
Orthogonality and Algebraic Lambda-Calculus

Benôıt Valiron

March 28, 2010

Abstract

Directly encoding lambda-terms on quantum strings
while keeping a quantum interpretation is a hard
task. As shown by van Tonder [2004], requiring a
unitary reduction forces the lambda-terms in super-
position to be mostly equivalent.

Following instead [Arrighi and Dı́az-Caro, 2009],
we show in this note how one can conceive a lambda-
calculus with algebraic features and that admits a
general notion of orthogonality amongst lambda-
terms, by providing a compiler of the system into
unitary maps.

1 Introduction

In the literature, there have been two canonical ways
for building a lambda-calculus for quantum compu-
tation. One can either consider the program out-
side of the quantum store: this is known as “classical
control”, and it has been studied in detail in vari-
ous publications [Selinger and Valiron, 2006; Valiron,
2008]. One can also adopt the “quantum control”
approach [Altenkirch and Grattage, 2005; van Ton-
der, 2004; Arrighi and Dowek, 2008]. In this setting,
the lambda-terms are written directly on the quan-
tum array. In his famous paper, van Tonder [2004]
considers a lambda-calculus featuring constants for
booleans and unitary gates, where terms are encoded
directly on quantum bits. He shows that to be able
to have a unitary beta-reduction, all terms in super-
positions need to be equal up to the booleans. This
morally states that the resulting lambda-calculus is
classical.

Other attempts have been proposed. First, if one

does not look for a beta-reduction but merely an in-
terpreter, a functional approach is still possible, and
a language together with a compiler was proposed
with QML [Grattage, 2007]. One can also forget al-
together the requirement that the beta-reduction be
realizable, leaving it for later. This is the approach
taken by Arrighi and Dowek [2008].

In this note, we conciliate these two approaches
by showing how to write a (strictly linear) lambda-
calculus capturing a notion of orthogonality and
(non-trivial) superposition of terms. The superpo-
sition is validated by interpreting the language in a
typed version of lineal, and the orthogonality is vali-
dated by providing a compilation in quantum circuit,
in a QML style.

The resulting language, although quite simple, is
powerful enough for encoding regular quantum cir-
cuits consisting of a given set of gates. To the knowl-
edge of the author, this is the first mention of a truly
“purely quantum” language with higher-order fea-
tures and non-trivial superposition of terms.

2 A lambda-calculus

Consider the following call-by-value, linear, simply-
typed lambda-calculus. The constant c stands for a
unitary gate, say the Hadamard. We call this lan-
guage the orthogonal lambda-calculus.

Type A,B ::= > | A (B | A⊕B | A⊗B,
Value U, V ::= xA | ∗ | c | λxA.M | UV | U ⊗ V |

〈α ·M, β ·N〉,
Term M, N ::= U | MN | M ⊗N | 〈α ·M,β ·N〉 |

let xA⊗yB = M in N |
let ∗ = M in N |
match P in (xA 7→ M | yB 7→ N).

1

x : A B x : A
(x) B ∗ : > (>I) B c : I ⊕ I (I ⊕ I

(c)

∆, x : A B M : C

∆ B λxA.M : A (C
(λ) ∆ B M : A (B Γ B N : A

∆, Γ B MN : B
(ε)

∆ B M : A Γ B N : B
∆, Γ B M ⊗N : A⊗B

(⊗I)
∆ B M : A⊗B Γ, x : A, y : B B N : C

∆,Γ B let xA⊗yB = M in N : C
(⊗E)

∆ B M : > Γ B N : C
∆,Γ B let ∗ = M in N : C

(>E)
∆ B M : A ∆ B N : B |α|2 + |β|2 = 1

∆ B 〈α ·M, β ·N〉 : A⊕B
(Σ)

∆ B P : A⊕B Γ, x : A B M : C Γ, y : B B N : D

∆,Γ B match P in (xA 7→ M | yB 7→ N) : C ⊕D
(⊕)

Table 1: Typing rules for the orthogonal lambda-calculus

Typing rules are given in Table 2 It is to be noted
that the match-term can be simulated by a product
in the type system ; this product would be different
from the type operator ⊕.

