banner above paper title

Quipper: A Scalable Quantum Programming Language

Alexander S. Green

Dalhousie University
agreen@mathstat.dal.ca

Peter Selinger

Dalhousie University
selinger@mathstat.dal.ca

Abstract

The field of quantum algorithms is vibrant. Nevertheleserdhis
currently a lack of programming languages for describingngum
computation on a practical scale, i.e., not just at the lefaby
problems. We address this issue by introducing Quipperak sc
able, expressive, functional, higher-order quantum Enogning
language. Quipper has been used to program a diverse set-of no
trivial quantum algorithms, and is able to generate quargate
representations using trillions of gates. Itis geared td&a model

of computation that uses a classical computer to controbatgun
device, but is not dependent on any particular model of qumant
hardware. Quipper has proven effective and easy to use,@Ts0
the door towards using formal methods to analyze quantum alg
rithms.

1. Introduction

The earliest computers, such as the ENIAC and EDVAC, were
both rare and difficult to program. The difficulty stemmed artp
from the need to express algorithms in a vocabulary suitetido
particular hardware, ranging from function tables for thHél&C
to more conventional arithmetic and movement operationkafer
machines. The introduction of symbolic programming largsa
such as FORTRAN (for “FORmula TRANSslator”) solved a major
difficulty for the next generation of computing devices, imabling
the specification of algorithms in a form more suitable fomfaun
understanding, and then translating this specification &nform
executable by the machine. Thus, programming languagemasss
the important role of bridging a semantic gap between theamm
and the computing device. This was achieved, among othegshi
by two important principles: high-level abstractions antbanated
bookkeeping.

Quantum computation, which was envisioned in the later part
of the 20th century, is a computational paradigm based olatte
of quantum physics. It has been amply demonstrated in tee lit
ature that quantum computing can, in theory, outperforrasital
computing for certain classes of computational problenhe de-
sign of new quantum algorithms is a vibrant area, as witrtikbge
the quantum algorithm “zoo” of S. Jordan [12], which referen
45 algorithms and 160 papers, with no less than 14 writte®iri2
and 2012.

Although quantum computing is not yet ready to move from the-
ory to practice, itis nevertheless possible to make infargeesses

Peter LeFanu Lumsdaine

Institute of Advanced Studies
p.l.lumsdaine@gmail.com

Neil J. Ross

Dalhousie University
Neil.JR.Ross@Dal.Ca

Benoit Valiron

University of Pennsylvania
benoit.valiron@monoidal.net

wise, then, to apply the lessons learned from programmiagsé!
cal computing to the emerging quantum computing capadsliti

This paper is a stepping stone towards meeting this challeng
We approach quantum computation from a programmer’s perspe
tive: how should one design a programming language thatroan i
plement real-world quantum algorithms in an efficient, dgiand
maintainable way? We introduce Quipper, a declarativeuagg
with a monadic operational semantics that is succinct,esgive,
and scalable, with a sound theoretical foundation.

When we speak of Quipper being “scalable”, we mean that it
goes well beyond toy algorithms and mere proofs of concephyM
actual quantum algorithms in the literature are orders gjnitade
more complex than what could be realistically implementepre-
viously existing quantum programming languages. We pupfeii
to the test by implementing seven non-trivial quantum atgors
from the literature:

e Binary Welded Tree (BWT). To find a labeled node in a
graph [4].

e Boolean Formula (BF). To evaluate a NAND formula [2]. The
version of this algorithm specified by the QCS program and
implemented in Quipper computes a winning strategy for the
game of Hex.

e Class Number (CL). To approximate the class group of a real
quadratic number field [8].

e Ground State Estimation (GSE). To compute the ground state
energy level of a particular molecule [24].

e Quantum Linear Systems (QLS). To solve a linear system of
equations [9].

e Unique Shortest Vector (USV). To choose the shortest vector
among a given set [18].

e Triangle Finding (TF). To exhibit a triangle inside a dense
graph [14].

These algorithms were chosen by IARPA, in the context of &8Q
program [10], to provide a reasonably representative eseston

of current algorithms. They make use of a wide variety of quan
tum primitives, such as amplitude amplification, quantunike;a
the quantum Fourier transform, and quantum simulatione@év
of the algorithms also require the implementation of comlas-

of what form an eventual quantum computer may take, or more sical oracles. The starting point for each of our algoritimplie-

importantly for programming language design, of theerfaceby

mentations was a detailed description of the algorithm igexy by

which one may interact with such a quantum computer. It seems IARPA [11].

short description of paper 1

2013/2/11

Quipper, and the seven algorithm implementations, ardyfree
availablet

Relatedwork. Many formalisms for programming quantum com-
puters have been developed in the last few decades. Somenof th
such as the quantum Turing machine [6] or the quantum lambda
calculus of van Tonder [23], are mainly theoretical tools da-
ploring particular aspects of quantum computation, andhatele-
signed with practical quantum programming in mind.

There are many recent proposals for guantum programming lan
guages [7]. Of these, we pinpoint three languages thatseptém-
portant milestones and can be regarded as predecessorgppeQu

In the realm of imperative programming languages, arguably
the oldest “concrete” quantum programming languag®iriser's
QCL [17]. Defined as a C-style language, QCL comes with many
interesting features, collectively dubbsttuctured quantum pro-
gramming This provides a relatively natural way of writing simple
quantum algorithms. One of QCL's innovations was the separa
tion of functions into separate syntactic classes, basethein
operational behavior; thus, QCL distinguishes classicalcg
dures, which are unconstrained; “quantum functions”, Wwhace
restricted to define unitary operations; and “pseudo-absop-
erators, which are intended to implement oracles, feaji'doan-
tum tests” and automatic uncomputation of ancillas. QClkdac
high-level quantum data types, and does not have a welletkfin
semantics, complicating the analysis of programs. Finallyce
the language was designed with simulation in mind, many of it
useful programming features incur a strong computational-o
head. In spite of these drawbacks, QCL is a milestone in the de
velopment of quantum programming languages. We includeya ve
brief comparison between circuits generated by Quipper@t
in Section 6.

More recently, there have been two proposals for functional
quantum programming languages that can be regarded ag-precu
sors of Quipper. Selinger and Valiron's quantum lambdautatis
an ML-style language with strong static type checking [, R is
designed to run on Knill's QRAM model [13], but lacks highx
facilities for circuit construction and manipulation. Tlggantum
10 Monad of Green and Altenkirch [1] is, like Quipper, embedd
in Haskell, provides extensible quantum data types, andeamith
a consistent operational semantics. However, it uses a singher
circuit model and lacks many of Quipper’s advanced programgm
features.

Outline of the paper. In Section 2, we briefly present quantum
computation, focusing particularly on the interface by ethsoft-
ware would interact with a quantum device. Section 3 covenses

of the main techniques that are used to describe quantum algo
rithms and hopefully makes the case for a quantum programmin
language. In Section 4, we introduce Quipper. Section Sudses

our implementation of the Triangle Finding algorithm, anecS
tion 6 contains a very brief comparison between Quipper a8d.Q
We summarize our conclusions at the end.

