List of suggested exercises, Section 9.1-4
For the DGD of June 26th and 28th.

Sequences (Section 9.1)

(1) For each of the following sequence, write down the 5 first terms, and decide whether it
congerges or not. If it does, find the limit.
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(2) Find a recursive definition for the sequence:
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Series (Sections (9.2-4)

(1) For each of the following sequence of number, decide which are the first terms of a geometric
series and which are not. For those who are, compute the value of the corresponding
geometric series, if it exists.

3+12+ 484192 + 768 + = 1+3+9+27+
3 2 4 8 16
1 3+9+27+81+ 1+1+2+9+27+
2 8 32 128 512 3 4 16 64 256
1 1 n 1 2 n 16 n 1 1+ 1 1 . 3 n
256 160 100 125 625 27 63 146 353 @ 2401

(2) (exercise numbers are from Section 9.3). For each of the following series, decide whether or
not they diverge. If they converge, gives their value.
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(3) Find the value of the following series:
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(4) Express the following numbers as a series, then as a ratio of integers:

0.25 = 0.255555 - - -

0.307 = 0.307307307 - - -

1.123 = 1.123232323 - - -

(5) (Section 9.4) Decide whether the following integrals converges or diverges. State the test
you are using. Make sure to verify that the hypotheses are satisfied.

o0

1
#5) >
n=1
[ee] 2n
(#15) ;n3+1

ot nd—n+4

(#9)

(#16)

(#30)

(i) )

v5nl7T —2n3 + 6

(#51)

[e.9]

n2® — 1
n=1
> 1
S (o)
n=1
>
“~2/n—/n+2
> 3
“— In(n?)

(6) Approximate the following series within 0.001.
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(7) Determine if the following series are absolutely convergent, conditionally convergent or di-

vergent.
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