type A. When
doing structural induction on types, we assume that A` is greater
than A⊗n, for any n ∈ N.

The set of terms and types is somewhat spartan; however it can
be easily extended by introducing syntactic sugar. Note that, for
technical convenience, we have only allowed types of the form !A
whenA is an arrow type. However, for an arbitrary typeA, the type
!A can be simulated by using !(1 (A) instead.

Notation 3. We write bit = 1 ⊕ 1, tt = inr skip, ff =
in` skip, nil = in` skip andM ::N = inr (M⊗N). We write
λskip.M for the term λz1.(z;M), where z is a fresh variable, and
if P thenM else N for match P with (x1 : N |y1 : M).

A context ∆ is a function from a finite set of variables to types.
We denote the domain of ∆ by |∆|, and we write ∆ = x1 :
A1, . . . , xn : An whenever |∆| = {x1, . . . , xn} and ∆(xi) =
Ai. We call ∆ exponential (resp. linear) whenever all Ai are !-
types (resp. no Ai is a !-type). We write !∆ for a context which
is exponential. The notation Γ,Σ refers to the union of the two
contexts Γ and Σ and assumes that |Γ| and |Σ| are disjoint.

A judgement is a triple Γ ` M : A of a context Γ, a term M
and a type A. A judgement is called valid if it can be inferred from
the typing rules in Figure 2, using the convention that the contexts
Γ and Σ are linear.

Proposition 4. There is at most one derivation inferring a given
typing judgement Γ `M : A.

Example 5. In Section 2.4, we wrote the informal program qlist.
Our language is expressive enough to represent it. The term
cointoss can be defined as meas(H(new tt)), and it has type
bit. The term entangle is λxqubit.Nc(x⊗ (new ff)), which has
type qubit (qubit⊗ qubit. Then, qlist is

letrec fqubit(qubit`q =

if cointoss then q :: nil

else let xqubit ⊗ yqubit = entangle q in x :: fy

which has type qubit (qubit`. In Examples 9 and 30 we
discuss its operational and denotational semantics, respectively.

Example 6. In Example 2 and Figure 1, we sketched the quantum
teleportation algorithm. We said that the algorithm can be decom-
posed in 3 parts. Each of these parts can be described and typed in
the quantum lambda-calculus, yielding a higher-order term. This is
an adaptation of an example provided in [18].

(i) generates an EPR pair of entangled quantum bits. Its type is
therefore 1 (qubit⊗ qubit. The corresponding term is

EPR = λskip.Nc(H(new ff))⊗ (new ff).

(ii) performs a Bell measurement on two quantum bits and outputs
two classical bits x, y. Its type is thus qubit (qubit (
bit⊗ bit, and the term BellMeasure is defined as

λq1.λq2.

(
let x⊗ y = Nc (q1 ⊗ q2)
in (meas (H x))⊗ (meas y)

)
.

(iii) performs a correction. It takes one quantum bit, two classical
bits, and outputs a quantum bit. It has a type of the form
qubit (bit⊗ bit (qubit. The term is

U = λq.λx⊗ y.if x then (if y thenU11 q elseU10 q)
else (if y thenU01 q elseU00 q).

3 2013/10/2

A linear
!∆, x : A ` x : A

ax A linear
!∆, x : !A ` x : A

axd
!∆ ` V : A V value

!∆ ` V : !A
p

!∆ ` skip : 1
1I

∆, x : A `M : B

∆ ` λxA.M : A(B
(I

!∆,Γ `M : A(B !∆,Σ ` N : A

!∆,Γ,Σ `MN : B
(E

!∆,Γ `M : 1 !∆,Σ ` N : A

!∆,Γ,Σ `M ;N : A
1E

!∆,Γ `M : A !∆,Σ ` N : B

!∆,Γ,Σ `M ⊗N : A⊗B ⊗I
!∆,Γ `M : A⊗B !∆,Σ, x : A, y : B ` N : C

!∆,Γ,Σ ` let xA ⊗ yB = M in N : C
⊗E

!∆,Γ `M : A

!∆,Γ ` in` M : A⊕B ⊕
`
I

!∆,Γ `M : B

!∆,Γ ` inr M : A⊕B ⊕
r
I

!∆,Γ ` P : A⊕B
!∆,Σ, y : B ` N : C
!∆,Σ, x : A `M : C

!∆,Γ,Σ ` match P with (xA : M |yB : N) : C
⊕E

!∆,Γ `M : 1⊕ (A⊗A`)
!∆,Γ `M : A`

−`I
!∆ ` splitA : A`(1⊕ (A⊗A`)

split
!∆, f : !(A(B), x : A `M : B !∆,Γ, f : !(A(B) ` N : C

!∆,Γ ` letrec fA(B x = M in N : C
rec

!∆ ` meas : qubit (bit
meas

!∆ ` new : bit (qubit
new

U of arity n

!∆ ` U : qubit⊗n (qubit⊗n
U

Table 2: Typing rules. The contexts Γ and Σ are assumed to be linear. In the p-rule A is assumed to be an arrow type.

We can now write the term

telep = λskip.let x⊗ y = EPR skip in
let f = BellMeasure x in
let g = U y
in f ⊗ g.

It can then be shown that

` telep :!(1 ((qubit (bit⊗bit)⊗ (bit⊗bit (qubit))

is a valid typing judgement.
In other words, the teleportation algorithm produces a pair of

entangled functions f : qubit→ bit⊗bit and g : bit⊗bit→
qubit. These functions have the property that g(f(|φ〉)) = |φ〉
for all qubits |φ〉, and f(g(x ⊗ y)) = (x ⊗ y) for all booleans x
and y. These two functions are each other’s inverse, but because
they contain an embedded qubit each, they can only be used once.
They can be said to form a “single-use isomorphism” between the
(otherwise non-isomorphic) types qubit and bit⊗bit. However,
the whole procedure is duplicable: one can generate as many one-
time-use isomorphism pairs as desired.

3.1 Operational semantics
The operational semantics is defined in terms of an abstract ma-
chine simulating the behavior of Knill’s QRAM model. It is similar
to the semantics given in [20].

Definition 7. A quantum closure is a triple [q, `,M] where

• q is a normalized vector of C2n , for some integer n > 0. The
vector q is called the quantum state;

• M is a term, not necessarily closed;
• ` is a one-to-one map from the set of free variables of M to the

set {1, . . . , n}. It is called the linking function.

We write |`| for the domain of `. By abuse of language we may
call a closure [q, `, V] a value when the term V is a value. We
denote the set of quantum closures by Cl and the set of quantum
closures that are values by Val. We write `|M for the linking
function whose domain is restricted to the set of free variables of
M . We say that the quantum closure [q, `,M] is total when |`|
has cardinality n, the size of the quantum state. In that case, if
|`| = {x1, . . . , xn} and `(xi) = i, we write ` as |x1, . . . , xn〉.
A quantum closure [q, |x1, . . . , xn〉,M] has a type A, whenever

x1 : qubit, . . . , xn : qubit ` M : A. In case ` = |x1, . . . , xn〉
we can also write ` `M : A.

The purpose of a quantum closure is to provide a mechanism
to talk about terms with embedded quantum data. The idea is that
a variable y ∈ FV(M) is bound in the closure [q, `,M] to qubit
number `(y) of the quantum state q. So for example, the quantum
closure

[
1√
2

(|00〉+ |11〉), |x1, x2〉, λyA.yx1x2]

denotes a term λyA.yx1x2 with two embedded qubits x1, x2 in the
entangled state |x1x2〉 = 1√

2
(|00〉+ |11〉).

Numbering of qubits in the state starts at 1. The notion of α-
equivalence extends naturally to quantum closures, for instance, the
states [q, |x〉, λyA.x] and [q, |z〉, λyA.z] are equivalent. From now
on, we tacitly identify quantum closures up to renaming of bound
variables.

The evaluation of a term is defined as a probabilistic rewriting
procedure on quantum closures, using a call-by-value reduction
strategy. We use the notation [q, `,M]

p→ [q′, `′,M ′] to mean that
the left-hand side closure reduces in one step to the right-hand side
with probability p ∈ [0, 1].

Definition 8. The reduction rules are shown in Table 3. The rules
split into three categories: (a) rules handling the classical part of the
calculus; (b) rules dealing with quantum data; and (c) congruence
rules for the call-by-value strategy. Note that in the statement of the
rules, V and W refer to values.

In the rules in Table 3(b), the quantum state q has size n.
The quantum state q′ in the first rule is obtained by applying the
k-ary unitary gate U to the qubits `(x1), . . . , `(xk). Precisely,
q′ = (σ ◦ U ⊗ id ◦σ−1)(q), where σ is the action on C2n of
any permutation over {1, . . . , n} such that σ(i) = `(xi) whenever
i 6 k. In the rules about measurements, we assume that if q0 and
q1 are normalized quantum states of the form∑

jαj |φ
0
j 〉 ⊗ |0〉 ⊗ |ψ0

j 〉,
∑
jαj |φ

1
j 〉 ⊗ |1〉 ⊗ |ψ1

j 〉, (2)

then q′0 and q′1 are respectively∑
jαj |φ

0
j 〉 ⊗ |ψ0

j 〉,
∑
jαj |φ

1
j 〉 ⊗ |ψ1

j 〉, (3)

where the vectors φ0
j and φ1

j have dimension `(x) − 1 (so that the
measured qubit is `(x)).

4 2013/10/2

[q, `, (λxA.M)V] 1→ [q, `,M{V/x}] [q, `, let xA ⊗ yB = V ⊗W inN] 1→ [q, `,N{V/x,W/y}]

[q, `, skip;N] 1→ [q, `,N] [q, `, match (in` V) with (xA : M |yB : N)] 1→ [q, `,M{V/x}]

[q, `, splitV] 1→ [q, `, V] [q, `, match (inr V) with (xA : M |yB : N)] 1→ [q, `,N{V/y}]
[q, `, letrec fA(B x = M inN] 1→ [q, `,N{(λxA.letrec fA(B x = M inM)/f}]

(a) Classical control.

[q, `, U(x1 ⊗ · · · ⊗ xk)] 1→ [q′, `, x1 ⊗ · · · ⊗ xk]

[q, ∅, new ff] 1→ [q ⊗ |0〉, {y 7→ n+ 1}, y] [αq0 + βq1, {x 7→ i}, meas x]
|β|2−−→ [q′1, ∅, tt]

[q, ∅, new tt] 1→ [q ⊗ |1〉, {y 7→ n+ 1}, y] [αq0 + βq1, {x 7→ i}, meas x]
|α|2−−−→ [q′0, ∅, ff]

(b) Quantum data. The variable y is fresh.

[q, `,MN]
p→ [q′, `′,M ′N] [q, `,M ⊗N]

p→ [q′, `′,M ′ ⊗N] [q, `, in` M]
p→ [q′, `′, in` M

′]

[q, `, V M]
p→ [q′, `′, V M ′] [q, `, V ⊗M]

p→ [q′, `′, V ⊗M ′] [q, `, inr M]
p→ [q′, `′, inr M

′]

[q, `,M ;N]
p→ [q′, `′,M ′;N] [q, `, let xA ⊗ yB = M inN]

p→ [q′, `′, let xA ⊗ yB = M ′ inN]

[q, `, matchM with (xA : P |yB : N)]
p→ [q′, `′, matchM ′ with (xA : P |yB : N)]

(c) Congruence rules, under the hypothesis that for some `0 we have ` = `0] `|M , `′ = `0] `′|M′ and [q, `|M ,M]
p→[q′, `′|M′ ,M ′].

Table 3: Reduction rules on closures.

Note that the only probabilistic reduction step is the one cor-
responding to measurement. Also, we underline that the hypothe-
sis associated with a congruence rule [q, `, C[M]]

p→[q′, `′, C[M ′]]
takes into account the whole quantum states q and q′. In fact, be-
cause of the entanglement, the evaluation of [q, `|M ,M] may have
a side-effect on the state of the qubits pointed by the variables oc-
curring in the context C[].

The rules assume that the involved closures are well-defined.
In particular, whenever [q, `,M]

p→ [q, `,M ′], the two terms M
and M ′ have the same free variables. For example, the closure
[|00〉, |yz〉, (λx.y)z] cannot reduce and it represents an error. The
type system will prevent such an error as proven in Proposition 12.

Example 9. Recall Example 5. We have [|〉, |〉, cointoss] 1→
[|1〉, |x〉, meas(Hx)] 1→ [1√

2
(|0〉+ |1〉), |x〉, meas x], the latter

reducing to either [|〉, |〉, tt] or [|〉, |〉, ff], with equal probability
1
2

. As for entangle, we have that

[α|0〉+ β|1〉, |x〉, entangle x]

1→ [α|0〉+ β|1〉, |x〉, Nc(x⊗ (new ff))]

1→ [α|00〉+ β|10〉, |xy〉, Nc(x⊗ y)]

1→ [α|00〉+ β|11〉, |xy〉, x⊗ y].

Similarly, one can check that [α|0〉+ β|1〉, |q〉, qlist q] behaves
as described in Section 2.4, reducing to [α|0〉+ β|1〉, |q〉, q :: nil]
with probability 1

2
, to [α|00〉+ β|11〉, |qq′〉, q′ :: q :: nil] with

probability 1
4

, etc. In particular, notice that in any single reduc-
tion sequence the variable q has not been duplicated, as correctly
asserted by the type of qlist.