Reduction steps are

(λx.M)U → M [U/x],
let x⊗y = U ⊗ V in M → M [U/x, V/y],

let ∗ = ∗ in M → M,

match 〈α ·M ′, β ·N ′〉 in (x 7→ M | y 7→ N)
→ 〈α · (λx.M)M ′, β · (λy.N)N ′〉,

c 〈α · ∗, β · ∗〉,
→ 〈 1√

2
(α + β) · ∗, 1√

2
(α− β) · ∗〉,

plus the usual call-by-value ξ-reductions.

Theorem 2.1. The language features the usual
safety properties: if a closed term M is well-typed of
type A, then either it reduces to some other term, or
it is a value. Next, any term N to which M reduce
to is also of type A. Finally, the language features
confluence and strong normalization.

3 Embedding in an algebraic
System F

Consider lineal with a system-F-like type system, in
the style of [Arrighi and Dı́az-Caro, 2009].

Type A,B ::= X | A → B | ∀X ·A,

Term M, N ::= xA | λxA.M | MN | α ·M |
M + N | M [A] | ΠX.M.

One can encode types of Section 1 as

A → B 7→ A → B,

A⊕B 7→ ∀X · (A → X) → (B → X) → X,

A⊗B 7→ ∀X · (A → B → X) → X,

> 7→ ∀X ·X → X.

A base term of type A⊕B is constructed using two
terms, one of type A and one of type B. As it should
be, there are only two possible base elements of type
A⊕B.

A term M from the orthogonal lambda-calculus
is encoded to a term M from lineal inductively as
follows.

∗ 7→ ΠX.λxX .x,

M ⊗N 7→ ΠX.λf.fMN,

let x⊗y = M in N : C 7→ M [C](λxy.N),
let ∗ = M in N : C 7→ M [C]N,

〈α ·M, β ·N〉
7→ ΠX.λfg.(α · fM + β · gN)

match P in (x 7→ M | y 7→ N)
7→ ΠX.λfg.P [X](λx.fM)(λy.gN).

The constant term c is represented by

λx.ΠX.λfg.x[X] (λy.(1√
2
· fy + 1√

2
· gy))

(λy.(1√
2
· fy − 1√

2
· gy)).

2

This encoding is sound with respect to the calculus
of Section 1.

Theorem 3.1. Given M a term in the orthogonal
lambda-calculus, if M → N then M →∗ N in the
algebraic system F.

Theorem 3.2. If M is well-typed in the orthogonal
calculus, so is M in the algebraic system F.

4 Embedding into quantum cir-
cuits

Theorem 3.1 and 3.2 capture the fact that the or-
thogonal lambda-calculus is in a sense an algebraic
lambda-calculus. We now want to show that this lan-
guage is also capturing a “correct” notion of orthog-
onality. For this purpose we show that the language
can be compiled into a quantum circuit.

4.1 An interpreter

The main difficulty resides in encoding the lambda-
abstraction. For this purpose, we use a trick already
sketched in [Preskill, 1999] and show that one can
build an interpreter of a quantum circuit as a quan-
tum circuit. This interpreter takes two sets of wires,
one for a code describing a quantum circuit using a
given set of gates, and the other one for the desired
input of the encoded circuit.

Consider an alphabet A. This alphabet contains:
symbols for each gate in U; the natural numbers; tu-
ples of symbols of the form xn, where n are posi-
tive integers; the booleans tt and ff . One consider
a Hilbert space H freely generated by the space A.
The assembly language consists of instructions of the
form U (x1, . . . , xn), where U is a gate in U. The in-
teger n is the number of entries to the gate U and
x1, . . . xn are indexes referencing quantum data on a
quantum array.

A program of k instructions is in a base vector of
H⊗(2·k) of the form |I1 . . . Ik〉.

An emulator step εl is a unitary gate of the space
H⊗(2+l). The 2 first elements correspond to an in-
struction and the last l correspond to the processed

data. For a given base vector input, the emulator
step behaves as follows.

• If the input is of the form

|φ〉 = |U (x1, . . . , xk)〉 ⊗ |s1 . . . sl〉,
where U is a gate accepting k input and where
for all j, xj 6 l, then εl|φ〉 is

|U k (x1, . . . , xk)〉 ⊗ V |s1 . . . sl〉
where V is the action U on the selected entries.

• Otherwise, it acts as the identity on the input.

