
A linear-non-linear model for a computational
call-by-value lambda calculus

(extended abstract)

Peter Selinger1 and Benôıt Valiron2

1 Dalhousie University, selinger@mathstat.dal.ca
2 University of Ottawa, bvali087@uottawa.ca

Abstract. We give a categorical semantics for a call-by-value linear
lambda calculus. Such a lambda calculus was used by Selinger and Val-
iron as the backbone of a functional programming language for quantum
computation. One feature of this lambda calculus is its linear type sys-
tem, which includes a duplicability operator “!” as in linear logic. An-
other main feature is its call-by-value reduction strategy, together with a
side-effect to model probabilistic measurements. The “!” operator gives
rise to a comonad, as in the linear logic models of Seely, Bierman, and
Benton. The side-effects give rise to a monad, as in Moggi’s computa-
tional lambda calculus. It is this combination of a monad and a comonad
that makes the present paper interesting. We show that our categorical
semantics is sound and complete.

1 Introduction

In the last few years, there has been some interest in the semantics of quan-
tum programming languages. [18] gave a denotational semantics for a flow-chart
language, but this language did not include higher-order types. Several authors
defined quantum lambda calculi [21, 19] as well as quantum process algebras [11,
12], which had higher-order features and a well-defined operational semantics,
but lacked denotational semantics. [20] gave a categorical model for a higher-
order quantum lambda calculus, but omitted all the non-linear features (i.e.,
classical data). Meanwhile, Abramsky and Coecke [2, 9] developed categorical
axiomatics for Hilbert spaces, but there is no particular language associated
with these models.

In this paper, we give the first categorical semantics of an unabridged quan-
tum lambda calculus, which is a version of the language studied in [19].

For the purposes of the present paper, an understanding of the precise me-
chanics of quantum computation is not required. We will focus primarily on
the type system and language, and not on the structure of the actual “built-
in” quantum operations (such as unitary operators and measurements). In this
sense, this paper is about the semantics of a generic call-by-value linear lambda
calculus, which is parametric on some primitive operations that are not further
explained. It should be understood, however, that the need to support primitive

quantum operations motivates particular features of the type system, which we
briefly explain now.

The first important language feature is linearity. This arises from the well-
known no-cloning property of quantum computation, which asserts that quan-
tum data cannot be duplicated [23]. So if x : qbit is a variable representing a
quantum bit, and y : bit is a variable representing a classical bit, then it is legal
to write f(y, y), but not g(x, x). In order to keep track of duplicability at higher-
order types we use a type system based on linear logic. We use the duplicability
operator “!” to mark classical types. In the categorical semantics, this operator
gives rise to a comonad as in the work of [16] and [6]. Another account of mix-
ing copyable and non-copyable data is [10], where the copyability is internal to
objects.

A second feature of quantum computation is its probabilistic nature. Quan-
tum physics has an operation called measurement, which converts quantum data
to classical data, and whose outcome is inherently probabilistic. Given a quan-
tum state α|0〉 + β|1〉, a measurement will yield output 0 with probability |α|2

and 1 with probability |β|2. To model this probabilistic effect in our call-by-value
setting, our semantics requires a computational monad in the sense of [14]. The
coexistence of the computational monad T and the duplicability comonad ! in
the same category is what makes our semantics interesting and novel. It differs
from the work of [7], who considered a monad and a comonad one two different
categories, arising from a single adjunction.

The computational aspects of linear logic have been extensively explored
by many authors, including [8, 6, 5, 1, 22]. However, these works contain explicit
lambda terms to witness the structural rules of linear logic, for example, x : !A ⊲

derelict(x) : A. By contrast, in our language, structural rules are implicit at the
term level, so that !A is regarded as a subtype of A and one writes x : !A ⊲ x : A.
As we have shown in [19], linearity information can automatically be inferred
by the type checker. This allows the programmer to program as in a non-linear
language.

This use of subtyping is the main technical complication in our proof of well-
definedness of the semantics. This is because one has to show that the denotation
is independent of the choice of a potentially large number of possible derivations
of a given typing judgment. We are forced to introduce a Church-style typing
system, and to prove that the semantics finally does not depend on the additional
type annotations.