Lemma 10 (Substitution). Suppose !∆,Γ, x : A ` M : B and
!∆,Σ ` V : A, where Γ and Σ are linear contexts with disjoint
domain. Then !∆,Γ,Σ `M{V/x} : B.

Proof. By induction on the derivation of !∆,Γ, x : A ` M : B
(which is unique by Proposition 4).

Proposition 11 (Subject reduction). When [q, |y1 . . . yn〉,M]
p→

[q′, |x1 . . . xn′〉,M ′] and y1 : qubit, . . . , yn : qubit ` M : A,
then x1 : qubit, . . . , xn′ : qubit `M ′ : A.

Proof. The proof is done by structural induction on the reduction
[q, |y1 . . . yn〉,M]

p→ [q′, |x1 . . . xn′〉,M ′], using Lemma 10 for
the cases where substitution occurs.

Proposition 12 (Type safety). If [q, `,M] is typable then eitherM
is a value or there is a closure [q′, `′,M ′] such that [q, `,M]

p→
[q′, `′,M ′]. Moreover, if M is not a value, the total probability of
all possible single-step reductions from [q, `,M] is 1.

Proof. By induction on a typing derivation of M .

Lemma 13 (Totality). If [q, `,M]
p→ [q′, `′,M ′] and [q, `,M] is

total, then [q′, `′,M ′] is total too.

Proof. By induction on a derivation of [q, `,M]
p→ [q′, `′,M ′],

one proves that

dim(q′) = dim(q) + dim(`′)− dim(`)

where dim(q) is the size of the quantum state q and dim(`) is the
cardinality of the domain set of the linking function `. Then, one
gets the statement, since [q, `,M] is total iff dim(q) = dim(`).

3.2 Reduction system as a Markov chain
The reduction relation → defines the probability that a closure
reduces to another one in a single step. In order to extend it to an
arbitrary large (but finite) number of reduction steps, we present
the reduction relation as a Markov process over the set of closures,
following the spirit of [1].

5 2013/10/2

Definition 14. We define an infinite matrix Red ∈ [0, 1]Cl×Cl

componentwise:

Red[q,`,M],[q′,`′,M′] :=


p if [q, `,M]

p→ [q′, `′,M ′],
1 if [q, `,M] = [q′, `′,M ′] and

M is a value,
0 otherwise.

Note that Red is well-defined: for any two quantum clo-
sures [q, `,M] and [q′, `′,M ′] there is at most one p such that
[q, `,M]

p→ [q′, `′,M ′]. Red is a stochastic matrix: for all clo-
sures [q, `,M], 0 6

∑
[q′,`′,M′]∈Cl Red[q,`,M],[q′,`′,M′] 6 1.

Intuitively, the value of Red[q,`,M],[q′,`′,M′] describes the prob-
ability of evolving from the state [q, `,M] to the state [q′, `′,M ′]
in one step.

A closure [q, `,M] is absorbing whenever Red[q,`,M],[q,`,M] =
1: the absorbing states are those which are invariant under the
transition matrix. In particular, values are all absorbing. (Note that
there are absorbing terms which are not values, such as [|〉, |〉,Ω],
with Ω the total diverging term letrec f x = fx in f skip).

The n-th power Redn of the matrix Red is a stochastic ma-
trix on Cl (in case n = 0, we have the identity matrix on Cl).
Intuitively, the value of Redn[q,`,M],[q′,`′,M′] is the probability of
evolving from the state [q, `,M] to the state [q′, `′,M ′] in exactly
n steps. In particular, if [q′, `′, V] is a value then the sequence
{Redn[q,`,M],[q′,`′,V]}n∈N is monotonically increasing.

We then can define the matrix Red∞ in [0, 1]Cl×Val as follows:

Red∞[q,`,M],[q′,`′,V] :=
∞

sup
n=0

(
Redn[q,`,M],[q′,`′,V]

)
. (4)

The element Red∞[q,`,M],[q′,`′,V] is the probability that [q, `,M]

reaches a value [q′, `′, V] in an arbitrary number of steps. Finally,
we define the probability that [q, `,M] reduces to some value as

Halt[q,`,M] :=
∑

[q′,`′,V]∈Val

Red∞[q,`,M],[q′,`′,V] . (5)

4. Infinite biproduct completion
In this section, we recall the definition of the infinite biproduct
completion C⊕ of a symmetric monoidal closed linear continuous
R-category C (Definition 15). We also recall how C gives (under
certain hypotheses) a Lafont category, which is a model of intu-
itionistic linear logic (Proposition 18). This construction is known:
it was sketched in [5] and detailed in [9, 10, 13, 14]. In particular,
[10] gives the definition of linear continuous R-category that we
use here. Our contribution is in applying such a construction to a
category useful for interpreting quantum data types (Section 5).

Consider a continuous commutative semiringR. This is a com-
mutative semiring (|R|, 0, 1,+, ·) equipped with an order rela-
tion ≺ such that 0 is the minimum, any directed set D ⊆ |R|
has a sup

∨
, and + and · are continuous, i.e., monotone and∨

(r + D) = r +
∨
D and

∨
(r · D) = r ·

∨
D. The letters

p, q, r range over |R|.
We say that a symmetric monoidal closed category C is a linear

continuous R-category whenever: (i) every homset is endowed
with a structure of module over the semiring R; (ii) composition
and tensor are bilinear, that is (pf + p′f ′) ; (qg + q′g′) is equal to

(p · q)(f ; g) + (p · q′)(f ; g′) + (p′ · q)(f ′ ; g) + (p′ · q′)(f ′ ; g′),

and the same for ⊗; (iii) every homset is endowed with a structure
of complete partial order with 0 as the minimum and composition,
⊗, addition and scalar multiplication continuous.

From now on, C denotes a symmetric monoidal closed linear
continuous R-category. In that case, notice that we can define the

indexed sum over a homset C(A,B) as∑
f∈S

f :=
∨

F⊆finS
(
∑
f∈F

f). (6)

Definition 15. An object A of C⊕ is a pair (|A|, (Aa)a∈|A|) of
a (possibly infinite) set of indexes |A|, called the web of A, and
a |A|-family of objects in C. The homset C⊕(A,B) is the set of
the |A| × |B| matrices of morphisms φ = (φa,b)(a,b)∈|A|×|B| in
C. Given φ ∈ C⊕(A,B) and ψ ∈ C⊕(B,C), the (diagrammatic)
composition φ ;ψ is the matrix product: (φ ;ψ)a,c =

∑
b∈|B| φa,b ;

ψb,c. The identity is the diagonal matrix ida,a′ := idAa if a = a′,
and ida,a′ := 0 if a 6= a′.

4.1 The linear structure
4.1.1 Biproduct
The category C⊕ is the free biproduct completion of C. The bi-
product

⊕
i∈I Ai of a family (Ai)i∈I of objects in C⊕ is defined

by |
⊕

i∈I Ai| :=
⋃
i∈I{i} × |Ai| and

(⊕
i∈I Ai

)
(j,a)

:= (Aj)a.
The corresponding projections and injections are denoted respec-
tively by πj and ιj . The tupling 〈φi〉i∈I (resp. (co)-tupling [ψi]i∈I)
of a family of morphisms φi elements of C⊕(A,Bi) (resp. ψi ele-
ments of C⊕(Ai,B)) is defined by (〈φi〉i∈I)a,(i,b) := (φi)a,b and
([ψi]i∈I)(i,a),b := (ψi)a,b.

4.1.2 Monoidal product
The bifunctor ⊗ : C⊕ × C⊕ → C⊕ is defined on objects A,B by
|A⊗B| := |A| × |B| and (A ⊗B)(a,b) := Aa ⊗Bb, where the
⊗ in the right-hand side of the second equation is that of the cate-
gory C. The tensor unit is the singleton web space ({∗},1), where
1 is the tensor unit of C. By abuse of notation we will also de-
note the unit of C⊕ by 1. The action of ⊗ on morphisms is defined
componentwise, and similarly for the associativity, unit, and sym-
metry isomorphisms. E.g., the associator is αA,B,C

((a,b),c),(a′,(b′,c′)) =

δa,a′δb,b′δc,c′α
Aa,Bb,Cc , where αAa,Bb,Cc is the associator in C

and δa,a′ is the Kronecker delta.
Notice the n-fold tensor product A⊗n of an object A can be

represented by |A⊗n| := {(a1, . . . , an) | ∀i 6 n, ai ∈ |A|} and
A⊗n(a1,...,an) := Aa1⊗· · ·⊗Aan . The group Sn of permutations on
{1, . . . , n} gives the n! symmetries of A⊗n, namely σ ∈ Sn can
be seen as the symmetry

σ(a1,...,an),(a′1,...,a
′
n) := δa1,a′σ(1)

. . . δan,a′σ(n)
σAa1 ,...,Aan ,

where σAa1 ,...,Aan is the symmetry in C between Aa1⊗· · ·⊗Aan
and Aaσ(1) ⊗ · · · ⊗ Aaσ(n)

.
Tensor product distributes over biproducts. The isomorphism

between (
⊕

i∈I Ai)⊗B and
⊕

i∈I(Ai ⊗B) is

distr((i,a),b),(i′,(a′,b′)) := δi,i′δa,a′δb,b′ idAa⊗Bb .

4.1.3 Monoidal closure
The internal hom object is defined as |A (B| := |A| × |B| and
(A (B)(a,b) := Aa (Bb, where Aa (Bb is the internal
hom in C. For every pair of objects A, B, the evaluation morphism
EvalA,B : C⊕((A (B)⊗A,B) is defined componentwise, using
the evaluation morphism evalAa,Bb in C((Aa (Bb)⊗ Aa,Bb).
The isomorphism from C⊕(C ⊗ A,B) to C⊕(C,A (B) is
denoted by Λ(−) and its inverse by App(−).

Proposition 16. The category C⊕ endowed with the above struc-
ture is symmetric monoidal closed.

Similarly, it is easy to check that C⊕ also inherits the ?-autono-
mous (resp. compact closed) structure of C.

6 2013/10/2

Proposition 17. C⊕ is a linear continuous R-category with the
pointwise R-module operations and order, e.g., (φ + ψ)a,b =
φa,b + ψa,b.

4.2 Exponential structure
A symmetric monoidal closed category with finite products, such
that each object has a corresponding free commutative comonoid,
is called a Lafont category, which is known to be a model of
intuitionistic linear logic [7, 13].

We say that the n-th (symmetric) power (An, eqA
n

) of an
object A of a symmetric monoidal category is the equalizer of
the n! symmetries of the n-ary tensor A⊗n, provided that such an
equalizer exists. That is, eqA

n

is a morphism from An to A⊗n

equalizing the symmetries of A⊗n (i.e., for every permutation σ ∈
Sn, eqA

n

;σ = eqA
n

), enjoying the following universal property:
for every object D and morphism f from D to A⊗n equalizing the
symmetries of A⊗n, there exists a unique morphism f† such that
f† ; eqA

n

= f .

An
eqA

n

// A⊗n
σ1 //

σn!

// A
⊗n

D

unique f†

OO
f

<< (7)

Moreover, we say that (An, eqA
n

) preserves the monoidal product
whenever for every object B, the pair (An ⊗ B, eqA

n

⊗ idB) is
the equalizer of the diagram obtained from the diagram equalized
by (An, eqA

n

) by replacing each object A with A ⊗ B and each
arrow f by f ⊗ idB .

Proposition 18 (Folklore, cf. [5, 14]). C⊕ is a Lafont category
whenever the category C has the n-th power for every n ∈ N and
object A, and this power preserves the monoidal product.

Namely, one proves that C⊕ inherits the n-th powers (An, eqA
n

)
from C. Then, the free commutative comonoid !A of an object A is
defined as

⊕
n A

n.
For later reference, we give a concrete presentation of !A:

|!A| :=Mf (|A|), (!A)µ :=
⊗
a∈|µ|

Aµ(a)
a , (8)

whereMf (|A|) is the set of the finite multisets of |A|, µ(a) is the
number of occurrences of a in µ, |µ| is the support of the multi-
set µ, i.e., |µ| := {a ∈ |A| ; µ(a) 6= 0}, the object Aµ(a)

a is
the µ(a)-th power in C of Aa. Finally, the object

⊗
a∈|µ| A

µ(a)
a

denotes the tensor of the spaces A
µ(a)
a . This is well-defined up to

isomorphism; for example, it can be defined by arbitrarily fixing
an order on the elements of |A|. The counit, here called weak-
ening w ∈ C⊕(!A,1), is wµ,∗ := δµ,[] id1, where id1 is the
identity of 1 in C. The co-multiplication, here called contraction
c ∈ C⊕(!A, !A ⊗ !A), is given by cµ,(µ′,µ′′) = δµ,µ′+µ′′c

µ′,µ′′ ,
where cµ

′,µ′′ is the unique morphism in C satisfying the equa-

tion cµ
′,µ′′ ; eqA

µ′
⊗ eqA

µ′′
= eqA

µ

;σ, with eqA
µ

be the equal-
izer of the symmetries of

⊗
a∈|µ| A

⊗µ(a)
a of the shape

⊗
a∈|µ| σ

a

with σa ∈ Sµ(a) (and similarly for eqA
µ′

and eqA
µ′′

). Notice that
such equalizers exist by the hypothesis that the powers of C pre-
serve the monoidal product. Last, the dereliction d ∈ C⊕(!A,A) is
dµ,a := δµ,[a] idAa .