An emulator εk,l taking k instructions and perform-
ing the whole program is simply the concatenation of
k emulator steps.

Provided that the set of gates U is closed under
controlled operation (that is, if U is in U, so is C−U),
it is possible to encode the gate εl in the assembly
language: this is the key for what is following. Note
however that one will need emulator steps with larger
memory to be able to run it. For simplification we
overlook this subtlety: since the language is strictly
linear, it is possible to know in advance the size of
the various emulators that will be needed.

4.2 Compilation of a typing derivation

In this section we show how to encode the orthogonal
lambda-calculus on a quantum circuit. For simplify-
ing, we only consider sum types of the form A⊕A.

We consider quantum circuit with sorted wires:
each wire will either be of sort boolean, of sort pro-
gram, or of sort unit (i.e. the wire corresponding
to the zero-dimensional vector space). To each type
we assign a list of wires, possibly identified, attached
to the structure of the type, as follows: >1 (1 is of
sort unit), A1 ⊗B2, A1 ⊕2 A3 (2 is of sort boolean),
A1 (2 B3 (2 is of sort program). The bold numbers
corresponds to the list of numbers inside the corre-
sponding type. The identification of wires is done as
in Table 4.2. We only show a subset of the rules.
When bold numbers are identified, this means that
all numbers inside the type are identified one-to-one.
We call indexed typing derivation a typing derivation
with such numbers.

3

x : A1 B x : A1
(x)

B ∗ : >1
(>I) B c : I1 ⊕2 I1 (3 I1 ⊕2 I1

(c)

∆1, x : A2 B M : C3

∆1 B λx.M : A2 (4 C3
(λ) ∆1 B M : A4 (5 B3 Γ2 B N : A4

∆1, Γ2 B MN : B3
(ε)

∆ B M : A2 ∆ B N : A2 |α|2 + |β|2 = 1
∆1 B 〈α ·M, β ·N〉 : A2 ⊕3 A2

(Σ)

∆1 B P : A3 ⊕2 A3 Γ2, x : A3 B M : C4 Γ2, y : A3 B N : C4

∆1, Γ2 B match P in (x 7→ M | y 7→ N) : C4 ⊕2 C4
(⊕)

Table 2: Indexed typing rules

Lemma 4.1. If ∆1 B M : A2 has typing derivation
π and if M → N then ∆1 B N : A2 and it comes with
a typing derivation π′ with the same set of indices as
the one in π.

The quantum circuit corresponding to a given in-
dexed typing derivation has wires of two kinds: the
ones assigned with values (called closed wires), and
the others (called open wires). The circuit consists of
three successive groups of gates: The first one, called
initializer, initializes the closed wires of sort program
(setting them in some state); the last one, called clos-
ing, that does the opposite process, and the middle
one, called computational circuit, which is the actual
computation. The whole circuit is built inductively
as follows.

(x):A bunch of open wires, with no gates. (>I):
A closed wire 1 of type unit with no gate. (c): Two
open wires 1 and 2 and one closed wire 3. 2 is of sort
boolean, and 3 is of sort program, initialized with
value |H(2)〉, the program applying the Hadamard
gates on the wire 2.

(λ). Takes the circuit coming from ∆1, x : A2 B
M : C3. Return the wires 1, 2 and 3 with no gates
on it, and initialize a closed wire 4 to the program
corresponding to M .

(ε): Place the circuit corresponding to N , then
connect an emulator evaluating the wire 5.

(Σ): Create a closed wire 3 with value α|0〉 +
β|1〉. Consider the computational circuit coming
from N . It is written in terms of elementary quantum
gates (Hadamard gates and controlled Hadamard,
controlled-controlled Hadamard,. . .). Transform this

circuit by controlling over the wire 3 each elementary
gate so that N is applied on the subspace directed by
|0〉. Do the same thing for M but for the subspace
directed by |1〉. Build the resulting computational
circuit by plugging the circuits next to each other.
The last step consists in entangling the closed wires
of sort program appearing both in the typing deriva-
tion of N and in the typing derivation of M with the
boolean wire 3. The entangling process is done in the
initializer and the unentangling process in the closing
circuit.

(⊕): First write the circuit for P . It generates a
wire 2. Use the same trick as above to control M and
N over it.

Thanks to the strict linearity of the calculus, we
have the following result.