Another technical choice we made in our language concerns the relation be-
tween the exponential ! and the pairing operation. Linear logic only requires
!A ⊗ !B ⊲ !(A ⊗ B) and not the opposite implication. However, in our pro-
gramming language setting, we find it natural to identify a classical pair of
values with a pair of classical values, and therefore we will have an isomorphism
!A ⊗ !B ∼= !(A ⊗ B).

The plan of the paper is the following. First, we describe the lambda calcu-
lus and equational axioms we wish to consider. Then, we develop a categorical
model, called linear category for duplication, which is inspired by [8] and [14].

We then show that the language is an internal language for the category, thus
obtaining soundness and completeness.

2 The language

We will describe a linear typed lambda calculus with higher-order functions
and pairs. The language is designed to manipulate both classical data, which
is duplicable, and quantum data, which is non-duplicable. For simplicity, we
assume the language is strictly linear, and not affine linear as in [19]. This means
duplicable values are both copyable and discardable, whereas non-duplicable
values must be used once, and only once.

2.1 The type system

The set of types is given as follows: Type A,B ::= α | (A⊸B) | (A⊗B) | ⊤ | !A.
Here α ranges over type constants. While the remainder of this paper does

not depend on the choice of type constants, in our main application [19] this is
intended to include a type qbit of quantum bits, and a type bit of classical bits.
A ⊸ B stands for functions from A to B, A ⊗ B for pairs, ⊤ for the unit type,
and !A for duplicable objects of types A. We denote !!· · · !A with n !’s by !nA.

The intuitive definition of !A is the key to the spirit in which we want the
language to be understood: The ! on !A is understood as specifying a property,
rather than additional structure, on the elements of A. Therefore, we will have
!A ∼= !!A. Whether or not a given value of type A is also of type !A should be
something that is inferred, rather than specified in the code.

Since a term of type !A can always be seen as a term of type A, we equip the
type system with a subtyping relation as follows: Provided that (m = 0)∨(n > 1),

!nα <: !mα
(ax),

!n⊤ <: !m⊤
(⊤),

A <: A′ B <: B′

!n(A′ ⊸ B) <: !m(A ⊸ B′)
(⊸),

A <: A′ B <: B′

!n(A ⊗ B) <: !m(A′ ⊗ B′).
(⊗).

This relation encapsulates the main properties terms should satisfy with respect
to duplicability.

2.2 Terms

The language consists of the following typed terms, divided into values on the
one hand, and general terms, or computations, on the other. Both share a subset
of the values, the core values.

CoreValue U ::= xA | cA | ∗n | λnxA.M,

Value V,W ::= U | 〈V,W 〉 | let xA = V in W | let 〈xA, yB〉
n

= V in W |
let ∗ = V in W,

Term M,N ::= U | 〈M,N〉 | (MN) | let 〈xA, yB〉
n

= M in N | let ∗ = M in N,

where n is an integer, c ranges over a set of constant terms, x over a set of
term variables and α over a set of constant types. We abbreviate (λ0xA.M)N by
let xA = N in M , λnx!m⊤. let ∗ = x⊤ in M by λn∗m.M and we omit numerical
indexes when they are null.

Note that the above terms carry Church-style type annotations, as well as
integer superscripts; we call these terms indexed terms. We also define a notion
of untyped terms as terms with no index:

PureTerm M,N ::= x | c | ∗ | λx.M | (MN) | 〈M,N〉 |
let〈x, y〉 = M in N | let ∗ = M in N .

The erasure operation Erase : Term → PureTerm is defined as the operation
of removing the types and integers attached to a given indexed term. If M =
Erase(M̄), we say that M̄ is an indexation of M

Finally, we define an α-equivalence on terms, denoted by =α, in the usual
way (see for example [3]).

2.3 Duplicable pairs and pairs of duplicable elements

Before we formally present the type system, let us informally motivate our choice
of typing rules. One non-obvious choice we had to make is for the interaction of
pairs and duplicability. Unlike previous works with comonads [8, 5], we want to
think of the type !(A ⊗ B) as a type of pairs of elements of type A and B: we
want to use the same operation to access the components as one would use for
a pair of type A ⊗ B, without having to use a dereliction operation.