The linear exponential comonad is given as usual for Lafont
categories. The functorial promotion maps an object A to !A and
a morphism φ ∈ C⊕(A,B) to the unique comonoid morphism
!φ ∈ C⊕(!A, !B) satisfying the equation d ; φ = !φ ; d, which has

exactly one solution by the freeness of the exponential comonoid on
B. Weakening gives the counit. The co-multiplication (also called
digging) is the unique comonoid morphism dig ∈ C⊕(!A, !!A)
such that dig ; d = id. Finally, the last two morphisms which are
essential to interpret our calculus are Bierman’s m⊗ ∈ C⊕(!A ⊗
!B, !(A⊗B)) and m1 ∈ C⊕(1, !1) which are the unique comonoid
morphisms such that m⊗ ; d = d⊗ d and m1 ; d = id1.

5. Completing CPM
We want to apply the general construction C⊕ to a category C
which is useful for interpreting quantum data types. One natural
choice would be to consider the category CPM of completely pos-
itive maps [16]. However, CPM misses two essential requirements
for producing CPM⊕. First, CPM does not have the equalizers of
the tensor symmetries. Second, the homsets of CPM are not con-
tinuous with respect to the Löwner order, i.e., not every directed
subset has a sup.

We will therefore recast this category into CPMs, the category
of completely positive maps on positive matrices with symmetries
and a ∞ morphism completing the Löwner order on completely
positive maps.

5.1 Complete positive maps with symmetries and top
Any permutation g ∈ Sn gives rise to a matrixPg ∈ Cn×n, defined
by Pg(ei) = eg(i), where ei is the ith standard basis vector. We
define an action of g on Cn×n by g ·A := PgAP

−1
g . Moreover, for

a subgroup G ⊆ Sn, we define G · A := 1
#G

∑
g∈G g · A, where

#G is the number of elements of G.

Lemma 19. Given a subgroup G ⊆ Sn, its action on Cn×n is
idempotent (i.e., G ;G = G) and completely positive.

Proof. For the idempotence, notice that for every g ∈ G, Gg = G,
therefore: G · G · A = 1

#G

∑
g∈GGg · A = G · A The complete

positivity of G is derived from the complete positivity of each
element g ∈ G, when considered as a morphism. Indeed, any map
of the form A 7→ SAS−1 is completely positive, and therefore
so is A 7→ g · A = PgAP

−1
g . Moreover, non-negative linear

combination of completely positive maps is completely positive,
and therefore G = 1

#G

∑
g∈G g is completely positive.

In the sequel, we use the notation G both for a subgroup of Sn
and for the completely positive map defined by it.

We can now define the category CPMs which is essentially a
sub-category of the Karoubi envelope of the completion of CPMs,
continuous with respect to the Löwner ordering on positive matri-
ces. In fact, the idea of using the Karoubi construction for getting
the tensor powers follows [9].

Definition 20. The category CPMs of completely positive maps
with symmetries and top has as objects pairs (n,G) where n ∈ N
and G is a subgroup of Sn. A morphism f from (n,G) to (m,H)
is either a completely positive map from Cn×n to Cm×m such that
G ; f ; H = f , or the constant ∞. The identity of (n,G) is G
and the composition is the functional composition on completely
positive maps, or is given by the equations∞ ; g =∞ = f ;∞ if
f, g 6= 0, and∞ ; 0 = 0 = 0 ;∞.

Let R+ = R+ ∪ {∞} be the continuous completion of the
semiring R+ with respect to the canonical ordering on reals, with
0 · ∞ = 0. Note that R+ is a continuous semiring.

Remark 21. The category CPMs is a linear continuous R+-
category, continuous with respect to the Löwner orderv on positive
maps enriched with∞ as the maximum element.

7 2013/10/2

Proposition 22. The category CPMs inherits the symmetric mono-
idal closed structure of CPM.

Proof. The object (n,G) ⊗ (m,H) is defined as (nm,G ⊗ H),
where we use the isomorphism Cnm,nm = Cn×m,n×m obtained
by the lexicographic order on the pairs (i, j) ∈ n×m, and G⊗H
is intended to be the subgroup of Snm of the permutations of the
form g ⊗ h, with g ∈ G, h ∈ H acting as (i, j) 7→ (g(i), h(j)).
The tensor unit is 1 = (1, {id}). Symmetry, unit, and associativity
maps are obtained from those of CPM by pre-composing and
post-composing with the actions of the groups of the objects. The
homset (n,G) ((m,H) is equal to the tensor (nm,G⊗H) and
the morphism eval is again inherited from CPM. Concretely, given
F ∈ Cn×m,n×m and N ∈ Cn×n, eval(F ⊗ N) is the matrix in
Cm×m defined at the coordinate (j, j′) ∈ m×m by

1

#G#H

∑
g∈G

∑
h∈H

∑
(i,i′)∈n×n

F(i,h(j)),(i′,h(j′))Ng(i),g(i′).

In fact, one can prove that CPMs inherits the compact closed
structure of CPM.

Lemma 23. The category CPMs has the n-th powers for any
n ∈ N. Moreover, such powers preserve the monoidal product.

Proof. Notice that the group of the n! symmetries of (m,G)⊗n

can be seen as a group H of permutations on mn, each element
σ acting as follows on mn seen as the set of n-tuples of ele-
ments in {1, . . . ,m} lexicographically ordered: (i1, . . . , in) 7→
(iσ(1), . . . , iσ(n)). Let us denote by 〈G⊗n ∪H〉 the smallest sub-
group of Smn containing G⊗n ∪ H . Notice that all elements
of 〈G⊗n ∪ H〉 are of the form (g1, . . . , gn) ; σ for gi ∈ G
and σ ∈ H . In fact, such a permutation can also be expressed
as σ ; (gσ(1), . . . , gσ(n)). In particular, the morphism induced by
〈G⊗n ∪ H〉 is equal to G⊗n ; H . Define the equalizer of the
symmetries of (m,G)⊗n by (m,G)n := (mn, 〈G⊗n ∪H〉) with
eq(m,G)n := 〈G⊗n ∪H〉.

5.2 The biproduct completion of CPMs.

The category CPMs is a linear continuous R+-category (Re-
mark 21), so we can apply the construction of Section 4 to obtain
its infinite biproduct completion CPMs⊕. To sum up, the category
CPMs⊕ is given as follows.

Objects are given by indexed families {(na, Ga)}a∈|A|, where the
index set |A| is called the web of A and, for every a ∈ |A|, na is
a natural non-negative integer and Ga a group of permutations
over na.

Morphisms from {(na, Ga)}a∈|A| to {(mb, Hb)}b∈|B| are matri-
ces φ indexed by |A| × |B| and such that φa,b is either a com-
pletely positive map from Cna×na to Cmb×mb invariant under
the actions of Ga and Hb, or the top∞.

From Propositions 18 and 22 and Lemma 23, we can conclude:

Corollary 24. The category CPMs⊕ is a Lafont category.

Example 25. The unit of the monoidal product ⊗ is given by
the singleton web object 1 = {(1, {id})∗}. The biproduct 1 ⊕ 1
will be used to interpret the bit type and it is defined as the two-
element family {(1, {id})tt, (1, {id})ff}. The free commutative
comonoids associated with 1 and 1⊕1 are infinite families that can
be concretely defined as (see Equation 8): !1 = {(1, {id})n}n∈N
and !(1 ⊕ 1) = {(1, {id})(n,m)}n,m∈N, where we use the iso-
morphisms betweenMf ({∗}) (resp.Mf ({tt, ff})) and N (resp.

N×N). In general, notice that all constructions of the Lafont cate-
gory preserve the underlined CPMs space (1, {id}) and act only at
the level of webs.

For more involved examples, one should look for objects
with larger dimensions, like qubit := {(2, {id})∗}. In fact, we
have qubit⊗2 := {(4, {id})∗}, while the 2-power qubit2 is
{(4, {id, σ})∗}, where 4 is represented as the lexicographically or-
dered set {(0, 0), (0, 1), (1, 0), (1, 1)} and the permutation σ acts
on it by (b, b′) 7→ (b′, b) (cf. the proof of Lemma 23). The group
of permutations {id, σ} shrinks the set of possible morphisms to
or from qubit2. For example, the matrix Nc associated with the
controlled-not gate (Equation (1)) defines a complete positive endo-
map of C4×4, which is an endo-morphism of qubit⊗2 but not of
qubit2, because Nc is not invariant under the action of {id, σ}:

{id, σ}(Nc) =
1

2
(id(Nc) + σ(Nc)) =

1

2

(
2 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

)
6= Nc.

Concerning biproducts, the object qubit ⊕ qubit is given by
{(2, {id})tt, (2, {id})ff}, while its 2-power (qubit⊕ qubit)2 is
{(4, {id, σ})[tt,tt], (4, {id})[tt,ff], (4, {id, σ})[ff,ff]}. Notice the
difference between the CPMs object (4, {id}) associated with
[tt, ff] and the object (4, {id, σ}) associated with the two mul-
tisets of singleton support.

The description of the objects and the morphisms of CPMs⊕

as indexed families is crucial for inferring the structure of a Lafont
category from the more basic categories underlying CPMs⊕. How-
ever, it is worthwhile to notice that CPMs⊕ can also be presented as
a concrete category of modules and linear maps between modules.
The rest of the section sketches such an alternative presentation.

Let A be an object of CPMs⊕. We define a module Pos(A)
over R+ as follows. For every a in |A| consider the quotient
Cna×na/∼Ga of the set of square matrices, where M ∼Ga M ′

whenever there exists g ∈ Ga such that g(M) = M ′. Notice that
the image of Cna×na under the action ofGa yields a set Mat(a) ⊆
Cna×na of canonical representatives for Cna×na/∼Ga . Let us
write Pos(a) for its associated cone of positive matrices. This pos-
itive cone is an R+-module. Since group actions are completely
positive maps, complete positivity naturally extends to complex
linear maps f : Mat(a)→ Mat(b): f can be regarded as the map
Ga ; f : Cna×na → Cnb×nb . We define f to be completely pos-
itive if and only if Ga ; f is. Since the positive matrices span the
complex vector space of square matrices (of corresponding size),
one can canonically extend the definition of complete positivity to
R+-module homomorphisms Pos(a)→ Pos(b). We then define:

Pos(A) :=
⊕
a∈|A|

(Pos(a) ∪ {∞a}) (9)

The operations are defined pointwise, and∞a is absorbing for
addition and scalar multiplication with respect to Pos(a), except
for the rule 0 · ∞a = 0. The Löwner order v on positive matrices
can be extended to Pos(A) componentwise: v v u if for all
a ∈ |A|, va v ua or ua = ∞a. In particular, notice that Pos(A)
is complete with respect to this order, where the maximum is the
vector whose value is ∞a in every a ∈ |A|, and the directed sup
is defined componentwise. This makes Pos(A) into a continuous
module over R+: addition and scalar multiplication are continuous
operations with respect to the order.

Example 26. Let us define the modules associated with the objects
discussed in Example 25. Clearly we have: Pos(1) = R+, Pos(1⊕
1) = R+

2
, Pos(!1) = R+

N
and Pos(!(1⊕ 1)) = R+

N×N
.

Concerning the examples on qubit, we have that Pos(qubit)
(resp. Pos(qubit⊗2) is the cone of positive matrices of dimension

8 2013/10/2

2× 2 (resp. 4× 4) plus the top element∞. More interestingly, the
module associated with qubit2 is{(a b b c

d e f g
d f e g
h i i l

)
positive ; a, b, c, d, e, f, g, h, i, l ∈ C

}
which is a subcone of Pos(qubit⊗2) of dimension 10. Finally,
Pos(qubit⊕ qubit)2 is equal to the direct sum Pos(qubit2)⊕
Pos(qubit⊗2)⊕ Pos(qubit2).

Let f : Pos(A) → Pos(B) be a continuous module homo-
morphism. We say that f is quantum-compatible if for all a ∈ |A|
and b ∈ |B|, fa,b = ιa ; f ; πb is either the map ∞ sending all
non-zero elements to∞b and 0 to 0, or a module homomorphism
Pos(a) → Pos(b). We say that f is completely positive if all the
module homomorphisms fa,b are completely positive maps.

Proposition 27. There is an isomorphism between the homset
CPMs⊕(A,B) and the continuous module homomorphisms from
Pos(A) to Pos(B) that are quantum compatible and completely
positive.

Proof. Take φ ∈ CPMs⊕(A,B). We define the map fφ from
Pos(A) to Pos(B) by fφ(v)b :=

∑
a φa,b(va). Here, we set

φa,b(va) = ∞b when φa,b = ∞ and va 6= 0, or when φa,b 6= 0
and va = ∞a. We set φa,b(va) = 0 when one of φa,b and va is
zero. In all other cases, φa,b(va) is a well-defined positive matrix
in the space Cnb×nb . The infinite sum in the definition of fφ(v)b
converges since {

∑
a∈F φa,b(va) | F ⊆fin |A|} is directed. One

then proves that φ 7→ fφ is a bijection.