2. Quantum computation

We very briefly summarize some basic notions from quantumcom
putation, primarily to provide hints on how a quantum progra
ming language might interact with a quantum computer. Ome ca
not really do this subject justice in such a limited space.aqmuch
more thorough introduction to quantum computing, see &fj. [

In quantum computation, the storage and manipulation afidat
governed by the law of quantum physics. We will here be corexkr

1 At the time of this submission, a preview version has beenenaadilable
for PLDI reviewers only. While it is fully functional, it hasot yet been
made public. A public release is planned once the paper leasregiewed.

short description of paper

with idealized quantum computation, i.e., we ignore the effects
of physical imprecisions, decoherence, etc. We will déscan
idealized quantum device in terms of #ateandoperations

The state of a quantum system is given by a normalized vec-
tor in a Hilbert space. The smallest unit of information iraqu
tum computing is theuantum bitor qubit, the state of one qubit
is a complex linear combination of two basis vectffrsand |1).
Similarly, the state of two qubits is given as a linear cormalion
of four basis vector$|00) , |01) ,]10),|11)}, and more generally,
the state ofn qubits is a linear combination &f* basis vectors.
The available operations awmitary transformationswhich allow
the state to be transformed along a user-specified unitapy amal
measurementsvhich are the only way to extract classical informa-
tion from a quantum state. We usually assume that each quantu
device has some built-in set of elementary unitary tramsédions,
calledgates Measurement has a probabilistic behavior: for exam-
ple, when measuring a qubit in staig0) + 3 |1), the result will
be 0 with probability |«|? and 1 with probability | 3|2, and subse-
quently the state of the qubit will have been changef¥}ar |1),
respectively. There is an analogous rule for measuring,cseyof
several qubits in a multi-qubit state.

2.1 Interacting with a quantum device

We can now describe the operation of an idealized quantuncalev
known as Knill's QRAM model for quantum computation [13]. In
this model, we think of a quantum computer as a specializedee
that is attached to and controlled by a classical computechnmn
the way of a co-processor. The device holdadividually address-
able qubits, for some fixed. The operation of the quantum de-
vice is controlled by only two kinds of instructions. Insttions of
the first kind are unitary operations. They take the form tape
built-in unitary gatdJ to qubitk”, “apply the gatéV” to qubits;j and

k”, and so on. The quantum device responds with an acknowledge
ment that the operation has been performed, but there isrtiefu
information returned. Instructions of the second kind asasure-
ments. They take the form “measure quidit The quantum device
responds with a measurement result, which is eitharl. One can
also add a third kind of instruction callénitialization: “reset qubit

k to 0". However, this is derivable from the instructions already
mentioned: namely, by first measuring qubiand then negating it

if and only if the measurement outcome was

2.2 Basic properties

In the above model of quantum computation, the control flow of
an algorithm is purely classical: tests, loops, etc., artopmed on
the classical computer that controls the quantum co-psaceBoth
classical and quantum data are first class objects.

Because quantum measurement is a probabilistic operation,
classical probabilistic computation is automatically lied as
a subset of quantum computation.

The laws of quantum mechanics imply that quantum informa-
tion cannot be duplicated. This is the so-calleacloning prop-
erty of quantum mechanics. It would not be physically megnin
ful, for example, to apply a 2-qubit quantum gate to qukiand
k. Quantum programming languages should ensure that such non
physical operations cannot occur. This kind of property eitimer
be checked at compile time or at run time.

2.3 Hardware independence

We do not claim that the idealized QRAM model is what an actual
quantum computer will look like. An actual quantum computer
might be far more difficult to control. Because of the relakjshort
life span of quantum states in experimental settings, maygrs
of quantum error correction and control will likely be remd to
enable meaningful quantum computation. Also, realistiangum

2013/2/11

hardware may be highly sensitive to timing constraintshsas
the exact timing of control pulses. So rather than perfogrine

gate or measurement at a time, as suggested in the QRAM model,
it may be more realistic to assume that a large number of gates

will be pre-computed, then executed in a single batch ojperan
the quantum device, possibly measuring all qubits at the And
sequence of pre-computed gates is calleguantum circuit and
this model of quantum computation is known as threuit model
One operation that is available in the QRAM model, but not in
the circuit model, is the ability to change the sequence ahtum
gates in response to the results of previous measurememts. T
restriction can be overcome by augmenting the circuit mods
the ability to preserve some of the unmeasured qubits in $amde
of long-term storage between successive circuit execsttion
From the point of view of programming language design, the
particular choice of physical quantum architecture shawtl be
of much consequence. The purpose of a high-level progragimin
language is precisely to abstract from such hardware spefsfi
tails, and to present the user with the illusion of a unifodesilized
computational model.

3. Techniques used in quantum algorithms

While every quantum algorithm can be ultimately specifiechas
sequence of gates and measurements, this is rarely howuquant
algorithms are actually described in the literature. Ratthey are
often described at a high level, for example in the style ©ake
the following function, which can obviously be implementeyd

a boolean circuit of polynomial size. Translate this to aersible
quantum circuit in the standard way. Apply steps of amplitude
amplification, then copy the result to a scratch register amd
compute”. We believe that a good quantum programming laggyua
should be flexible enough to allow quantum algorithms to be ex
pressed at a level of abstraction, high or low, that is asechss
possible to the intent of the algorithm’s human designeileafil-

ing in enough details to be unambiguous. For this reasoar fi
introducing Quipper’s high-level programming featurestia next
section, let us briefly review some of the techniques thatane-
monly used in the design of quantum algorithms.

3.1 Quantum primitives

Most quantum algorithms make use of one or more of a few well-
known primitive building blocks. Thguantum Fourier transform

is a unitary change of basis analogous to the classical éouri
transform, and is used in many quantum algorithms, for examp
to find the period of a periodic functiodmplitude amplification
(also known asGrover's searchis used to increase the amplitude
of certain basis states in a superposition, while decrgastiners.
Quantum walkscan be described as the quantum counterpart to
random walks. Due to quantum interference, some paths indlie
may cancel out (or at least, appear with decreased protyabih
some situations, it is possible to outperform the successatnility

of a similar strategy that would have used a classical randatk.
Phase estimatiois a technique for estimating eigenvalues of a
unitary operatorState distillationis a method by which one starts
with a large number of quantum states, and gradually nartiogra
down to a smaller number of states with desirable properties

The above primitives are often at the core of what makes a

guantum algorithm potentially outperform its classicaluterpart.
But they are more than just off-the-shelf functions that &en
directly used on a classical data structure, and they atieaijyp
combined in non-trivial ways.

3.2 Oracles

Another important part of many quantum algorithms is the de-
scription of anoracle An oracle is usually given by a classical

short description of paper 3

b —

az —

b —

- e -
Figure 1. Example of a piece of quantum circuit

function f : Bool™ — Bool™, describing some aspect of the
input to the algorithm, such as the edges of a graph, the win-
ning positions of a game, arithmetic or number-theoreticfions,

and so forth. To be useable in a quantum computation, théeorac
must be made reversible. This can be done in the usual manner:
f :Bool™™ — Bool™"™ is defined af (z,y) = (z,y ® f(x)).

