List of suggested exercises, Sections 8.1-2 (and a bit of 5.2) For the DGD of May 22th and 24th

(1) Find the area between the following curves:

- (i) 3x + y = 6 $y = x^2 4$ x = 0.(ii) $2y^2 = x + 2$ $y^2 + x = y + 2.$ (iii) $x = y^3 - y$ $x = 1 - y^4.$ (iv) $y = 4x^2$ $y = x^2 + 3$ (v) y = x $y = \sin(x)$ $x = -\frac{\pi}{4}$ $x = \frac{\pi}{2}.$ (vi) $y = \cos(x)$ $y = \sin(2x)$ x = 0 $x = \frac{\pi}{2}.$ (vii) y = |x| $y = (x + 1)^2 - 7$ x = -4.
- (2) (#14 Sec 8.1) Find the volume of a right cone of height 2 meters with base a square of side

- (4) (#25 Sec. 8.1) Find the volume of a sphere of radius r by slicing.
- (5) Consider the region delimited by $x 3 = (y 1)^2$ and x = 5 2y. Compute the volume of the solid generated by rotating the region around:

- 1. the y-axis;
- 2. the line x = 8.
- (6) Consider the region bounded by the curves y = x and $y = x^2$. Find the volume of the solid generated by rotating the region around
 - 1. the *x*-axis;
 - 2. the line y = 5;
 - 3. the line x = 2.
- (7) Consider the region bounded by the curves $y = x^4$ and $x = y^4$. Find the volume of the solid generated by rotating the region around
 - 1. the *x*-axis;
 - 2. the *y*-axis;
 - 3. the line y = 1;
 - 4. the line x = -1.
- (8) Consider the region bounded by the curves y = sin(x), $x = \pi/2$ and the x-axis. Find the volume of the solid generated by rotating the region around
 - 1. the x-axis;
 - 2. the *y*-axis;
 - 3. the line y = 1;
 - 4. the line x = 2.