6. Interpretation of the quantum lambda calculus
6.1 Denotational semantics
We interpret the quantum λ-calculus into CPMs⊕, extending the
standard interpretation of intuitionistic linear logic to also include
the quantum features of the calculus. Section 7 will show that
the denotation of a quantum λ-term is a true family of complete
positive maps, not containing the∞ morphism.

The denotation JAK of a type A is an object of CPMs⊕, i.e.,
an indexed sequence of objects of CPMs, defined by structural
induction on A, as follows. JqubitK is the singleton web ob-
ject {(2, {id})∗}; J1K is the tensor unit 1 = {(1, {id})∗} of
CPMs⊕; JA(BK = JA⊗BK is the tensor product of JAK and
JBK; JA⊕BK is the biproduct of JAK and JBK; J!AK is the free
commutative comonoid over JAK; JA`K is the infinite biproduct
⊕∞i=0JAK⊗n.

Notice the difference between J!AK = ⊕∞i=0JAKn and JA`K.
Recalling Notation 3, we have that JbitK is defined as J1⊕ 1K =
{(1, {id})ff, (1, {id})tt}. By abuse of notation, we can omit the J K
brackets, i.e., in the following, the simple letter A will denote both
the type and its interpretation in CPMs⊕.

Let Γ = x1 : A1, . . . , xn : An. We define the denotation
of a typing judgement Γ ` M : A as a morphism JMKΓ`A in
CPMs⊕(

⊗
i JAiK, JAK). The definition is by structural induction

on the unique type derivation π of Γ ` M : A (Proposition 4).
In Table 5, we recall the definition regarding the usual linear logic
rules: the morphisms φ, ψ, φA, φB refer to the denotation of the
premises of the last rule of π, which are uniquely defined given
Γ `M : A.

In the interpretation of the letrec constructor, the fixed
point operator Y is defined as follows. Let φ be a morphism in
CPMs⊕(!C⊗ !A, !A). By induction on n, we define the morphism

JmeasK!∆`qubit(bit
~m,(∗,b) = (a bc d) 7→


a if ~m = ~[] and b = ff,
d if ~m = ~[] and b = tt,
0 otherwise.

JnewK!∆`bit(qubit
~m,(b,∗) = a 7→


(a 0

0 0) if ~m = ~[] and b = ff,
(0 0

0 a) if ~m = ~[] and b = tt,
0 otherwise.

JUK!∆`qubit⊗n(qubit⊗n

~m,(~∗,~∗) = M 7→

{
UMU−1 if ~m = ~[],
0 otherwise.

Table 4: Interpretation of the quantum constants. U and M have the same
dimension C2n×2n , U being unitary.

φn ∈ CPMs⊕(!C, !A):

φ0 := !C
w;!0−−→ !A, (10)

φn+1 := !C
c−→ !C ⊗ !C

id⊗φn−−−−→ !C ⊗ !A
φ−→ !A. (11)

Since φ can be regarded as a continuous module homomorphism
(in particular it is monotone), the set {φn} is directed complete.
We define Y(φ) as its least upper bound.

The denotations of the constants meas, new and the unitary
transformations are given in Table 4

Given a linking ` = |y1, . . . , ym〉, we write ` ` M : A for the
judgement y1 : qubit, . . . , ym : qubit `M : A.

Proposition 28 (Invariance of the interpretation). Let ` be the
linking |y1, . . . , ym〉 and ` ` M : A. If M is not a value, then
for all quantum states q ∈ C2m ,

JMK``A(qq∗) =
∑

[q,`,M]
p
→[q′,`′,N]

p · JNK`
′`A(q′q′

∗
). (12)

Proof. By hypothesis, [q, `,M] is a typable total closure, and so,
by Proposition 11 and Lemma 13, any of its reduct [q′, `′, N] is a
typable total closure, so that JNK`

′`A(q′q′
∗
) is well-defined.

Equation 12 is proven by cases, depending on the rule applied
to [q, `,M]. The cases of Table 3(a) follows from the fact that
CPMs⊕ is a continuous model of linear logic. The quantum rules
(Table 3(b)) are trivial consequences of Table 4, and the congruence
rules of Table 3(c) are done by induction on M , using the fact that
the category CPMs⊕ is linear.

Corollary 29. We have JMK`1
∗ > Halt[| 〉,| 〉,M].

Proof. By induction on n, we can show that JMK`1
∗ is equal to∑

[q′,`′,N] Redn[| 〉,| 〉,M],[q′,`′,N] JNK`
′`1(q′q′

∗
). Then the claim

follows by taking the limit as n → ∞, and invoking the mono-
tonicity of {Redn}n.

6.2 Examples
In this section, we discuss the denotations of the two examples of
programs that we already encountered.

Example 30. Recall the terms of Example 5. The web of Jqubit`K
is N, while Jqubit`Kn = (2n, {id}). Notice that Pos(Jqubit`K)
is equivalent to

⊕
n P (C2n×2n) where P (C2n×2n) is the cone of

2n × 2n positive matrices. The denotation of the term qlist is
a morphism in CPMs⊕(qubit,qubit`), that is, a map sending a
2 × 2 positive matrix onto

⊕
n P (C2n×2n). The program qlist

9 2013/10/2

!∆⊗A w⊗id// 1⊗A ' A
(a) !∆, x : A ` x : A

!∆⊗ !A
w⊗d// 1⊗A ' A

(b) !∆, x : !A ` x : A

!∆
dig // !!∆ m // !(!∆)

!φ // !A

(c) !∆,` V : !A

!∆⊗ Γ
Λ(φ) // A(B

(d) !∆,Γ ` λxA.M : A(B

!∆⊗ Γ⊗ Σ
c⊗id// !∆⊗ Γ⊗ !∆⊗ Σ

φ⊗ψ// A⊗A(B
eval// B

(e) !∆,Γ,Σ `MN : B

!∆
w // 1

(f) !∆ ` skip : 1

!∆⊗ Γ⊗ Σ
c⊗id// !∆⊗ Γ⊗ !∆⊗ Σ

φ⊗id// 1⊗ !∆⊗ Σ ' !∆⊗ Σ
ψ // A

(g) !∆,Γ,Σ `M ;N : A

!∆⊗ Γ⊗ Σ
c⊗id // !∆⊗ Γ⊗ !∆⊗ Σ

φ⊗ψ // A⊗B
(h) !∆,Γ,Σ `M ⊗N : A⊗B

!∆⊗ Γ⊗ Σ
c⊗id // !∆⊗ Γ⊗ !∆⊗ Σ

φ⊗id // A⊗B ⊗ !∆⊗ Σ
ψ // C

(i) !∆,Γ,Σ ` let xA ⊗ yB = M inN : C

!∆⊗ Γ
φ // A ι` // A⊕B

(j) !∆,Γ ` in` M : A⊕B

!∆⊗ Γ
φ // B ιr // A⊕B

(k) !∆,Γ ` inr M : A⊕B

!∆⊗ Γ⊗ Σ
c⊗id // !∆⊗ Γ⊗ !∆⊗ Σ

ψ⊗id // (A⊕B)⊗ !∆⊗ Σ
distr // (A⊗ !∆⊗ Σ)⊕ (B ⊗ !∆⊗ Σ)

φA⊕φB// C

(l) !∆,Γ,Σ ` matchM with (xA : N |yB : L) : C

!∆⊗ Γ
φ // 1⊕ (A⊗A`) id⊕distr // 1⊕ (

⊕∞
n=1 A

⊗n) = A`

(m) !∆,Γ `M : A`

!∆⊗ Γ
c−→ !∆⊗ Γ⊗ !∆

id⊗Y(dig;m;!(Λφ))−−−−−−−−−−−→ !∆⊗ Γ⊗ !(A(B)
ψ−→ C

(n) !∆,Γ ` letrec f x = M inN : C

Table 5: Sketch of the interpretation of the typing judgements. The morphisms φ, ψ, φA, φB refer to the denotation of the premises of the unique derivation
concluding a typing judgement. In (c) and (n), the morphism m stands for m1 or the suitable sequence of m⊗, depending on the context !!∆.

is defined using recursion: its semantics is the the limit of the mor-
phisms fn sending (a bc d) to (0, 1

2
e1, . . . ,

1
2n
en,0,0, . . .) where ei

is the 2i × 2i positive matrix of the form
a 0 · · · 0 b
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
c 0 · · · 0 d

.

This limit is the map sending (a bc d) to the sequence of infinitely
increasing matrices (0, 1

2
e1, . . . ,

1
2n
en, . . .). Note that the first el-

ement of the sequence is 0, as the program qlist never return the
empty list. Also note that all the positive matrices in the sequence
represent entangled states of arbitrary sizes. Our semantics is the
first one to be able to account for such a case: in [6], only fixed
sizes were allowed for entangled states.

Example 31. We claim in the introduction that the model is ex-
pressive enough to describe entanglement at higher-order types. As
we discuss in Example 6, the encoding of the quantum teleporta-
tion algorithm produces two entangled, mutually inverse functions:
f : qubit→ bit⊗ bit and g : bit⊗ bit→ qubit.

The term (teleport skip) of type (qubit (bit ⊗ bit) ⊗
(bit⊗ bit (qubit) is one instance of such a pair of functions.
Its denotation is a finite sequence of 16 square matrices of size
4 × 4. Using a lexicographic convention, we can lay them out as
follows:

A = 1
4
(A00,00, A00,01, A00,10, A00,11,

A01,00, A01,01, A01,10, A01,11,
A10,00, A10,01, A10,10, A10,11,
A11,00, A11,01, A11,10, A11,11).

Because of the convention, morally each row corresponds to an el-
ement of type bit ⊗ bit (qubit whereas each column corre-
sponds to an element of type qubit (bit⊗ bit. Picking a row,
i.e. a choice of two left-sided booleans, amounts to choosing the
two booleans that will be fed to the function g. Picking a column,
i.e. a choice of two right-sided booleans, amounts to deciding on
the probabilistic result we get from the function f . The intersec-
tion of a column and a row is therefore the representation of a map
qubit (qubit. This map is a description of a possible path in
the control flow of the algorithm.

Indeed, consider again Figure 1. In (ii), i.e., in the function f ,
qubit 1 and qubit 2 are entangled and measured, generating two

classical bits. This pair of bits (x, y) is picked probabilistically: a
column was chosen by this choice. Now, in (iii), i.e. in the function
g, two bits are used to decide on the matrix Uxy that should be
used: this is the choice of a matrix in the column. This matrix
is the composition of these two operations, yielding a function
from qubit to qubit. The 4 matrices in the column record all
the possible choices of inputs to g.

The matrices on the diagonal corresponds to a run of the algo-
rithm as it was intended: feeding g with the result from f . Since
they are supposed to be the identity on qubit, we can therefore
deduce that the matrices A00,00, A01,01, A10,10 and A11,11 are all

equal to
(

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
. Since this matrix cannot be written as the ten-

sor of two 2 × 2 matrices, we conclude that the denotation A of
(teleport skip) is indeed entangled.

We can compute the other matrices Axy,zt using the same
argument: in general, Axy,zt is a composition of f and g, except
that instead of giving (x, y) to g, we feed it with (z, t). We therefore
get a function qubit → qubit constructed out of the U−−
that might (if xy = zt) or might not be the identity. In general,
the matrices Axy,zt is the denotation of the unitary UztU∗xy . The
denotation A is given in full details in Table 6.

6.3 Adequacy

In the following, we prove the adequacy of CPMs⊕ (Theorem 39).
This amounts to achieving the converse inequality of Corollary 29.
The proof uses a syntactic approach, following [6]. We introduce
a bounded let-recn, which can be unfolded at most n times.
On the one hand, the language allowing only bounded let-rec is
strongly normalizing (Lemma 34), hence the adequacy for it can be
easily achieved by induction on the longest reduction sequence of
a term (Corollary 35). On the other hand, the unbounded let-rec
can be expressed as the supremum of its bounded approximants,
both semantically (Lemma 37) and syntactically (Lemma 38). We
then conclude the adequacy for the whole quantum λ-calculus by
continuity.

Definition 32. Let us extend the grammar of terms (Table 1) by
adding: (i) a new term ΩA; (ii) a family of new term constructs
letrecn fA(B x = M in N indexed by natural numbers n > 0.

The typing rules for these new constructs are

!∆ ` ΩA : A

10 2013/10/2

A =

(
A00,00 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
, A00,01 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
, A00,10 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)
, A00,11 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)
,

A01,00 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
, A01,01 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
, A01,10 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)
, A01,11 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)
,

A10,00 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)
, A10,01 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)
, A10,10 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
, A10,11 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
,

A11,00 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)
, A11,01 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)
, A11,10 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
, A11,11 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

))
.

Table 6: The denotation of the teleportation algorithm.

!∆, f : !(A(B), x : A `M : B
!∆,Γ, f : !(A(B) ` N : C

!∆,Γ ` letrecn fA(B x = M in N : C

Their denotations are given, respectively, by the map 0 and the
family of maps

!∆⊗Γ
c−→ !∆⊗Γ⊗!∆

id⊗(dig;m;!(Λφ))n−−−−−−−−−−→ !∆⊗Γ⊗!(A(B)
ψ−→ C,

where φ ∈ CPMs⊕(!∆ ⊗ !(A (B) ⊗ A,B) and ψ ∈
CPMs⊕(!∆ ⊗ Γ ⊗ !(A (B), C) are the denotations of the
premises and (dig; m; !(Λφ))n ∈ CPMs⊕(!∆, !(A (B)) is de-
fined as in Equations (10), (11).