The reversible boolean functioﬁ can then be lifted into a unitary
map working on quantum bits. Often, in the literature, thectig-

tion of oracles is both low-level and high-level. It is loevkl in

the sense that, despite the fact that the oracle maniputates
trivial data types (e.g., integers, real numbers, edges graph,
etc.), the algorithm goes into detail about how to implentbate

in terms of quantum registers. But it is also high-level Ha sense
that the details of how the oracle performs its operatiopsoften
only sketched.

3.3 Circuit families

At a low level, quantum algorithms take the form of a (poten-
tially very long) sequence of unitary gates with occasianaa-
surements. Such a sequence of operators is catjedr@tum circuit
and is customarily described in diagrammatic form. An examwop
such a diagram, showing a diffusion step from the Binary \&gld
Tree algorithm [4], is shown in Figure 1. However, such déags
are not in and by themselves good descriptions of quantuot alg
rithms. The reason is that most quantum algorithms alsordkpe
on parameterssuch as the numberin Figure 1, and thus a quan-
tum algorithm really describesfamily of circuits, which cannot be
captured in a single diagram. Quipper permits a formal ardipe
description of such parameterized circuit families.

3.4 Circuit manipulation

Although ultimately, a quantum algorithm comes down to a se-
guence of elementary gates and measurements, many quantum a
gorithms are more naturally described in terms of manimniatat
the level of entire sub-circuits, rather than individualeza Exam-
ples of such operations are:

e reversing;

e iteration (e.g., Trotterization; amplitude amplificatjpn

e automatic synthesis of classical circuits (e.g., oraches) an-
cilla management (i.e., initialization and recollectidnaoixil-
iary quantum bits);

e circuit transformations (e.g., replacing one elementate get
by another);

e whole-circuit optimizations.

3.5 Classical processing

Like any useful algorithm, a quantum algorithm must ultiehat
produce a classical answer to a classical question. Ircpéatj any

2013/2/11

parameters to the algorithm are classical, as are the finpltsu
Therefore, most quantum algorithms use some amount oficéss
pre- and post-processing. Typically, the algorithm cdasid the
description of a parameterized quantum circuit, followgalbinal
measurement.

In some algorithms, such as the Triangle Finding algorittia,
probabilistic measurement result can then be classich#igked to
see if a useful answer has been found, and if not, the wholeepro
dure is repeated, possibly for a different set of paramekersome
algorithms, such as the Binary Welded Tree algorithm, thielita
of a potential solution cannot be efficiently verified, anctatis-
tical argument is used to determine how many times the ahgori
should be repeated until the correct answer is found witkéséred
probability. A third class of algorithms, such as the Uni@lert-
est Vector algorithm, requires a more subtle interleavihguan-
tum and classical operations, whereby only a subset of thésqu

are measured, and the quantum memory cannot be reset betwee

each quantum circuit invocation. In the paradigm of quantim
cuits, this amounts to saying that the circuit is constricie-the-
fly, where later pieces depend on the value of former interated
measurements. This is typically the case for algorithmsititar-
porate state distillation.

What we learn from this is that a useable quantum program-
ming language should also incorporate a general-purpassichl
programming language, in which classical pre-, post-, atetine-
diate computations can be specified. It is desirable thanhtegra-
tion between the classical and quantum parts of the progiaghm
language is as seamless as possible.

4. Our proposal: Quipper

We introduce Quipper, an embedded functional programnang |
guage for quantum computation. Quipper is intended to affami-
fied general-purpose programming framework for quantum-com
putation. It provides, among other things, a notation foargum
circuits, a notation for quantum algorithms, and a notaf@rcir-
cuit transformations.

Quipper was designed with correctness, scalability anbilitya
in mind. It was originally developed in the context of IARBA
Quantum Computer Science program [10]. We have demondtrate
Quipper’s viability by implementing seven non-trivial quam
algorithms from the literature [2, 4, 8, 9, 14, 18, 24], agstd by
IARPA [10]. In this section, we describe some of the basitufiess
of Quipper’s design.

4.1 Quipperis an embedded language

We implemented Quipper as an embedded language, with Haskel

as the host language. Therefore, Quipper can be seen aze-coll
tion of data types, combinators, and a library of functiorighin
Haskell, together with amdiom, i.e., a preferred style of writing
embedded programs. See [5, Sec. 1.3] for a general disouskio
the advantages and disadvantages of embedded languag®s in p
gramming language design.

4.2 Quipper’'s extended circuit model

The quantum circuit model, as usually presented, is onlgeored
with unitary gates and circuits. While this is theoretigallfficient,
we found it to be a cumbersome restriction in practice. Qetipp
natively supports a larger class of circuits that also ideki

e Explicit qubit initialization and termination. This is usé
among other things, for accurately representing the scépe o
ancillas.

e Measurements, classical bits, classical gates, and cilysi
controlled quantum gates.

4.2.1 Ancillas and scope

Many quantum algorithms require ancillas, i.e., “scratpace”
qubits whose state is (saj()) outside of certain well-defined re-
gions where the ancilla is being “used”. In settings whergates
must be unitary, ancillas are usually treated as additigioélal in-
puts and outputs to the algorithm, which are assumed to bat@ s
|0) at the start of the algorithm, and which the algorithm is expeé

to reset td0) after each “use”. The following image shows a circuit
with two ancillas, and the regions where the ancilla is ines}f)
are shown in red:

M1
sl

—D
—D

—p
D
I

o)
)

)
)

We refer to the regions where an ancilla may potentially leelus
as thescopeof the ancilla. For a compiler of quantum program-
ming languages, there are many potential benefits to trgdakia
scope of ancillas explicitly. For example, it would be wésgitéor
error correction be applied to an ancilla while it is knowrbsun-
used (and therefore disentangled from the rest of the catipnj.
Moreover, if an algorithm temporarily requires two andlit some
point in time, and then again two ancillas at some later tittdnes
not actually matter whether the two later ancillas are “€gta
the earlier ancillas, whether they are swapped, or wheltesrdre
different ancillas altogether. For example, the followiigtuit is
equivalent to the one above:

—D
T

T @

10 [0}
100 |0

The problem of which particular ancillas to use from a “pomfl”
ancillas is analogous to the classical problem of regidtecation,
and is best left to a late compiler phase that is aware of fmuta
of physical qubits.