Theorem 4.2. In the context of Lemma 4.1, the
quantum circuit corresponding to M is the same as
the one corresponding to N .

4.3 Encoding quantum circuits in the
orthogonal lambda-calculus

The encoding of two quantum bits in the orthogonal
lambda-calculus is as follows :

α0|0〉⊗ (α00|0〉+α01|1〉)+α1|1〉⊗ (α10|0〉+α11|1〉)
= 〈α0 · 〈α00 · ∗, α01 · ∗〉, α1 · 〈α10 · ∗, α11 · ∗〉〉

of type (>⊕>)⊕ (>⊕>) We write [[qbit⊗2]] for this
type. The type [[qbit⊗n]] is generated on the same
principle.

4

Remark 4.3. One could have been tempted to write
it as (> ⊕ >) ⊗ (> ⊕ >). This is not the expected
result: such a type encode non-entangled quantum
bits.

To be able to encode quantum circuits in the or-
thogonal lambda-calculus, we are missing something:
in a two quantum bit system (>1⊕2>1)⊕3(>1⊕2>1),
one cannot apply an Hadamard gate on the qubit la-
beled 3, said to be at the top of the stack. One can
only apply an Hadamard gate to the qubit 2, at the
bottom of the stack.

To solve the problem, one term constructor sw is
needed, to exchange the role of two adjacent qubits,
i.e. moving them along the stack of qubits. This
term constructor is typed as follows:

x : (>1 ⊕2 >1)⊕3 (>1 ⊕2 >1) B
sw(x) : (>1 ⊕3 >1)⊕2 (>1 ⊕3 >1)

and comes with the reduction rule

sw〈α0 · 〈α00 · ∗, α01 · ∗〉, α1 · 〈α10 · ∗, α11 · ∗〉〉 →
〈β0 · 〈α0α00

β0
· ∗, α1α10

β0
· ∗〉, β1 · 〈α0α01

β1
· ∗, α1α11

β1
· ∗〉〉

where β0 and β1 are renormalization coefficients. The
swap operation does not add anything in the compi-
lation. It is only allowing two exchange the role of
two “qubit” wires. We are now ready to state the
theorem:

Theorem 4.4. Consider the set of gates closed under
controlled operation and generated by the only gate
Hadamard. Consider a quantum circuit on n qubits
built upon this set of gates and denote by A the uni-
tary map described by this circuit. There exists a
typing judgment x : [[qbit⊗n]] B M : [[qbit⊗n]] whose
compiled circuit precisely denote the map A.

Proof. To apply an Hadamard gate on some quantum
bit, send the quantum bit at the bottom of the stack
and uses a sequence of match operator and the term
operator c at the very end. Controlled operations are
done similarly, using the possibilities offered by the
match operator.

5 Conclusion

In this note we sketched a possible merge between the
QML approach of compilation into quantum circuits
and a algebraic lambda-calculus.

This raises several questions. First, is it possible to
extend the compilation to a calculus allowing dupli-
cation ? And recursion ? Then, about the encoding
into lineal, the superposition of terms is still quite
restrictive. It would be interesting to know if it is
possible to loosen it.

References
Thorsten Altenkirch and Jonathan Grattage. A func-

tional quantum programming language. In Proceedings
of LICS’05, pages 249–258, 2005.

Pablo Arrighi and Alejandro Dı́az-Caro. A system F ac-
counting for scalars. Preprint: arXiv:0903.3741, July
2009.

Pablo Arrighi and Gilles Dowek. Linear-algebraic
lambda-calculus: higher-order, encodings, and conflu-
ence. In Proceedings of RTA’08, vol 5117 of LNCS,
pages 17–31, 2008.

Jonathan Grattage. QML: A functional quantum pro-
gramming language. PhD thesis, University of Not-
tingham, 2007.

John Preskill. Plug-in quantum software. Nature, 402:
357–358, 1999.

Peter Selinger and Benôıt Valiron. A lambda calculus for
quantum computation with classical control. MSCS,
16:527–552, 2006.

Benôıt Valiron. Semantics for a Higher Order Func-
tional Programming Language for Quantum Computa-
tion. PhD thesis, University of Ottawa, 2008.

André van Tonder. A lambda calculus for quantum com-
putation. SIAM Journal of Computing, 33:1109–1135,
2004.

5