The reduction rules are updated as follows.

[q, `, letrec0 fA(B x = M in N] 1−→ [q, `,N{(λxA.ΩB)/f}]
[q, `, letrecn+1 fA(B x = M in N]

1−→ [q, `,N{(λxA.letrecn fA(B x = M inM)/f}].
The additions to the language do not modify the properties

of the language: subject reduction (Proposition 11) and totality
(Lemma 13) hold as they are stated, while type safety (Proposi-
tion 12) and soundness (Proposition 28) are satisfied, with the pro-
viso of considering the set of normal forms to consists of the set of
values and the set of terms containing Ω in evaluating position.

Definition 33. A term is called finitary when it does not contain
any occurrence of the un-indexed let-rec construct. It can how-
ever contain Ω and any of the indexed let-recn. We call a closure
finitary when its term is finitary.

Lemma 34 (Strong normalization). If [q1, `1,M1] is finitary and
typable, then every reduction sequence

[q1, `1,M1]
p1−→ [q2, `2,M2]

p2−→ [q3, `3,M3]
p3−→ · · ·

is finite.

Proof (Sketch). By reducing the quantum λ-calculus to a sim-
ply typed non-deterministic language without quantum states, for
which a standard proof technique can be used. The terms of this
language are the terms of the extended quantum λ-calculus, minus
the let-rec construct. The operational semantics is obtained from
Table 3 and the rules for let-recn by replacing closures with the
respective terms and the rules of Table 3b by dummy reduction
rules: like U(• ⊗ · · · ⊗ •) → • ⊗ · · · ⊗ •, or new ff → •. The
symbol • denotes a distinct term variable, which, by convention, it
is never bound by an abstraction. Clearly, the strong normalization
of this language implies that of the typed quantum λ-calculus.

Corollary 35 (Finitary adequacy). LetM be a closed finitary term
of unit type. Then JMK`1

∗ = Halt[| 〉,| 〉,M] .

Proof (Sketch). We prove that, for any total finitary quantum clo-
sure of unit type [q, `,M] we have JMK``1(qq∗) = Halt[q,`,M].

In fact, by Lemma 34, there exists m ∈ N such that Halt[q,`,M] =∑
[q′,`′,V] Redm[q,`,M],[q′,`′,V]. The proof then follows by induction

on m.

Definition 36. Let / be a relation between finitary terms and
general terms defined as the smallest congruence relation on terms
satisfying, for every M / M ′ and N / N ′:

N{(λxA.ΩB)/f} / (letrec f x = M ′ in N ′),

(letrecn f x = M in N) / (letrec f x = M ′ in N ′).

Lemma 37. If Γ `M : A, then JMKΓ`A =
∨

M′/M
M′ finitary

JM ′KΓ`A
.

Proof (Sketch). By induction on the derivation of Γ `M : A.

Lemma 38. If M / M ′, then Halt[q,`,M] 6 Halt[q,`,M′].

Proof (Sketch). By induction on n, one proves the inequality:∑
[q′,`′,N] Redn[q,`,M],[q′,`′,N] 6

∑
[q′,`′,N′] Redn[q,`,M′],[q′,`′,N′],

from which trivially follows the statement.

Theorem 39. Let M be a program, i.e., a closed term of unit type.
Then JMK`1

∗ = Halt[| 〉,| 〉,M] .

Proof. By Corollary 29 we have JMK`1
∗ > Halt[| 〉,| 〉,M]. As for

the converse: by Lemma 37, JMK`1
∗ =

∨
M′/M JM ′K`1

∗ , which is
equal to

∨
M′/M Halt[| 〉,| 〉,M′] by Corollary 35, which is less or

equal to Halt[| 〉,| 〉,M] by Lemma 38.

7. Structure of the sets of representable elements
We conclude this paper by an analysis of some of the properties of
the denotation of terms.

Recall that a morphism in CPMs⊕ is a indexed family of either
a completely positive map, or the element ∞. We show that (1)
all types have a non-zero inhabitant; (2) provided that the term
constant U ranges over arbitrary unitary matrices, the representable
elements of a given homset form a convex set including 0; and (3)
∞ is not part of any representable element.

We first need two auxiliary definitions.

Definition 40. We define two type-indexed families of terms ωA
and ωA by mutual induction in Table 7. The term c represents
the fair coin toss meas (H (new ff)) (recall Example 1) and the
notation µfx.M stands for letrec f x = M in f .

Lemma 41. For all types A, we have ` ωA : 1 (A and
` ωA : A (1. Moreover, the morphisms JωAK`1(A and
JωAK`A(1, seen as indexed families, do not contain the zero-CPM.

Proof. The fact that their type is as specified in the lemma is a
straightforward proof by structural induction on the term.

The proof that for all A, the denotations of ωA and ωA do not
contain the zero-CPM is done by induction on A: For the types

11 2013/10/2

ωqubit = λskip.new ff ωqubit = λxqubit.if measx then skip else skip

ωA(B = λskip.λxA.(ωA x);(ωB skip) ωA(B = λfA(B .ωB (f (ωA skip))

ω!(A(B) = λskip.λxA.(ωA(B skip)x ω!(A(B) = µgf !(A(B).if c then skip else (ωA(B f); (g f)
ω1 = λskip.skip ω1 = λskip.skip
ωA⊗B = λskip.(ωA skip)⊗ (ωB skip) ωA⊗B = λxA⊗B .let z1 ⊗ z2 = x in (ωA z1);(ωB z2)
ωA⊕B = λskip.if c then (ωA skip) else (ωB skip) ωA⊕B = λxA⊕B .match x with (zA1 : ωA z1|zB2 : ωB z2)

ωA` = µfskip.if c then (skip) else (ωA skip) :: (f skip) ωA` = µfxA
`

.match split x with

(z1
1 : z1 zA⊗A

`

2 : let y1 ⊗ y2 = z2 in (ωA y1);(f y2))

Table 7: Two mutually recursive families of terms

qubit and 1, the result is immediate. For the types A ⊕ B and
A⊗B, invoking the induction hypothesis is enough. The interesting
types are A` and !(A(B). The cases ω!(A(B) and ωA` are
straightforward. For the cases ωA` and ω!(A(B), one is careful to
touch all possible instances: in the former, the term probabilistically
generates lists of all possible lengths whereas in the latter the term
is probabilistically consuming all possible repetitions of a non-zero
input.

Corollary 42. All types are inhabited by at least one closed value
of non-null denotation.

Proof. Immediate with Lemma 41: for a given type A, choose the
term (ωA skip).

Proposition 43. Given a type A and a context Γ, the denotations
JMKΓ`A of valid typing judgements Γ ` M : A form a convex set
including 0.

Proof. Suppose that Γ is x1 : A1, . . . , xn : An. A term M
mapping to 0 is (ωA1x1; . . . ;ωAnxn; Ω) where the term Ω is a
shortcut for letrec f x = f x in f skip, of denotation 0.

Now, suppose that f = JM1KΓ`A and g = JM2KΓ`A, and
choose two non-negative real numbers ρ1, ρ2 such that ρ1 +
ρ2 = 1. There exists an angle φ such that (cosφ)2 = ρ1

and that (sinφ)2 = ρ2. As the term constant U ranges over
arbitrary unitaries, the unitary matrix Vφ = (cosφ − sinφ

sinφ cosφ) is
representable in the quantum lambda-calculus. The term c′ =
meas (Vφ (new ff)) has denotation (ρ1, ρ2). We then conclude
that the term if c′ thenM1 elseM2 has the denotation ρ1f +
ρ2g.

Proposition 44. If Γ ` M : A is valid, then∞ is not part of the
denotation JMKΓ`A of M .

Proof. Suppose that ∞ were to be found in the interpretation of
x1 : A1, . . . , xn : An `M : A. Then the closed term

(λx1 . . . xn.ωAM)(ωA1skip) . . . (ωAnskip)

of type 1 has for denotation∞, contradicting Theorem 39.

This last proposition indicates that the element ∞ is really an
artifact only needed for the categorical construction. The repre-
sentable elements in the model are only built out of families of
completely positive maps.

References
[1] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model

of higher-order probabilistic computation. Inform. Comput., 2011.
[2] T. Ehrhard. Finiteness spaces. MSCS, 15(4):615–646, 2005.
[3] J.-Y. Girard. Linear logic. Th. Comp. Sc., 50:1–102, 1987.

[4] J.-Y. Girard. Normal functors, power series and lambda-calculus. Ann.
Pure Appl. Logic, 37(2):129–177, 1988.

[5] J.-Y. Girard. Coherent banach spaces: a continuous denotational se-
mantics. Theoretical Computer Science, 227:297, 1999.

[6] I. Hasuo and N. Hoshino. Semantics of higher-order quantum com-
putation via geometry of interaction. In Proceedings of LICS, pages
237–246, 2011.

[7] Y. Lafont. Logiques, catégories et machines. PhD thesis, Université
Paris 7, 1988.

[8] U. D. Lago, A. Masini, and M. Zorzi. Confluence results for a quantum
lambda calculus with measurements. Electr. Notes Theor. Comput.
Sci., 270(2):251–261, 2011.

[9] J. Laird, G. Manzonetto, and G. McCusker. Constructing differential
categories and deconstructing categories of games. Information and
Computation, 222:247–264, 2013.

[10] J. Laird, G. McCusker, G. Manzonetto, and M. Pagani. Weighted
relational models of typed lambda-calculi. In LICS’13, 2013.

[11] S. Mac Lane. Categories for the Working Mathematician. Springer,
2nd edition, Sept. 1998.

[12] O. Malherbe. Categorical models of computation: partially traced
categories and presheaf models of quantum computation. PhD thesis,
University of Ottawa, 2010.

[13] P.-A. Melliès. Categorical semantics of linear logic. Panoramas et
Synthèses, 12, 2009.

[14] P.-A. Melliès, N. Tabareau, and C. Tasson. An explicit formula for
the free exponential modality of linear logic. In ICALP’09 (2), pages
247–260, 2009.

[15] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[16] P. Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[17] P. Selinger. Towards a semantics for higher-order quantum computa-
tion. In QPL’04, TUCS General Publication No 33, pages 127–143,
2004.

[18] P. Selinger and B. Valiron. A lambda calculus for quantum compu-
tation with classical control. Mathematical Structures in Computer
Science, 16(3):527–552, 2006.

[19] P. Selinger and B. Valiron. On a fully abstract model for a quantum
linear functional language. In QPL’06, 2008.

[20] P. Selinger and B. Valiron. Quantum lambda calculus. In S. Gay
and I. Mackie, editors, Semantic Techniques in Quantum Computation,
chapter 9, pages 135–172. Cambridge University Press, 2009.

[21] B. Valiron. Semantics for a higher-order functional programming
language for quantum computation. PhD thesis, University of Ottawa,
2008.

12 2013/10/2

A. Appendix
In the following, ◦ denotes the functional composition, i.e., φ◦ψ =
ψ ; φ.

A.1 Infinite biproduct completion
It is known that, under certain hypothesis, the infinite biproduct
completion C⊕ of a continuous commutative-monoid-enriched
symmetrical monoidal category C gives a model of linear logic.
In particular, C⊕ denotes the exponential modality via the infi-
nite biproduct of the equalizers of the symmetries of the n-fold
monoidal product of C (if it exists). This construction has been
mentioned in [14] and one can find specific instances in [9] (where
the sum of the continuous commutative monoid structure of the C
homsets is assumed to be idempotent) and in [10] (where the con-
struction is applied to a continuous semiring R seen as a continu-
ous commutative-monoid-enriched symmetrical monoidal category
with a single object). In this section, we recall the construction of
C⊕, and in Section 5, we apply it to the category of completely
positive maps with symmetries.

Definition 45. A continuous semiringR is defined to be a semiring
(|R|, 0, 1,+, ·) equipped with an order relation ≺ such that 0 is
the minimum, any directed set D ⊆ |R| has a directed sup

∨
,

and + and · are continuous, i.e.,
∨

(r + D) = r +
∨
D and∨

(r ·D) = r ·
∨
D.

From now on R will denote a continuous commutative semir-
ing.

Definition 46. A symmetric monoidal category C is a linear R-
category when every homset is endowed with the structure of a
module over the semiring R, the composition is bilinear and the
tensor preserves the module structure over R on homsets, that is
(f + f ′) ; g = f ; g + f ′ ; g, f ; (g + g′) = f ; g + f ; g′,
g ;0 = 0 = 0 ;g, (g+f)⊗h = (g⊗h)+(f⊗h), and g⊗0 = 0.

We moreover say that C is continuous when every homset
is endowed with the structure of a complete partial order and
composition, addition and scalar multiplication are continuous.

Remark 47. We cannot use Selinger’s abstract cones [17], because
the cancellation law fails in CPMs with∞.

Lemma 48. If C is a linear continuous R-category, then we can
define the indexed sum over a homset C(A,B) as∑

f∈S

f :=
∨

F⊆finS

(∑
f∈F

f

)
.

Proof. Just notice that {
∑
f∈F f | F ⊆fin S} is directed.