In Quipper’s circuit model, we use the notatidhy-" to denote

We chose Haskell as the host language because Quipper conthe allocation of a new qubit initialized to staf@). Dually, we

tains many higher-order and overloaded operators, whop&eim
mentation makes heavy use of advanced features of Hastyglés
system, including several GHC extensions. Both HaskellQunig-
per are strongly-typed functional programming languagey]
therefore they are a relatively good fit for each other. Ofrseu
there are some trade-offs. In particular, Haskell lacks feedures
that would be useful for Quippelinear typesanddependent types
Therefore, certain properties of quantum programs thakdcbe

checked at compile time by a linear or dependent type system

must currently be checked at run-time. For this reason, ardut
implementation of Quipper may be equipped with a standealon
compiler, or at least a custom type-checker.

short description of paper 4

use the notation-1 0” to denote the deallocation of a qubit that
is assertedo be in stated0). Here is the same circuit as above,
represented with explicitly scoped ancillas:

? b sl
1]
o 11 Il 10 o b0
0 0 o} 10

Keeping track of ancilla scopes also has an additional plessi
advantage. In certain physical machine models, such asipilsf
itis generally better to work with “fresh” photons than wjthotons

2013/2/11

that have been in a holding loop. This is because photons dave
relatively high dissipation rate.

4.2.2 Assertive termination

As explained above, the gatg0 terminates (or deallocates) a qubit
while asserting that it is in sta{@). We call this arassertive ter-
mination to distinguish it from the ordinary termination, denoted
1, which simply drops the qubit (therefore resulting in a flays
mixed state).

The concept of assertive qubit termination warrants some fu
ther thoughts. The first thing to note is that it is fhgrammer
and not the compiler, who is asserting that the qubit is itesta
before being terminated. In general, the correctness d¢f an@as-
sertion depends on intricacies of the particular algorjthnd is not
something that the compiler can verify automatically. thisrefore
the programmer’s responsibility to ensure that only cdresser-
tions are made. The compiler is free to rely on these asssrtio
for example by applying optimizations that are only coriiéthe
assertions are valid.

The second thing to note is that circuits containing qukit in
tializations and assertive terminations can never reaudt mixed
state, and are, in a suitable sense, unitary and reverbible pre-
cisely, where assertive qubit terminations are used incaitjtthey
determine a certaisubspacef its domain: namely, the subspace
of those states for which the assertions are true. Dualy,uge
of qubit initializations determines a certain subspacehef ¢o-
domain: namely, the subspace of states that are reachakelguio-
alently, in theimageof the circuit). The circuit then defines a uni-
tary bijection between these two subspaces. In partidufatjows
that a circuit usingr input qubits and: output qubits, and using
any number of local ancillas, is unitary (provided, of cayrthat
all termination assertions are correct, i.e., all ancides uncom-
puted correctly). For this reason, Quipper will, withoutrg@aint,
reverse circuits containing qubit initializations andeatise termi-
nations.

4.2.3 Mixed classical/quantum circuits

In the circuit model used by Quipper, classical and quantata d
can co-exist. Classical wires (whose state is a classitaldssi-
cal gates, and classically-controlled quantum gates caineledy

object code andircuit parameters(for example, the size of
registers, problem sizes, the size of time steps, erroshiotds,
etc.). The output is a representation of a quantum circuit.

3. Circuit execution time. This takes place on a physicahtura
computer in an on-line real-time environment. The inpuhie t
phase is a quantum circuit, and possibly sotireuit inputs
(for example, qubits fetched from long-term storage taatiite
circuit inputs, if supported by the physical device; claakbits
to be used as classical circuit inputs). The output consits
circuit outputs (for example, classical bits that are mezment
results; qubits to be moved to long-term storage, if suggoi)rt

Many quantum algorithms require an alternation between the
second and third phases (circuit generation time and tie@-
cution time). In this model of execution, the classical colher
generates a circuit, sends it to the physical device for i@t
awaits measurement results, then generates anothett,caediso
on. We note that this is the same as the usual quantum cirodiém
of computation. If, moreover, the physical quantum devias the
ability to preserve qubits in long-term storage betweerttiege
circuit invocations, then one can support a more generaletnafd
computation known in Quipper atynamic lifting this allows cir-
cuit outputs (for example, the results of measurementsetoeb
used as circuit parameters (to control the generation ohthe
part of the circuit). An example of such a model of computatio
is Knill's QRAM model [13]. We believe that Quipper’s abstta
computational paradigm is general enough to support atyasfe
such concrete computational models.

4.3.2 The parameter/input distinction

We use the word “parameter” to refer to a value that is known at
circuit generation time, and we use the word “input” or “stab
refer to a value that is only known at circuit execution time,,

the state of a bit or qubit on the physical quantum devicajghb

of as a “wire” in a circuit. The distinction between inputsdgra-
rameters must be taken seriously and requires specialgmoging
language support. For example, because inputs are not kabwn
circuit generation time, if one would like to do an if-thels@ op-
eration conditioned on a boole&put, then one must generate the
circuit for the then-parandthe else-part. On the other hand, if the

combined with pure quantum gates. Measurement is a gate thaiif-then-else operation is conditioned on a boolganameter then

turns a qubit into a classical bit. One reason for includivese fea-
tures is the construction of oracles, which we will discussnore
detail in Section 4.6.

4.3 The two run-times
4.3.1 Circuit generation and circuit execution

Because Quipper is (among other things) a circuit desonigtn-
guage, Quipper programs have three distinct phases of xecu
compile time, circuit generation time, and circuit exeonttime.
We refer to circuit generation time and circuit executiomds
as the “two run-times”. The phenomenon of having three miisti
phases of execution is well-known and also occurs, for exanp
hardware description languages (see e.g. [5]).

1. Compile time. Since Quipper is an embedded language, its
compile time is the same as the Haskell compile time. It takes

place on a classical computer in an off-line developmeni-env
ronment (i.e., before specific algorithm parameters arg/kio
The input to this phase is source code anthpile time param-
eters The output is executable object code.

2. Circuit generation time. This takes place on a classioai-c
puter in an on-line environment (i.e., when specific aldwnit

one only needs to generate the circuit for the then-patie else-
part, resulting in a smaller circuit.

Because of this distinction between generation-time patera
and execution-time inputs, the Quipper language has thasi b
types for bits and qubits, instead of the usual two:

® Bool: a boolean parameter, known at circuit generation time;
e Bit: a boolean input, i.e., a boolean wire in a circuit;
e Qubit: a qubitinput, i.e., a quantum wire in a circuit.

A Bool is a parameter and can be easily converted Bita
The outcomes of quantum measurements are only known attcircu
execution time, and are therefore Bits, not Bools. As meetib
above, the converse operation, convertin@ia to a Bool, is
known asdynamic liftingin Quipper, and is usually an expensive
operation, requiring circuit execution to be suspendedentiie
next part of the circuit is generated.

The input/parameter distinction also applies to classitzdh
types other than booleans; for example, there are integaneers
and integer inputs.

Moreover, some data is partly input and partly parameter. Fo
example, if a quantum function inputs a list of qubits, thae t
length of the list is a parameter (affecting, for example, circuit

parameters are known). The input to this phase is executablesize), whereas the actual qubits in the list are inputs. lipar

short description of paper 5

2013/2/11

terminology, when a piece of data has both input and paramete
components, the parameter component is callecstzgpeof the
data.