This immediately raises a concern: consider a pair of elements 〈x, y〉 of type
!(A ⊗ B). Are x and y duplicable? In the usual linear logic interpretation, they
are not. Having a infinite supply of pair of shoes does not mean one has an
infinite supply of right shoes: we cannot discard the left shoes. On the other
hand, in our interpretation of “classical” data as residing in “classical” memory
and therefore being duplicable, if the string 〈x, y〉 is duplicable, then so should
be the elements x and y. In other words, we want the duplication to “permeate”
the pairing.

The choice of such a “permeable” pairing is more or less forced on us by our
desire to have no explicit term syntax for structural rules. Consider the following
untyped terms, which can be typed if t is of type !(A ⊗ !(B ⊗ C)):

let〈x, u〉 = t in let〈y, z〉 = u in 〈〈z, y〉, x〉, (1)

let〈x, u〉 = t in 〈let〈y, z〉 = u in 〈z, y〉, x〉. (2)

First, we expect these two terms to be axiomatically equal. Term (2) should be
of type !(!(C ⊗ B) ⊗ A), regardless of the permeability of the pairing: if 〈y, z〉 is
duplicable, so should be 〈z, y〉. Now, consider the term (1) with a non-permeable
pairing. In the naive type system, u ends up being of type B⊗C, and the variables
y and z in the final recombination end up being respectively of type B and C.
It is not possible to make 〈z, y〉 of the duplicable type !(C ⊗ B).

We therefore choose a permeable pairing, which will be reflected, albeit sub-
tly, in the typing rule (⊗.I) and (⊗.E) in the following section.

A <: B

!∆, x : A ⊲ xB : B
(ax1)

!Ac <: B

!∆ ⊲ cB : B
(ax2)

Γ1, !∆ ⊲ M : A ⊸ B Γ2, !∆ ⊲ N : A

Γ1, Γ2, !∆ ⊲ MN : B
(app)

∆, x : A ⊲ M : B

∆ ⊲ λ0xA.M : A ⊸ B
(λ1)

!∆, x : A ⊲ M : B

!∆ ⊲ λn+1xA.M : !n+1(A ⊸ B)
(λ2)

!∆ ⊲ ∗n : !n⊤
(⊤.I)

!∆, Γ1 ⊲ M1 : !nA1 !∆, Γ2 ⊲ M2 : !nA2

!∆, Γ1, Γ2 ⊲ 〈M1, M2〉
n : !n(A1 ⊗ A2)

(⊗.I)
!∆, Γ1 ⊲ M : ⊤ !∆, Γ2 ⊲ N : A

!∆, Γ1, Γ2 ⊲ let ∗ = M in N : A
(⊤.E)

!∆, Γ1 ⊲ M : !n(A1 ⊗ A2) !∆, Γ2, x1 : !nA1, x2:!
nA2 ⊲ N : A

!∆, Γ1, Γ2 ⊲ let〈xA1
1 , xA2

2 〉n = M in N : A
(⊗.E)

Table 1. Typing rules

2.4 Typing judgments

A typing judgment is a tuple ∆ ⊲ M : A, where M is an indexed term, A is
a type, and ∆ is a typing context. To each constant term c we assign a type
!Ac. A valid typing judgment is a typing judgment that can be derived from the
typing rules in Table 1. We use the notation !∆ for a context where all variables
have a type of the form !A. Finally, when we write a context Γ,∆, we assume
the contexts Γ and ∆ to be disjoint.

The following lemmas are proved by structural induction on terms or type
derivations as appropriate.

Lemma 1. If V is a value such that ∆ ⊲ V : !A is a valid typing judgment,
then ∆ = !∆′ for some context ∆′. ⊓⊔

Lemma 2. Consider the following valid typing judgment: ∆,x : A ⊲ M : B.
Then for every free instance xA′

in M , A <: A′. ⊓⊔

Definition 1. In a typing judgment ∆ ⊲ M : A, a term variable x ∈ |∆| is
called dummy if x 6∈ FV (M).