From now on, we assume that C is a symmetric monoidal linear
continuousR-category C.
Reminder of Definition 15 (C⊕). An object of C⊕ is a pair
A = (|A|, (Aa)a∈|A|) of a (possibly infinite) set of indexes |A|,
called the web of A, and a |A|-family of objects in C. The hom-
set C⊕(A,B) is the set of the |A| × |B| matrices of morphisms
φ = (φa,b)(a,b)∈|A|×|B| in C.

Given φ ∈ C⊕(A,B) and ψ ∈ C⊕(B,C), the composition
φ ; ψ is the matrix product:

(φ ; ψ)a,c =
∑
b∈|B|

φa,b ; ψb,c (13)

where the sum is defined by Lemma 48. The identity is the diagonal
matrix ida,a′ := idAa if a = a′, and ida,a′ := 0 if a 6= a′.

A.1.1 Linear structure
We recall how the structure defining a compact closed category
is inherited by C⊕ from C. That means that C⊕ is symmet-
ric monoidal and that it is a closed (resp. ?-autonomous, com-
pact closed) whenever C is closed (resp. ?-autonomous, compact
closed). In addition, C⊕ has biproducts even if C does not.

Biproduct The category C⊕ is the free biproduct completion of
C. The biproduct

⊕
i∈I Ai of a family (Ai)i∈I of objects in C⊕ is

defined by

|
⊕
i∈I

Ai| :=
⋃
i∈I

{i} × |Ai|,
(⊕
i∈I

Ai
)

(j,a)
:= (Aj)a, (14)

(πj)(i,a),a′ := δi,jδa,a′ idAa , (ιj)a,(i,a′) := δi,jδa,a′ idAa .
(15)

The tupling 〈φi〉i∈I (resp. (co)-tupling [φi]i∈I) of a family of
morphisms φi ∈ C⊕(A,Bi) (resp. ψi ∈ C⊕(Ai,B)) is defined
by:

(〈φi〉i∈I)a,(i,b) := (φi)a,b ([ψi]i∈I)(i,a),b := (ψi)a,b (16)

Proposition 49. The object
⊕

i∈I Ai together with the projections
(πi)i∈I and injections (πi)i∈I is a biproduct of C⊕.

Proposition 50. The category C⊕ is the free biproduct completion
of C, i.e., for every category D endowed with a biproduct of fami-
lies, and every functor F : C → D, there exists a unique functor
F † : C⊕ → D commuting with biproducts.

Proof. For any object A of C⊕, define F †(A) =
⊕

a∈|A| F (Aa),
and for every morphism φ ∈ C⊕(A,B), define F †(A) =
〈[F (φa,b)]a∈|A|〉b∈|B|.

Monoidal product The bifunctor⊗ : C⊕×C⊕ → C⊕ is defined
on objects A,B by

|A⊗B| := |A| × |B|, (A⊗B)(a,b) := Aa ⊗Bb, (17)

where the ⊗ in the right-hand side of the second equation is that
of the category C. The action of ⊗ on morphisms is defined com-
ponentwise; given φ ∈ C⊕(A,B) and ψ ∈ C⊕(C,D), we set for
(a, c) ∈ |A⊗ C|, (b, d) ∈ |B⊗D|,

(φ⊗ ψ)(a,c),(b,d) := φa,b ⊗ ψc,d. (18)

The tensor unit is given by the space 1:

|1| := {∗}, 1∗ := 1, (19)

where 1 is the tensor unit of C.

Proposition 51. The operation ⊗ is a bifunctor endowing a sym-
metric monoidal structure on C⊕ whose unit object is the space 1.
Moreover, C⊕ is a linear continuousR-category with addition and
scalar multiplication defined componentwise.

Proof. The natural transformations α, λ, ρ, σ, proving the asso-
ciativity, the neutrality of 1, and the symmetry of ⊗, are defined
componentwise from the corresponding isomorphisms in the cat-
egory C. So, for example, the associator isomorphism is given by
αA,B,C

((a,b),c),(a′,(b′,c′)) = δa,a′δb,b′δc,c′α
Aa,Bb,Cc , where αAa,Bb,Cc

is the associativity isomorphism in C, and δa,a′ is the Kronecker
delta. The commutativity of the pentagonal diagram follows imme-
diately from its commutativity in C.

Similarly, for the unit isomorphisms and the braiding σ.
The axioms of the continuous R-module structure trivially fol-

low from those of C, except for the continuity of the composition,

13 2013/10/2

where one uses the commutativity of
∨

:

((
∨

i
φi) ; ψ)a,c =

∑
b

∨
i
((φi)a,b ; ψb,c)

=
∨

i

∑
b

((φi)a,b ; ψb,c)

=
∨

i
(φi ; ψ)a,c

Notice that the associativity and unit isomorphisms allow us to
define the n-fold tensor product A⊗n of an object A by |A⊗n| :=
{(a1, . . . , an) | ∀i 6 n, ai ∈ |A|} and A⊗n(a1,...,an) := Aa1⊗· · ·⊗
Aan . Notice also that the group of permutations Sn on {1, . . . , n}
gives the n! symmetries of A⊗n, namely σ ∈ Sn can be seen as the
symmetry defined as:

σ(a1,...,an),(a′1,...,a
′
n) :=(

n⊕
i=1

δaσ(i),a′i

)
σ
Aa1⊗···⊗Aan ,Aaσ(1)

⊗···⊗Aaσ(n)

As usual on vector space based categories, the tensor product dis-
tributes over products. In fact, note that the web |(

⊕
i∈I Ai)⊗B|

is in bijection with the web |
⊕

i∈I(Ai ⊗B)| via the mapping
((i, a), b) 7→ (i, (a, b)). Moreover, the objects of C associated with
((i, a), b) and (i, (a, b)) are the same. This induces an isomorphism
distr in the homset C⊕((

⊕
i∈I Ai)⊗B,

⊕
i∈I(Ai⊗B)), defined

by

distr((i,a),b),((i′,(a′,b′)) := δi,i′δa,a′δb,b′ idAia⊗Bb . (20)

Hom-closure If C is closed, then C⊕ is also closed. The object
of linear morphisms is defined as

|A (B| := |A| × |B|, (A (B)(a,b) := Aa (Bb, (21)

where the (in the right-hand side of the second equation is the
object of the homset C(Aa,Bb). For every pair of objects A, B,
the evaluation morphism EvalA,B : C⊕((A (B) ⊗ A,B) is
defined componentwise:

EvalA,B((a,b),a′),b′ := δa,a′δb,b′ evalAa,Bb , (22)

where evalAa,Bb is the evaluation morphism in C((Aa (Bb) ⊗
Aa,Bb).

Proposition 52. If C has a left-closed structure, then the family of
objects A (B and morphisms EvalA,B, for every A, B, endows
C⊕ with a left closed structure.

Proof. We must prove the universal property defining a left closed
structure, i.e., for every morphism φ ∈ C⊕(A ⊗ C,B), there is a
unique morphism Λ(φ) ∈ C⊕(C,A (B) such that:

C⊗ A

φ

((

Λ(φ)⊗A

��
(A (B)⊗ A

EvalA,B // B.

(23)

The definition of Λ(φ) is componentwise, using the same univer-
sal property for each C component of Eval, i.e., Λ(φ)c,(a,b) :=
Λ(φ(c,a),b)), where Λ(φ(c,a),b)) is the unique morphism such that
(Λ(φc,(a,b)) ⊗ Aa) ; evalAa,Bb = φ(c,a),b. The commutativity of
the diagram follows immediately from the definitions and this lat-
ter equality. The uniqueness of Λ(φ) follows from the fact that for
any morphism ψ ∈ C⊕(C,A (B), diagram (23) must satisfy

the equation (ψc,(a,b) ⊗ Aa) ; evalAa,Bb = φ(c,a),b and hence
ψc,(a,b) = Λ(φc,(a,b)).

As usual the universal property defined by diagram 23 induces
an isomorphism from C⊕(C ⊗ A,B) to C⊕(C,A (B), which
we denote by Λ(−) and its inverse by App(−).

Dualizing object: The dualizing object⊥ (if it exists) in C can be
seen as an object of C defined by:

|⊥| := {∗}, ⊥∗ :=⊥, (24)

Proposition 53. If C is ?-autonomous, then so it is C⊕ with the
dualizing object ⊥. Moreover, if C is compact closed, than so is
C⊕.

Proof. The isomorphism ∂A ∈ C⊕(A, (A (1) (1)) is defined
as ∂A

a,((a′,∗),∗) = δa,a′∂
Aa , where as usual ∂Aa is the correspond-

ing isomorphism in C.

A.1.2 Exponential structure
We define the free exponential comonoid showing that C⊕ is a
Lafont category [13]. Such a comonoid is the infinite biproduct of
the equalizers of the symmetries of the n-fold tensors, following
the formula described in [14].

The next subsection shows how C⊕ inherits such equalizers
(here called symmetric tensor powers) from C, and the subsection
after that gives the free exponential comonoid of C⊕.

Symmetric Tensor Powers

Definition 54. The symmetric n-th power (An, eqA
n

) of an object
A of a symmetric monoidal category C is the equalizer of the n!
symmetries of the n-ary tensor A⊗n. That is, An is an object of
C, eqA

n

is a morphism in C(An, A⊗n) equalizing the symmetries
of A⊗n (i.e., for every permutation σ ∈ Sn, eqA

n

;σ = eqA
n

)
enjoying the following universal property: for every object D and
morphism f ∈ C(D,A⊗n) equalizing the symmetries of A⊗n,
there exists a unique morphism f† such that

An
eqA

n

// A⊗n
σ1 //

σn!

// A
⊗n.

D

unique f†

OO
f

<<

For C⊕ to inherit the powers of C, we need the additional
hypothesis that such equalizers preserve the tensor product.

Definition 55. An equalizer (E, eq) preserves tensor products
whenever for every object B the pair (E ⊗ B, eq ⊗ idB) is the
equalizer of the diagram obtained from the diagram equalized by
(E, eq) by replacing each object A with A ⊗ B and each arrow f
by f ⊗ idB .

Lemma 56. If (An, eqA
n

) and (Bm, eqB
m

) preserve tensor prod-
ucts, then (An ⊗Bm, eqA

n

⊗ eqB
m

) is the equalizer of the endo-
morphisms ofA⊗n⊗B⊗m of the shape σ⊗ρ, for σ ∈ Sn, ρ ∈ Sm.
Moreover, such an equalizer preserves tensor products.

Proof. Clearly, eqA
n

⊗ eqB
m

equalizes the group of the n! × m!
symmetries of A⊗n ⊗ B⊗m which keep A’s copies separate
from B’s copies. As for the universal property, one notices that
eqA

n

⊗ eqB
m

= eqA
n

⊗ idBm ; idA⊗n ⊗ eqB
m

. Then, take a
morphism f ∈ C(D,A⊗n ⊗ B⊗m) equalizing the permutations
in Sn × Sm. We get a unique f† ∈ C(D,A⊗n ⊗ Bm) by apply-
ing the universal property to the equalizer idA⊗n ⊗ eqB

m

and from

14 2013/10/2

that we get a unique f†
† ∈ C(D,An⊗Bm) applying the universal

property to the equalizer eqA
n

⊗ idBm .

Lemma 57. If C has symmetric n-th powers for every n ∈ N pre-
serving tensor products, then C⊕ also has symmetric n-th powers
for every n ∈ N and they also preserve tensor products. In partic-
ular, the object An can be defined by choosing an arbitrary order
on the elements of |A| and then setting

|An| :=Mn(|A|), Anp :=
⊗
a∈|p|

Ap(a)
a ,

where the support |u| of a set of multisets u is |u| :=
⋃
p∈u |p|, and

the object Ap(a)
a is the p(a)-th power in C of the Aa. Finally, the

object
⊗

a∈|p| A
p(a)
a denotes the tensor of the spaces Ap(a)

a along
the order we have fixed on |A|. Different orders give isomorphic
objects, all presenting the symmetric n-power, so we leave the order
implicit. The morphism (eqA

n

)p,(a1,...,an) is 0 if p 6= [a1, . . . , an];
otherwise it is equal to the following composition of morphisms⊗

a∈|p| A
⊗p(a)
a

α;ren(a1...an)

$$⊗
a∈|p| A

p(a)
a

⊗
a∈|p| eq

A
p(a)
a

::

⊗n
i=1 Aai ,

where α ; ren(a1,...,an) is the composition of the associator and
any symmetry mapping the object

⊗
a∈|p| A

⊗p(a)
a to the object⊗n

i=1 Aai .

Proof. Let us prove that the morphism eqA
n

is well-defined,
i.e., that the composition

⊗
a∈|p| eq

A
p(a)
a ;α ; ren~ai is indepen-

dent of the chosen symmetry ren~ai , for any sequence ~ai =
(a1, . . . , an) ∈ |A⊗n|. In fact, for any σ ∈ Sn such that α ; σ

maps
⊗

a∈|p| A
⊗p(a)
a to

⊗n
i=1 Aai , there is a family {σa}a∈|p| of

permutations σa ∈ Sp(a) such that α ; σ =
⊗

a∈|p| σa ; α ; ren~ai .
Indeed, for i, j 6 p(a), define σa(i) = j whenever the i-th occur-
rence of a in (a1, . . . , an) becomes the j-th occurrence of a in the
sequence (aσ−1(1), . . . , aσ−1(n)). Then,⊗

a∈|p|

eqA
p(a)
a ;α ; σ =

⊗
a∈|p|

(eqA
p(a)
a ;σa) ; α ; ren~ai

and the latter is equal to
⊗

a∈|p| eq
A
p(a)
a ;α ; ren~ai , since we have

eqA
p(a)
a ;σa = eqA

p(a)
a for every a.