4.4 Circuit description language

One can readily imagine a quantum programming language that
operates by sending gate-by-gate instructions in real tinssme
physical quantum device. Indeed, this was the approachn tiske
[19, 20]. However, we found that this approach is not vergtical
when it comes to implementing larger-scale quantum algorst
Quantum algorithms in the literature are often represeatedela-
tively high conceptual level, and many tasks in algorithmstouc-
tion require manipulations at the level of entire circuitgher than
individual gates. Examples of such operations includergive;
iteration; ancilla management; circuit transformatioag (, replac-
ing one set of basic gates by another); and whole-circuitopa-
tion. Another important use of whole-circuit manipulatienthe
automatic generation of reversible circuits from cladsicale. In
our experience, it is perhaps fair to say that 99 percenteogttan-
tum programmer’s task is constructing and manipulatinguits,
and only 1 percent is actually running them.

We therefore designed Quipper with the goal of supporting
both gate-level operations and circuit-level operationa natural
way. Quipper combines a basic procedural paradigm for myriti
guantum functions “one gate at a time” with a powerful higher
order paradigm for whole-circuit manipulations.

4.4.1 Procedural paradigm
The basic philosophy of Quipper's procedural paradigm &t th

mycirc2 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)
mycirc2 a b ¢ = do
mycirc a b
with_controls c $ do
mycirc a b

mycirc b a —n qf @ @ A}
mycirc a ¢ —H] im| |
return (a,b,c) l ﬁj Lf l]

Another block structure operator provided by Quipper is

with_ancilla :: (Qubit -> Circ a) -> Circ a.

This operator can be used to provide an ancilla qubit (tempo-
rary scratch space) to a block of gates. The ancilla is Ihitia
in state|0), and the code is expected to return it to stXeat

the end of the block. The following example also illustraties
use of thecontrolled operator, which is an infix version of
with_controls. The controls can be specified as a tuple of qubits.

mycirc3 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)
mycirc3 a b ¢ = do
with_ancilla $ \x -> do
gnot x ‘controlled‘ (a,b)
hadamard ¢ ‘controlled‘ x
gnot x ‘controlled‘ (a,b)
return (a,b,c)

o{z]

o}

qubits are held in variables and gates are applied to them one4.4.3 Circuit operators

at a time. Subroutines can be used to group gate-level opesat
together where the programmer finds it useful. When writunchs
procedural code, the programmer may safely pretend — ajthou
this is not actually true — that the variables hold actualgitsl
qubits, and that the specified gates are applied to them litimea
Thus, the basic abstraction offered by Quipper is that atgoan
operation is dunction that inputs some quantum data, performs
state changes on it, and then outputs the changed quantam dat
This is encapsulated in a Haskell monad caliedc. For example,
the following is a simple quantum function that inputs a pafir
quantum bits, performs some unitary operations (two Haddma
gates and a controlled not-gate), and outputs the modifigcbpa
quantum bits. The code is shown on the left, and the generated
circuit is shown on the right.

mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit)
mycirc a b = do
a <- hadamard a 7
b <- hadamard b .

(a,b) <- controlled_not a b
return (a,b)

Gates can also be written in “imperative style”, i.e., theine
value of a gate can be ignored if it consists of the same palysic
qubits as the gate’s input.

4.4.2 Block structure

Quipper provides operators for introducing block struetimto
circuits. For example, the operator

with_controls :: Qubit -> Circ a -> Circ a

can be used to let an entire block of gates be controlled by a
qubit. The example also illustrates how subroutines (in taise,
mycirc defined above) can be used to build up complex circuits
from simpler ones.

short description of paper

In addition to the gate-by-gate circuit construction pagad Quip-
per also provides powerful higher-order operators thataipe on
entire quantum functions. The block-structuring commaufdte
previous subsection are examples of simple higher-ordenabqrs.
Other high-level operators provided by Quipper includerafmgs
for reversing, iterating, and transforming quantum procesd, as
well as a general mechanism for turning classical booleanegsr
dures into quantum oracles.

The reverse_simple operator takes a quantum function and
returns its inverse:
timestep :: Qubit -> Qubit -> Qubit

-> Circ (Qubit, Qubit, Qubit)

timestep a b ¢ = do 3 an
mycirc a b
gnot c ‘controlled‘ (a,b)
reverse_simple mycirc (a,b)

return (a,b,c)

Itis important to realize that reversing a circuit is notessgarily
an operation to be performed just on the output of a progray (s
by a separate tool). Many quantum algorithms require a ititou
be reversed in the middle of a computation, perhaps withiested
subroutine.

The operatodecompose_generic decomposes a quantum cir-
cuit into a specified set of elementary gates. For exampéefath
lowing decomposes the circuit from the previous example loit
nary gates:

timestep2 :: Qubit -> Qubit -> Qubit
-> Circ (Qubit, Qubit, Qubit)
timestep2 = decompose_generic Binary timestep

2013/2/11

4.4.4 Boxed subcircuits

Quipper circuits can be very large; for example, in Section 5
we use Quipper to describe a circuit of over 30 trillion gates
In order to be able to store and manipulate such large cércuit
efficiently, Quipper provides a feature callbérarchical circuits

or boxed subcircuitsThe idea is simple: if a certain subcircuit is
used multiple times throughout a larger circuit, the progreer has
the option to “box” it. In this case, the subcircuit will beptaced

by a single named gate, with a separate definition on the Flue.
Quipper operator for introducing a boxed subcircuit isedtox.

It takes a name and a circuit-generating function as itsraemts.
See Section 5 for examples.

4.45 Run functions

As we have already seen, in Quipper, thescriptionof circuits is
separated fromvhat to dowith them. Thus, the same subroutine
can be used, for example, to run a circuit on a quantum device,
or to construct and manipulate it in memory. We believe that t
separation provides a useful abstraction to programmers.

What to do with a circuit is determined by differentn func-
tionsfor the Circ monad. For example, the functigarint_gen-
eric can be used to print a circuit in a number of available output
formats (such as text, PostScript, and PDF). Quipper alsaqes
a functionrun_generic to simulate a circuit (this is necessarily
inefficient on a classical computer). The more specialiagttf
tionsrun_classical_generic andrun_clifford_generic can
be used to simulate certain classes of circuits efficietttig,is es-
pecially useful in testing oracles.

4.5 Quipper’'s extensible quantum data types

Following the strategy first presented in Altenkirch and €r's
work on the Quantum 10 monad [1], Quipper uses Haskell's type
classes to provide an abstract view of the notion of quantata.d

A type class can be thought of as a property that a type magfigati
the property comes with a set of functions. The strength péty
classes is that they can be defined by induction on the steuofu
types.

In Quipper, the notion of quantum data is represented by the
type clas€iChata. The most basic members of this type class are
Qubit andBit, representing a quantum bit and a classical bit in a
circuit, respectively. Expanding on this, tuples of quamiiata are
guantum data, lists of quantum data are quantum data, amdtbo f

instance (QCData a, QCData b) => QCData (a,b) where ...
instance (QCData a) => QCData [a] where ...