Let us now prove that (An, eqA
n

) is the equalizer of the n!
symmetries of A⊗n. We first prove that eqA

n

;σ = eqA
n

, for
any symmetry σ ∈ Sn. The proof is componentwise: in case
~ai = (a1, . . . an) is not an enumeration of a multiset p (i.e.,
p 6= [a1, . . . , an]), then both (eqA

n

;σ)p,~ai and eqA
n

p,~ai
are equal

to 0. Otherwise, we have (eqA
n

;σ)p,~ai = (
⊗

a∈|p| eq
A
p(a)
a) ;

α ; σ~a
σ−1(i)

,~ai , but the latter is equal to (eqA
n

;σ)p,~ai since we
proved that such a morphism is invariant under the symmetries with⊗n

i=1 Aai as codomain.
Now, let us take a morphism φ ∈ C⊕(B,A⊗n) equalizing the

group of the n! symmetries of A⊗n and let us prove that φ has a
unique decomposition into φ† ; eqA

n

. The definition of φ† is given
componentwise and depends on the order 4 on |A| assumed for
giving a particular presentation of the object An. Let b ∈ |B|,
p ∈ |An|, and let p4 = (a1, . . . , an) be the unique sequence which
is an enumeration of p increasing with respect to 4 (i.e., ai 4 ai+1

for every i). Notice that φb,p4 ;α ∈ C(Bb,
⊗

a∈|p| A
⊗p(a)
a). Notice

that φb,p4 ; α equalizes the symmetries of the form
⊗

a∈|p| ρa,
with ρa ∈ Sp(a). In fact, there exists a permutation ρ ∈ Sn
such that φb,p4 ; α ;

⊗
a∈|p| ρa = φb,p4 ; ρ ; α and this last

morphism is equal to φb,~ai ; α since by hypothesis φ equalizes all

permutations in Sn. Since (
⊗

a∈|p| A
p(a)
a ,

⊗
a∈|p| eq

A
p(a)
a) is the

equalizer of the permutations of the form
⊗

a∈|p| ρa (Lemma 56),
we have that there exists a unique morphism (φb,p4 ; α)† ∈
C(Bb,

⊗
a∈|p| A

p(a)
a) such that (φb,p4 ; α)† ;

⊗
a∈|p| eq

A
p(a)
a =

φb,p4 ; α.
Define φ†b,p := (φb,p4 ; α)†. We have, for any b ∈ |B| and

~ai = (a1, . . . , an) ∈ |A⊗n|, writing p = [a1, . . . , an],

(φ† ; eqA
n

)b,~ai = φ†b,p ;
⊗
a∈|p|

eqA
p(a)
a ;α ; ren~ai

= φb,~aσ(i) ; α′ ; α ; ren~ai

= φb,~aσ(i) ; ren~ai

= φb,~ai

where σ is the permutation in Sn transforming ~ai into p4 and α′

the associator such that φb,p4 ; α′ ∈ C(Bb,
⊗

a∈|p| A
⊗p(a)
a). The

passage from the second to the third line is the remark that α′ is
the inverse of α. The last line is achieved by the hypothesis that φ
equalizes all permutations on Sn.

The uniqueness of φ† is inferred from that of φ†b,p.
The fact that (An, eqA

n

) preserves tensor products can be easily
achieved by checking that the whole proof continues to hold if we
add the needed tensors.

Free Exponential Comonoid

Lemma 58. If C has the symmetric n-th power of every object and
if such a power preserves tensor products, then in C⊕ the object
!A :=

⊕
n A

n is the free commutative comonoid generated by A,
the co-multiplication, here called contraction cA ∈ C⊕(!A, !A ⊗
!A), the counit, here called weakening wA ∈ C⊕(!A,1), and the
dereliction dA ∈ C⊕(!A,A) are given by

w
A := π0, d

A := π1,

c
A := 〈〈πn+m ; cn,m〉m ; distr−1 ; σ〉n ; distr−1,

where cn,m is the unique morphism commuting the diagram

A⊗(n+m) α // A⊗n ⊗ A⊗m

An+m
cA,n,m //

eqA
n+m

OO

An ⊗ Am

eqA
n
⊗ eqA

m

OO (25)

which exists by applying the universal property to the equalizer
eqA

n

⊗ eqA
m

(see Lemma 56).

Proof. The morphisms w and c give a structure of comonoid to
!A. In fact by using the uniqueness of the morphism cn,m in
diagram (25) one can check the three equations

c ; (c⊗ !A) ; α = c ; (!A⊗ c),

c ; A⊗ w ; ρ = A, c ; w⊗ A ; λ = A.

For example, by an easy computation one can reduce the first
equation to checking that, for every n,m, r ∈ N, we have the
equation : cn+m,r ;cn,m⊗ idAr ;α = cn,m+r ; idAn ⊗cm,r . Then,
by using diagram (25), such an equation is reduced to proving the
equality of a composition of the associator morphisms mapping the

15 2013/10/2

space A⊗(n+m+r) into A⊗n⊗ (A⊗m⊗A⊗r). Such a composition
is always unique by the Monoidal Coherence Theorem [11].

The comonoid is moreover commutative. In fact, the equation
c = c ; σ is equivalent to proving, for every pair of numbers m,n,
that cn,m = cm,n ; σ. The claim follows similarly to the previous
cases. In fact from the naturality of σ one gets σ ; eqA

m

⊗ eqA
n

=
eqA

n

⊗ eqA
m

;σ.
Finally, let us prove that the comonoid is free. Let B, µ ∈

C⊕(B,B ⊗B), ν ∈ C⊕(B,1) be a commutative comonoid and
ε ∈ C⊕(B,A). We prove that there exists a unique comonoid
morphism ε† such that

!A
d // A.

B

ε†

OO
ε

>> (26)

We define the n-ary diagonal µn ∈ C⊕(B,B⊗n) as follows:

µ0 := ν, µn+1 := µ ; µn ⊗ id .

By induction on n one can prove that

µn+m = µ ; µn ⊗ µm ; αλ. (27)

Then, we define εn as the unique morphism making this diagram
commute:

An
eqA

n

// A⊗n.

B⊗n ε⊗n

44

B

unique εn

OO

µn

44

(28)

Such a morphism is well-defined since by the commutativity of
µ the morphism µn ; ε⊗n equalizes the A⊗n symmetries and by
Lemma 57, (An, eqA

n

) is the equalizer of such symmetries. We
then set ε† := 〈εn〉n.

The morphism ε† makes the diagram (26) commute, namely
ε† ; d = ε1 = ε. We also have ε† ; w = ε0 = ν. The last equation
we need to check is ε† ; c = µ ; ε† ⊗ ε†. First, notice that proving
such an equation is equivalent to proving the commutativity of the
following, for every n,m ∈ N:

A⊗n ⊗ A⊗m

An ⊗ Am

eqA
n
⊗ eqA

m 33

An ⊗ Am.

eqA
n
⊗ eqA

mkk

An+mcn,m

ii
B ⊗B εn⊗εm

44

Bεn+m

jj
µ

44

In fact, the right-hand side (as well as the left-hand side) of the
diagram equalizes the group of n! × m! permutations of A⊗n ⊗
A⊗m. So by the universal property of eqA

n

⊗ eqA
m

(which are the
equalizers of such permutations, since tensor equalizers preserve
tensors by Lemma 57), we have that there is a unique morphism
that composed with eqA

n

⊗ eqA
m

gives that side of the diagram.
The commutativity of the diagram then implies εn+m ; cn,m =
µ ; εn ⊗ εm. From this then follows that for every b ∈ |B|,
p, q ∈ |!A| such that the cardinality of p (resp. of q) is n (resp.
m), we have (ε† ;c)b,(p,q) = (µ ; ε†⊗ ε†)b,(p,q). The claim follows
since the diagram commutes for every n,m ∈ N.

So let us prove such a diagram. We have:

εn+m ; cn,m ; (eqA
n

)⊗ (eqA
m

)

= εn+m ; eqA
n+m

;α by (25)

= µn+m ; ε⊗(n+m) ; α by (28)

= µ ; µn ⊗ µm ; α ; ε⊗(n+m) ; α by (27)

= µ ; (µn ; ε⊗n)⊗ (µm ; ε⊗m)

= µ ; εn ⊗ εm ; eqA
n

⊗ eqA
m

by (25)

The uniqueness easily follows using the uniqueness of diagram 28.

A ?-autonomous category such that each object has a free
comonoid is usually called a Lafont category, which is known
to be a model of linear logic [13]. In particular, the linear expo-
nential comonad is given by the functorial promotion mapping an
object A to !A and a morphism φ ∈ C⊕(A,B) to the unique
comonoid morphism !φ ∈ C⊕(!A, !B) satisfying the equation
d ; φ = !φ ; d, which has exactly one solution by the freeness of
the exponential comonoid on B. Weakening gives the counit and
the co-multiplication (also called digging) is the unique comonoid
morphism dig ∈ C⊕(!A, !!A) such that dig ; d = id. Finally,
the last morphism which is essential to interpret our calculus is
m ∈ C⊕(!A ⊗ !B, !(A ⊗B)) which is the unique comonoid mor-
phism such that m ; d = d⊗ d.

A.2 Proof of the compact closure of CPMs.
The tensor ⊗ is defined on objects by

(n,G)⊗ (m,H) := (nm,G⊗H),

where we use the isomorphism Cnm,nm = Cn×m,n×m obtained
by the lexicographic order on the pairs (i, j) ∈ n×m, and G⊗H
is intended to be the subgroup of Snm of the permutations of the
form g ⊗ h, with g ∈ G, h ∈ H acting as (i, j) 7→ (g(i), h(j)).
Notice that whenever f is in CPMs((n,G), (n′, G′)) and h ∈
CPMs((m,H), (m′, H ′)), then the usual tensor product f ⊗ h
(with in addition the equalities∞⊗ h = f ⊗∞ =∞) enjoys the
conditionG⊗G′ ;f⊗h;H⊗H ′ = (G;f ;G′)⊗(H ;g;H ′) = f⊗h.

The tensor unit is I = (1, {id}). Symmetries, unit, and asso-
ciativity maps are obtained from those of CPM by pre-composing
and post-composing with the actions of the groups of the objects.
For example, the two symmetries of (n,G) ⊗ (m,H) are G ⊗H
(which is the identity in this category) and G ⊗ H ; σ ; H ⊗ G,
where σ is the symmetry in CPM of n ⊗m. The idempotence of
G andH ensures that the two morphisms are in CPMs and one can
check that they give a symmetric monoidal structure to CPMs.

The compact closure is given by (n,G)∗ := (n,G); the unit
η(n,G) ∈ CPMs(I, (n,G)∗ ⊗ (n,G)) (resp. co-unit ε(n,G) ∈
CPMs((n,G) ⊗ (n,G)∗, I)) is the composition (resp. precompo-
sition) of the unit (resp. co-unit) of CPM with G ⊗ G. In other
words, writing Ei,j for the matrix having 0 everywhere, except 1
at (i, j):

η(n,G)(1) :=
∑
i,j

G(Ei,j)⊗G(Ei,j)

ε(n,G)(Ei,j ⊗ Ei′,j′) :=
∑

g,g′∈G

1

#G2
δg(i),g′(i′)δg(j),g′(j′)

These maps are completely positive:

• The unit is completely positive because
∑
i,j Ei,j is a positive

matrix, and because G⊗G is completely positive: This makes
η(1) positive. Therefore, for any positive matrixA, (η⊗ id)(A)
is simply (η(1))⊗A which is positive.

• Let f be the map sendingEi,j⊗Ei′,j′ to δi,i′δj,j′ . This map is
completely positive as its characteristic matrix

∑
i,j Ei,j⊗Ei,j

is positive.

16 2013/10/2

Since the counit can be written as 1
#G2

(∑
g,g′(g ⊗ g

′)
)
◦ f ,

it is completely positive.

We have to prove that

ρ−1
(n,G) ; id(n,G)⊗η(n,G) ; α ; ε(n,G) ⊗ id(n,G) ;λ(n,G) = G

and its dual starting with λ−1
(n,G)∗ . Let us denote the elements of

the base of Cn×n by {eh}h∈n×n and the action of g ∈ G on eh
by eg(h). By an easy computation, we have that the left-hand side
morphism applied to eh is equal to:∑

k∈n×n

∑
g,g′∈G

1

(#G)2
δg′(h),g(k)G(ek) (29)

=
∑

k∈n×n

∑
g,g′∈G

1

(#G)2
δg−1g′(h),kG(ek) (30)

=
∑

k∈n×n

∑
g∈G

∑
g′∈g−1G

1

(#G)2
δg′(h),kG(ek) (31)

=
∑

k∈n×n

∑
g∈G

∑
g′∈G

1

(#G)2
δg′(h),kG(ek) (32)

=
∑

k∈n×n

∑
g′∈G

1

#G
δg′(h),kG(ek) (33)

=
∑
g′∈G

1

#G
G(eg′(k)) (34)

= G ;G(ek) = G(ek) (35)

The same holds for the dual.