Quipper also comes with a number of libraries defining addi-
tional kinds of quantum data. For example, there is an agtlom
library that definegDInt, a type of fixed-size signed quantum in-
tegers, and a real number library defining a t§paeal of fixed-
size, fixed-point real numbers.

Most of Quipper’s built-in circuit generating functionstivaly
use these representations. For example, the functionsifaliza-
tion and measurement of quantum data have the type

qinit :: QShape b q ¢ => b -> Circ q
measure :: QShape b q ¢ => q -> Circ ¢

For example, we can usginit to create a pair of quantum bits:

example = do
(p,q) <- qinit (False,False)

4.6 Oracles in Quipper

Although appending gates to quantum circuits is an importan
part of many quantum algorithms, the most challenging part f
the quantum programmer — and the biggest, in terms of num-
ber of gates produced — is often the implementation of classi
cal oracles. Such oracles are boolean functions represeastee-
versible quantum circuits. They are problem specific and lmn
quite complicated. For example, Shor's factoring algonitf22]
relies on an oracle for computing the modular exponentiatio
f(z) = a” (mod N), whereN is the integer to be factored. In
the Triangle Finding algorithm, described in more detailSiec-
tion 5 below, an oracle is used to define the edges of the gheth t
is the input to the algorithm.

Quipper provides powerful facilities for programming desc
in a natural way.

4.6.1 Automatic generation of quantum oracles

The implementation of a quantum oracle “by hand” usually re-
quires four separate steps. The first step is to express dloea@s
a classical program acting on classical data types. Thendestep
is to translate this program to a classical circuit for theegiinput
size. The third step is to change the classical circuit toantgum
circuit, possibly introducing many ancillas to hold intexdiate or
“scratch space” values. The fourth step is to make this guant
circuit reversible, using the standard trick of replacihg function
x — f(z) by areversible functiofiz, y) — (z,y ® f(z)), while
also uncomputing any scratch space used by the fungtion

In Quipper, all of these steps but the first one can be autamate
Consider, for example, a very simple oracle that inputs taolis
booleans and outputs their parity (even or odd). This canabe-n
rally expressed as a functional program:

build_circuit
f :: [Bool]l -> Bool
f as case as of
[1 -> False
[hl] -> h
h:t -> h ‘bool_xor¢ f t

The keywordbuild_circuit is built into Quipper (incidentally,

Certain generic quantum operations can be defined at anyit has been implemented in a very interesting way, using toous

QCData instance, rather than just qubits. For example, the built-
in Quipper functioncontrolled _not has type

controlled_not :: (QCData q) => q -> q -> Circ (q, q).

Quipper also provides a type cla@hape, which takes 3 argu-
ments and represents the relationship between the quanfun i
classical input, and classical parameter versions of a, ypeale-
scribed in Section 4.3.2. For example, we have

instance QShape Bool Qubit Bit

instance (QShape b q c, QShape b’ q’ c’)
=> QShape (b,b’) (q,q’) (c,c’)

instance QShape IntM QDInt CInt

short description of paper

pre-processor and Template Haskell [21]). Its purpose ipei®
form an operation that we catlircuit lifting, automating steps 2
and 3 above. Specifically, the effect of theild_circuit key-
word is to produce, at compile time, a circuit-generatingction
template_f in addition to the functiorf. The type of the func-
tion template_f is obscure, but can be made useful by passing it
through Quipper'sinpack operation:

unpack template_f :: [Qubit] -> Circ Qubit

The functiontemplate_f automatically produces a circuit com-
puting the same operation asFor example, when applied to a list
of 4 qubits, it produces:

2013/2/11

|
R

©—

b

Note how the top four qubits are the inputs, the bottom quit i
the output, and the remaining two qubits are scratch spaee. F
nally, the fourth step, to make the circuit reversible andam-
pute the scratch space, is taken care of by the Quipper operat
classical_to_reversible:

classical_to_reversible :: (Datable a, QCData b) =>
(a => Circ b) -> (a,b) -> Circ (a,b)

For example, here is the circuit produced by

classical_to_reversible (unpack template_f):

&
&

Note that in this circuit, the top four qubits are inputs, fifth qubit
is the output, and all intermediate ancillas have been upcoeal.

Quipper’s circuit lifting operation is extremely versatilWe
have used it to implement oracles containing millions oegafFor
example, our implementation of the Boolean Formula alborit
uses an oracle that determines the winner for a given finatipos
in the game of Hex. It uses a flood-fill algorithm, which we iyl
mented as a functional program and converted to a circuigubie
circuit lifting operation. The resulting oracle consist2@ million
gates. Similarly, our implementation of the Linear Systeatyo-
rithm makes liberal use of arithmetic and analytic funcsiosuch
assin(z) andcos(x), which were implemented using the circuit
lifting feature.

5. The Triangle Finding algorithm in Quipper

We give some details of our implementation of the Triangtelifig
algorithm in Quipper.

5.1 Background

An instance of th@Triangle Finding problem3, 15] is given by an
undirected simple grap containing exactly one triangl&. The
graph is given by an oracle functigh such that, for any two nodes
v,wof G, f(v,w) = 1if (v,w) is an edge ofz and f(v,w) = 0
otherwise. To solve an instance of the Triangle Finding lemokis
to find the set of vertice$es, ez, es} forming A by queryingf.

The Triangle Finding algorithm as described in [15] and [3],
works by performing a Grover-based quantum walk on a larger
graphH, called theHamming graplassociated t6-. It is designed
to find A with high probability. The algorithm is parametric on
an oracle defining the graph. In our implementation, the oracle
is a changeable part, but we have implemented a particuéar pr
defined oracle specified in [11]. This oracle injeGtinto the space
{0,1,...,2" =1} of I-bitintegers, and each oracle call requires the
extensive use of modular arithmetic.

The overall algorithm is parametrized on integéra and r
specifying respectively the lengthof the integers used by the
oracle, the numbe2” of nodes ofG and the siz&€" of Hamming
graph tuples.

short description of paper 8

leganzaeE

I

Figure 2. The circuit foro4_POW17

5.2 Top-level structure

The Quipper implementation of the Triangle Finding alduritis
broken down into six modules:

e Definitions: global definitions used throughout the algo-
rithm.

® QWTFP: the quantum walk algorithm and its subroutines.
e Oracle: the oracle and its subroutines.

e Main: a command line interface.

e Simulate: a test suite for the oracle.

e Alternatives: alternatives and/or generalization of certain
algorithms.

These can be compiled into an executable progtdmilts com-
mand line interface allows the user, for example, to plugfient
oracles, show different parts of the circuit, select a gasebselect
different output formats, and select parameter valueg,farand

r. Some usage examples are provided throughout the remaihder
this section as we discuss our implementation.

5.3 Code samples

The quantum walk part of the algorithm is broken into about 20
subroutines, and the oracle consists of 8 subroutines. fevitys

we only present the code for one of each: POW17 anda6_QWSH.
Although relatively simple, these subroutines are goagsitations

of some of Quipper’s key features.

5.3.1 The subroutineo4_POW17

The subroutineo4_P0OW17 is an arithmetic function used by the
oracle. It computes the seventeenth power of a quantumeinteg
and stores the result in a fresh integer register. It pracegdirst
raising its inputz to the 16th power by repeated use of a squaring
subroutine, and then multipliesandz'® to get the desired result.
The corresponding Quipper code is the following. HEEtTF
denotes the type of quantum integers used by the oracle hwhic
happ?n to bé-bit integers with arithmetic taken moduld — 1
(not2°):

04_POW17 :: QIntTF -> Circ (QIntTF,QIntTF)
04_POW17 = box "o4" $ \x -> do
comment_with_label "ENTER: o4_POW17" x "x"
(x, x17) <- with_computed_fun x
(\x -> do
(x,x2) <- square x
(x2,%x4) <- square x2
(x4,x8) <- square x4
(x8,x16) <- square x8
return (x,x2,x4,x8,x16))

(\(x,x2,x4,x8,x16) -> do
(x,x16,x17) <- o8_MUL x x16
return ((x,x2,x4,x8,x16),x17))

comment_with_label "EXIT: o4_POW17" (x,x17) ("x","x17")
return (x, x17)

2013/2/11

Figure 3. The circuit foro8_MUL

We note the use of the pre-defined Quipper operaiozscom-
ment_with label and with_computed_fun. The operatobox
introduces a boxed subcircuit. The operatatment _with_label
inserts a comment and some qubit labels in the generatadtsirc
Such comments have proven to be quite useful in reading &rge
cuits. The operato#ith_computed_fun automates the reversing
of intermediary computations: the first block of code (irstbase,
applications ofsquare producingz?, z*, z® andz'%) is reversed
once the second block of code (her@_MUL) has been applied.
Because the uncomputation of intermediate results is swtima

mon operation in quantum computing, the use of operatoes lik
with_computed_fun helps to avoid unnecessary and error-prone

code repetitions. All three of these Quipper features caselea in
the circuit foro4_P0OwW17 with parameter values= 4,n = 3 and

r = 2 shown in Figure 2. This circuit is produced by the command

line./tf -s powl7 -1 4 -n 3 -r 2.

We note that some of the circuits shown here have too many

gates to be legible in a printed version of this paper; howewe
the PDF version, it is possible to zoom in to see individuaéga
In the circuit in Figure 2, the vertical strings of squaresked

08 represent invocations of a boxed subcircuit. Each of them de

notes an invocation of the subroutia@&_MUL for multiplication, or
its inverse. The full definition 068_MUL is shown in Figure 3.

It is possible to inline the boxed subcircuits within_P0ow17,
but the resulting circuit would be too large to be usefullglimded
here. However, we can use Quipper’s gate counting featyseoto
vide some statistics about this circuit. The is done via trermand
line option-f gatecount. It will compute a gate count for each
boxed subcircuit called by4_Pow17, together with an aggregated
gate count for the circuit with all boxed subcircuits inkhd~or
l=4,n=3,r =2, the aggregated gate count t8¥_POW17 is:

Aggregated gate count:

1636: "InitO"

3484: "Not", controls 1
288: "Not" controls 1+1
2592: "Not", controls 2
1632: "Term0O"

Total gates: 9632

Inputs: 4

Outputs: 8

Qubits in circuit: 71

In words, this circuit has 4 inputs, 8 outputs, and uses adbta
71 qubits (including ancillas) and 9632 elementary gatésh€se
gates, about one third are qubit initializations and teatioms, and
the remainder are controlled-not gates with 1 or 2 conttolgate
counts provided by Quipper a distinction is made betweeitipes
and negative controls. If a gaté hasa positive controls (“filled
dots”) andb negative controls (“empty dots”), the gate count will
read:"G", controls a+b. Moreover,a+0 is writtena.

5.3.2 The subroutinea6_QWSH

The subroutine6_QWSH implements a walk step on the Hamming
graph. By definition, the nodes of the Hamming graph asseattat

G are tuples of nodes @, such that two such tuples are adjacent

if they differ in exactly one coordinate6_QWSH proceeds in two
steps. In the first step, it arbitrarily chooses an indexd a node
v of G. In the second step, it replaces a Hamming tuplby an
adjacent ond” by swapping theé-th component ofl” with v, and

short description of paper 9

updates the register containing the edge information coimug
nodes inT”. The corresponding Quipper code is the following:

a6_QWSH :: QWTFP_spec -> (IntMap QNode) -> QDInt
-> QNode -> (IntMap (IntMap Qubit))
-> Circ (IntMap QNode, QDInt, QNode,
IntMap (IntMap Qubit))
a6_QWSH oracle@(n,r,edgeOracle,qram) =
box "a6" $ \tt i v ee -> do
comment_with_label "ENTER: a6_QWSH"
(tt, i, v, ee) ("tt", "i", "v", "ee")
with_ancilla_init (replicate n False) $ \ttd -> do
with_ancilla_init (intMap_replicate (2°r) False) $
\eed -> do
(i,v) <- a7_DIFFUSE (i,v)
((tt,i,v,ee,ttd,eed),_) <-
with_computed_fun (tt,i,v,ee,ttd,eed)

(\(tt,i,v,ee,ttd,eed) -> do
(i,tt,ttd) <- qram_fetch qram i tt ttd
(i,ee,eed) <- al2_FetchStoreE i ee eed
(tt,ttd,eed) <- al3_UPDATE oracle tt ttd eed
(i,tt,ttd) <- qram_store qram i tt ttd
return (tt,i,v,ee,ttd,eed))

(\(tt,i,v,ee,ttd,eed) -> do
(ttd,v) <- al4_SWAP ttd v
return ((tt,i,v,ee,ttd,eed),()))

comment_with_label "EXIT: a6_QWSH"
(tt, i, v, ee) ("tt", "i", "V", ||eeu)
return (tt,i,v,ee)

Here, the Quipper operat@tith_ancilla_init creates a list
of n ancillas, whose scope is restricted to a local block of cdte.
circuit for a6_QWSH with parameter values= 4,n = 3 andr = 2

BEERRE

HHH
|
HEH

In this circuit, the first boxed subcircuit corresponds te dfif-
fusion of the index and nodev. The remaining boxed subcircuits
denote the gqRam operations before and after the node swap.

2013/2/11

5.4 Aggregate gate counts
The command line
./tf -f gatecount -0 -o orthodox -1 31 -n 15 -r 9

computes the gate count for just the oracle, with parameieles
n = 15,1 = 31 andr = 9. It counts 2051926 total gates and 1462
qubits. The command line

./tf -f gatecount -o orthodox -1 31 -n 15 -r 6

produces the gate counts for the complete algorithm, iigud
repeated quantum walk steps with inlined oracle invocati@n
a standard laptop, this runs to completion in under two neisiand
produces a count of 30189977982990 (over 30 trillion) tgtaks
and 4676 qubits.