A.3 Complete proof of Adequacy
From now on, we consider the language extended with the Ω and
the bounded let-recn constructor, as in Definition 32.

Lemma 59. Together with the new constructs, the language still
enjoys subject reduction (Proposition 11) and totality (Lemma 13).

Proof. Subject reduction. The proof uses the substitution lemma
(Lemma 10), still valid with the two additional constructs.
Totality. The two new rewrite rules add two cases to the induction:
since they do not modify the quantum state, the proof carries
through.

Definition 60. A Ω-term is a term generated by the following
grammar:

O ::= Ω | ΩM | V Ω | Ω;N | Ω⊗N | V ⊗ Ω |
let xA ⊗ yB = Ω in N | in` Ω | inr Ω |
match Ω with (xA : N |yB : N ′).

Lemma 61. If [q, `,M] is typable then either M is a value, or
a Ω-term, or there is a closure [q′, `′,M ′] such that [q, `,M]

p→
[q′, `′,M ′]. Moreover, if M is neither a value nor a Ω-term, the to-
tal probability of all possible single-step reductions from [q, `,M]
is 1.

Proof. The proof by induction on the typing derivation ofM carries
through with the added constructs.

Lemma 62 (Invariance of the interpretation). Let ` = |y1, . . . , ym〉
and ` ` M : A. If M is not a value, nor an Ω-term, then for all
quantum states q ∈ C2m,

JMK``A(qq∗) =
∑

[q,`,M]
p
→[q′,`′,N]

p · JNK`
′`A(q′q′

∗
).

Proof. We only have to check for three additional cases to extend
the proof.

• The case M = Ω is satisfied, as Ω does not reduce, and its
denotation is 0.

• In the case letrecn+1 f x = M in N , the equation becomes

Jletrecn+1 f x = M in NK
``A

(qq∗) =

JN{(λx.letrecn f x = M inM)/f}K`
′`A(q′q′

∗
),

which is valid because of the definition of the operation ()n

(Equations (10) and (11)). Indeed, if φ is the denotation of M ,

J!∆ ` λx.letrecn f x = M inMK =

!∆
c−→ !∆⊗!∆

id⊗(dig;m;!(Λφ))n−−−−−−−−−→ !∆⊗!(A(B)
!(Λφ)−→ !(A(B),

whereas, provided that ψ is the denotation of N ,

J!∆,Γ ` letrec
n+1 f x = M in NK =

!∆⊗ Γ

c��

!(A(B)

!∆⊗ Γ⊗ !∆
id⊗(dig;m;!(Λφ))n+1

// !∆⊗ Γ⊗ !(A(B),

ψ
OO

which is precisely JN{(λx.letrecn f x = M inM)/f}K,
by noticing that

(dig; m; !(Λφ))n+1 = J!∆ ` λx.letrecn f x = M inMK.

• The last case is letrec0 f x = M in N , using the fact that the
denotation of Ω is 0.

Reminder of Definition 33. A term is called finitary when it does
not contain any occurrence of the un-indexed let-rec construct.
It can however contain Ω and any of the indexed let-recn. We
call a closure finitary when its term is finitary.

Lemma 63. A finitary closure only reduces to finitary closures.

Proof. The only rewrite rule creating a term with an un-indexed
let-rec construct already has a term with an un-indexed let-rec
construct as redex.

Reminder of Lemma 34. If [q1, `1,M1] is finitary, then every
rewrite sequence

[q1, `1,M1]
p1−→ [q2, `2,M2]

p2−→ [q3, `3,M3]
p3−→ · · ·

is finite. Moreover, a normal form of such a sequence is a closure
having as term either a value or an Ω-term.

Proof. The first claim of the lemma is proved by showing that the
language is strongly normalizing. The second claim follows from
Lemma 61.

Strong normalization of the language is proved by reducing it to
a non-deterministic language without quantum states, for which a
standard proof technique can be used.

Let us define the language AUX whose terms are the terms
of the extended quantum lambda-calculus, minus the let-rec
construct, and whose operational semantics is given in Table 8.
The operational semantics is obtained from Table 3 and the rules
for let-recn by replacing closures with the respective terms and
the rules of Table 3b by dummy reduction rules:

U(• ⊗ · · · ⊗ •)→ •⊗ · · · ⊗ • new ff→ • new tt→ •

meas • −→ tt meas • −→ ff

17 2013/10/2

where • denotes a distinct term variable, which, by convention, it
is never bound by an abstraction. Intuitively, • corresponds to the
variables pointing to the quantum state.

The type system of the language AUX is a simple type system
with function types, pairs, coproducts, lists, and a base type qubit:

A,B,C ::= qubit A→ B 1 A×B A⊕B A`.

The typing rules are found in Table 9. Note that we treat the
distinctive term variable • as a term constant, with its own typing
rule.

The language AUX satisfies subject reduction, and can be shown
to be strongly normalizing using a standard technique (e.g. using
reducibility candidates).

One can map a finitary program from the quantum lambda
calculus to the language AUX as follows:

[q, `,M] 7−→ M

where M is M where all the variables of ` have been replaced
with •. It is straightforward to check that M is well-typed, then so
is M , and that if

[q, `,M]
p−→ [q′, `′,M ′]

then

M →M ′.

This concludes the proof of the lemma: if there were an infinite
reduction sequence in the quantum lambda-calculus starting with a
finitary program, it would generate an infinite rewrite sequence in
AUX , which is not possible.

Corollary 64. For any finitary closure [q, `,M], there exists a
number m ∈ N such that:

Halt[q,`,M] =
∑

[q′,`′,V]

Redm[q,`,M],[q′,`′,V] .

Proof. By König’s Lemma and Lemma 34, the reduction tree
with root [q, `,M] is finite. Let m be its height. We have that
for every m′ > m, and every [q′, `′, V], Redm

′
[q,`,M],[q′,`′,V] =

Redm[q,`,M],[q′,`′,V]. We conclude by the definition of Halt (Equa-
tion (5)).

Reminder of Corollary 35. LetM be a closed finitary term of unit
type. Then JMK`1

∗ = Halt[| 〉,| 〉,M] .

Proof. We prove that, for any total finitary quantum closure of unit
type [q, `,M]:

JMK``1(qq∗) = Halt[q,`,M] .

In fact, by Corollary 64, there existsm ∈ N such that Halt[q,`,M] =∑
[q′,`′,V] Redm[q,`,M],[q′,`′,V]. The proof is by induction on m. If

m = 0, then either M = skip and Halt[q,`,M] = 1 or a M is an
Ω-term and Halt[q,`,M] = 0. Notice that in both cases, being the
closure total, we have that q and ` are empty. We conclude trivially
by the definition of JskipK and the fact that the semantics of an Ω-
term is the zero matrix. The induction step follows by the induction
hypothesis and Lemma 62.

Reminder of Definition 36. Let / be a relation between finitary
terms and general terms defined as the smallest congruence relation
on terms satisfying, for every M / M ′ and N / N ′:

N{(λxA.ΩB)/f} / (letrec f x = M ′ in N ′)

(letrecn f x = M in N) / (letrec f x = M ′ in N ′)

Reminder of Lemma 37. For every typing judgement Γ `M : A,
we have:

JMKΓ`A =
∨

M′/M
M′ finitary

JM ′KΓ`A
.

Proof. By structural induction on the derivation of Γ `M : A, one
proves that: (i) Γ ` M ′ : A is derivable for every M ′ / M ; (ii)
{JM ′KΓ`A

; M ′ / M} is directed; (iii) the equation in the state-
ment holds. All cases are trivial consequences of the induction hy-
pothesis and the continuity of all the categorical constructs. In the
rec rule case, one notices that by definition Y (dig; m; !(Λφ)) =∨∞
n=0(dig; m; !(Λφ))n.

Lemma 65. Let M / M ′, and let [q, `,M]
p−→ [q′, `′, N]. Then

there exists a unique N ′ such that N / N ′ and [q, `,M ′]
p−→

[q′, `′, N ′].

Reminder of Lemma 38. For every M / M ′, we have that
Halt[q,`,M] 6 Halt[q,`,M′].

Proof. We prove by induction on n the inequality:∑
[q′,`′,N]

Redn[q,`,M],[q′,`′,N] 6
∑

[q′,`′,N′]

Redn[q,`,M′],[q′,`′,N′] .

from which trivially follows the statement.
The case n = 0 is trivial, as both sides are equal to 1. Suppose

that the result is true for n, and consider the value∑
[q′,`′,N]

Redn+1
[q,`,M],[q′,`′,N] =

∑
[q′,`′,N]

∑
[q′′,`′′,P]

Red[q,`,M],[q′′,`′′,P] Redn[q′′,`′′,P],[q′,`′,N] =

∑
[q′′,`′′,P]

Red[q,`,M],[q′′,`′′,P]

∑
[q′,`′,N]

Redn[q′′,`′′,P],[q′,`′,N] .

(36)

From Lemma 65, we deduce that for every P there exists a unique
P ′ such that Red[q,`,M],[q′′,`′′,P] = Red[q,`,M′],[q′′,`′′,P ′] and
such that P / P ′. Remark that, independently from the rewrites
P of M , there might exist other terms P ′ such that we have
Red[q,`,M′],[q′′,`′′,P ′] 6= 0. For example, if M were Ω, although
there would be no such P there would still be one P ′.

Now, from induction hypothesis, we infer that for all of the pairs
(P, P ′),∑

[q′,`′,N]

Redn[q′′,`′′,P],[q′,`′,N] 6∑
[q′,`′,N′]

Redn[q′′,`′′,P ′],[q′,`′,N′] . (37)

Using Equations (36) and (37) we deduce that∑
[q′,`′,N]

Redn+1
[q,`,M],[q′,`′,N] 6∑

[q′′,`′′,P ′]

Red[q,`,M],[q′′,`′′,P ′]

∑
[q′,`′,N′]

Redn[q′′,`′′,P ′],[q′,`′,N′] =

∑
[q′,`′,N′]

Redn+1
[q,`,M′],[q′,`′,N′] . (38)

This finishes the proof of the lemma.

18 2013/10/2

(λxA.M)V →M{V/x} let xA ⊗ yB = V ⊗W inN → N{V/x,W/y}

skip;N → N match (in` V) with (xA : M |yB : N)→M{V/x}

splitV → V match (inr V) with (xA : M |yB : N)→ N{V/y}
letrec0 fA(B x = M inN → N{(λxA.ΩB)/f}

letrecn+1 fA(B x = M inN → N{(λxA.letrecn fA(B x = M inM)/f}

(a) Classical control.

U(• ⊗ · · · ⊗ •)→ •⊗ · · · ⊗ • new ff→ • new tt→ • meas • −→ tt meas • −→ ff

(b) What used to refer to quantum data.

MN →M ′N M ⊗N →M ′ ⊗N in` M → in` M
′ VM → VM ′ V ⊗M → V ⊗M ′ inr M → inr M

′

M ;N →M ′;N let xA ⊗ yB = M inN → let xA ⊗ yB = M ′ inN

matchM with (xA : P |yB : N)→ matchM ′ with (xA : P |yB : N)

(c) Congruence rules, under the hypothesis that M →M ′.

Table 8: Rewrite system for the language AUX of Lemma 34.

∆, x : A ` x : A
ax

∆ ` skip : 1
1I

∆ ` Ω : A
Ω ` • : qubit

•

∆, x : A `M : B

∆ ` λxA.M : A→ B
→I ∆ `M : A→ B ∆ ` N : A

∆ `MN : B
→E

∆ `M : 1 ∆ ` N : A
∆ `M ;N : A

1E

∆ `M : A ∆ ` N : B
∆ `M ⊗N : A×B ×I

∆ `M : A×B ∆, x : A, y : B ` N : C

∆ ` let xA × yB = M in N : C
×E

∆ `M : A
∆ ` in` M : A⊕B ⊕

`
I

∆ `M : B
∆ ` inr M : A⊕B ⊕

r
I

∆ ` P : A⊕B
∆, y : B ` N : C
∆, x : A `M : C

∆ ` match P with (xA : M |yB : N) : C
⊕E

∆ `M : 1⊕ (A×A`)
∆,Γ `M : A`

−`I
∆ ` splitA : A`→1⊕ (A×A`)

split
∆, f : (A(B), x : A `M : B ∆, f : (A(B) ` N : C

∆ ` letrecn+1 fA(B x = M in N : C
rec

∆ ` meas : qubit→ bit
meas

∆ ` new : bit→ qubit
new

U of arity n

∆ ` U : qubit×n → qubit×n
U

Table 9: Typing rules for the language AUX .

19 2013/10/2

	Introduction
	Background
	Quantum computation in a nutshell
	Density matrices and completely positive maps
	The category CPM
	Limitations of CPM as a model

	A quantum lambda calculus
	Operational semantics
	Reduction system as a Markov chain

	Infinite biproduct completion
	The linear structure
	Biproduct
	Monoidal product
	Monoidal closure

	Exponential structure

	Completing CPM
	Complete positive maps with symmetries and top
	The biproduct completion of CPMs.

	Interpretation of the quantum lambda calculus
	Denotational semantics
	Examples
	Adequacy

	Structure of the sets of representable elements
	Appendix
	Infinite biproduct completion
	Linear structure
	Exponential structure

	Proof of the compact closure of CPMs.
	Complete proof of Adequacy