6. Comparing Quipper and QCL

implementation, Quipper already catches many ordinare &p
rors at compile time. However, in the absence of a linear sy
tem, certain properties, such as non-duplication of quandata,
must currently be checked at runtime. Developing a fullgtfieed
type system is the next step in Quipper’'s development, arad is
work in progress.

8. Acknowledgements

Thanks to Jonathan M. Smith for his helpful comments.
Supported by the Intelligence Advanced Research Projests A
tivity (IARPA) via Department of Interior National Busine€enter
contract number D11PC20168. The U.S. Government is aattbri
to reproduce and distribute reprints for Governmental pseg
notwithstanding any copyright annotation thereon. Discta: The
views and conclusions contained herein are those of theeugind
should not be interpreted as necessarily representing ffioéab
policies or endorsements, either expressed or impliedARPA,

To enable a direct comparison between Quipper and QCL, we im- po|/NBC, or the U.S. Government. Supported by NSERC.

plemented identical versions of the Binary Welded Tree ritigm

[4] in both programming languages, using a hand-coded er&olr
further comparison, we also gave a second implementatiam of
equivalent oracle, using QuippeBaild_circuit mechanism to
automatically generate the (non-optimized) oracle froassical
functional code as explained in Section 3.2. We generatethtin
circuit for the BWT algorithm for parameters = 4 (tree height)
ands = 1 (number of iterations), using the three different imple-
mentations. The results are summarized in the followingetab

QCL “direct” Quipper “orthodox” Quipper “template”
Init 58 313 77
Not 746 8 0
CNot; 9012 472 344
CNoty 7548 768 1760
e itZ 4 4 4
w 48 48 48
Term 0 307 771
Meas 0 6 6
Total 17358 1300 2156
Qubits 58 26 108

Here “Init”, “Term”, and “Meas” refer to Quipper’s qubit itial-
ization, termination, and measurement gates. These adéraotly
comparable between QCL and Quipper, because Quipper iyplic
tracks the scope of ancillas whereas QCL does not. “Totéérse
to the total number of logical gates excluding initialipatj termi-
nation, and measurement. “Qubits” refers to the total nunabe
qubits used in each circuit, i.e., the height of the circuit.

Itis apparent that the QCL code produces far more gatesthan i
Quipper counterpart, even when the hand-coded oracle in IQCL
compared to the automatically generated oracle in Quippere-
over, the QCL circuit uses twice as many qubits as the Quipgrer
sion with the same oracle. On the other hand, the Quippereimpl
mentation with automatically generated oracle uses mocélas
than QCL, but does so with fewer gates.

7. Conclusion

We have presented Quipper, a scalable functional quantam pr
gramming language. We demonstrated its usability by implam
ing seven non-trivial quantum algorithms, chosen to regres
broad range of quantum computing capabilities. The aligrst
were implemented by a team of 11 geographically distrib@eih-
per programmers. Programming the seven algorithms retjajpe
proximately 55 man months and resulted in a representasiable
for resource estimation using realistic problem sizes. lnkasis
we conclude that Quipper is both usable and useful.

References

[1] T. Altenkirch and A. S. Green. The Quantum 1O Monad. In 3yG
and |. Mackie, editorsSemantic Techniques in Quantum Computation
pages 173-205. Cambridge University Press, 2009.

[2] A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, andZhang.

Any AND-OR formula of sizen can be evaluated in time +°(1) on
a quantum computeSIAM J. Comput.39:2513-2530, 2010.

[3] A. Childs and R. Kothari. Quantum query complexity of min
closed graph properties. Rroceedings of the 28th Symposium on
Theoretical Aspects of Computer Scigneages 661-672, 2011.

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmannddn A.
Spielman. Exponential algorithmic speedup by a quantunk.whi
Proceedings of the Thirty-Fifth Annual ACM Symposium orofhef
Computing pages 59-68, 2003.

[5] K. Claessen. Embedded Languages for Describing and Verifying
Hardware PhD thesis, Chalmers University of Technology and
Goteborg University, 2001.

[6] D. Deutsch. Quantum theory, the church-turing prineigind the
universal quantum computerProceedings of the Royal Society of
Londo, Series A400(1818):97-117, 1985.

[7] S.J. Gay. Quantum programming languages: Survey atiddibphy.
Mathematical Structures in Computer Scient®(04):581-600, 2006.

[8] S. Hallgren. Polynomial-time quantum algorithms fotlBeequation
and the principal ideal problend. ACM 54(1):4:1-4:19, Mar. 2007.

[9] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algonithfor
linear systems of equationBhys. Rev. Lett103(15):150502, 2009.

[10] IARPA Quantum Computer Science Program. Broad
Agency Announcement |ARPA-BAA-10-02. Available from
https://www.fbo.gov/notices/637e87ac1274d030ce2aB88cfo3c,
April 2010.

[11] IARPA Quantum Computer Science Program. Governmentifioed
Information. Version 1.2, April 2012.

[12] S. Jordan. http://math.nist.gov/quantum/zoo/. Electronic
resource.

[13] E. H. Knill. Conventions for quantum pseudocode.
LAUR-96-2724, 1996.

[14] F. Magniez, M. Santha, and M. Szegedy. Quantum algostfor the
triangle problem. quant-ph/0310134, 2003.

[15] F. Magniez, M. Santha, and M. Szegedy. Quantum algosttior
the triangle problem. IfProceedings of the 16th annual ACM-SIAM
symposium on Discrete algorithpsgages 1109-1117, 2005.

[16] M. A. Nielsen and I. L. ChuangQuantum Computation and Quantum
Information Cambridge University Press, 2002.

LAN&port

One of the issues slated for future work in Quipper is the im- [17] B. Omer. Quantum programming in QCL. Master’s thesis, Intiaf

provement of compile-time type checking. Thanks to its H#sk

short description of paper 10

Information Systems, Technical University of Vienna, 2000

2013/2/11

[18] O. Regev. Quantum computation and lattice problen®AM J.
Comput, 33(3):738-760, 2004.

[19] P. Selinger and B. Valiron. A lambda calculus for quamtaompu-
tation with classical control.Mathematical Structures in Computer
Science16(3):527-552, 2006.

[20] P. Selinger and B. Valiron. Quantum lambda calculus. SInGay

and |. Mackie, editorsSemantic Techniques in Quantum Computation
pages 135-172. Cambridge University Press, 2009.

[21] T. Sheard and S. P. Jones. Template metaprogrammirigasiell. In
Proc. Haskell Workshq2002.

[22] P. Shor. Algorithms for quantum computation: discietgarithms and
factoring. InProceedings, 35th Annual Symposium on Foundations of
Computer ScienceCA: IEEE Press, 1994.

[23] A. van Tonder. A lambda calculus for quantum computatiSIAM
Journal of Computing33(5):1109-1135, 2004.

[24] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simitibn of
electronic structure hamiltonians using quantum compuféolecu-
lar Physics 109(5):735-750, 2011.

short description of paper 11

2013/2/11