Lemma 3. Any dummy variable x in ∆ ⊲ M : B satisfies ∆(x) = !A, for some
A. Conversely, if ∆ ⊲ M : B is valid and if x 6∈ FV (M), then for all types A
the typing judgment ∆,x : !A ⊲ M : B is valid. ⊓⊔

Typing derivations are not unique per se. However for a given valid typing
judgement ∆ ⊲ M : A two typing derivations will only differ with respect to the
placement of dummy variables, namely the unused variables in context.

2.5 Type casting and substitution Lemma

Lemma 4. Suppose ∆ ⊲ M : A is a valid typing judgment, and suppose ∆′<:∆
and A <: A′. Then there exists a canonical valid typing judgment ∆′ ⊲ M ′ : A′

such that Erase(M) = Erase(M ′). Moreover, if M is a value, so is M ′.

Proof. By induction on M . ⊓⊔

We will denote this M ′ with {∆′ <: ∆ ⊲ M : A <: A′}. If ∆′ = ∆ or A′ = A,
we omit them for clarity.

(βλ) ∆ ⊲ let x = V in M ≈axM [V/x] : A
(β⊗) ∆ ⊲ let〈x, y〉n = 〈V, W 〉n in M ≈axM [V/x, W/y] : A
(β∗) ∆ ⊲ let ∗ = ∗ in M ≈axM : A
(ηλ) ∆ ⊲ λnxA.{V : !n(A ⊸ B) <: A ⊸ B}xA

≈axV : !n(A ⊸ B).
(β2

λ) ∆ ⊲ let xA = N in xA
≈axN : A.

(η⊗) ∆ ⊲ let〈xA, yB〉n = N in 〈x!nA, y!nB〉n ≈axN : !n(A ⊗ B).
(η∗) ∆ ⊲ let ∗ = N in ∗n

≈axN : !n⊤.

(let1) ∆ ⊲ let −1 = (let −2 = M in N) in P ≈ax let −2 = M in let −1 = N in P : A
(let2) ∆ ⊲ let −1 = V in let −2 = W in M ≈ax let −2 = W in let −1 = V in M : A

(letapp) ∆ ⊲ let xA⊸B = M in let yA = N in xy ≈axMN : B

(letλ) ∆ ⊲ let xD = V in λnyA.M ≈axλnyA. let xD = V in M : !n(A ⊸ B)
(let⊗) ∆ ⊲ let xA = M in let yB = N in 〈xA, yB〉n ≈ax 〈M, N〉n : !n(A ⊗ B)

(app<:) {M : !n(A ⊸ D) <: B ⊸ D′}{N : C <: B}
≈ax{{M : !n(A ⊸ D) <: A ⊸ D}{N : C <: A} : D <: D′}

(let⊗<:) let〈xA′

, yB′

〉n
′

= {M : !n(A ⊗ B) <: !n
′

(A′ ⊗ B′)} in N

≈ax let 〈xA, yB〉n = M in {∆, x : !nA, y : !nB <: ∆, x : !n
′

A
′

, y : !n
′

B
′

⊲ N}

(letx
<:) let xA′

= {M : A <: A′} in N ≈ax let xA = M in {∆, x : A <: ∆, x : A′
⊲ N}

(let∗<:) let ∗ = {M : !m⊤ <: !n⊤} in N ≈ax let ∗ = M in N

Table 2. Axiomatic equivalence axioms

(αlet) ∆, x : A ⊲ let yA = xA
in M : B ≈ax ∆, y : A ⊲ M : B

(let !λ) !∆ ⊲ let x!C = V in λy.M ≈ax λn+1y. let x!C = V in M : !n+1(A ⊸ B)

(let⊗1) ∆ ⊲ 〈V, let − = M in N〉 ≈ax let − = M in 〈V, N〉 : !n(A ⊗ B)

(let⊗2) ∆ ⊲ 〈let − = M in N, V 〉 ≈ax let − = M in 〈N, V 〉 : !n(A ⊗ B)
(letapp1) ∆ ⊲ V (let − = M in N) ≈ax let − = M in V N : B
(letapp2) ∆ ⊲ (let − = M in N)V ≈ax let − = M in NV : B

Table 3. Axiomatic equivalence: derived rules

Definition 2. Given two valid typing judgments !∆,Γ1 ⊲ V : A and !∆,Γ2, x :
A ⊲ M : B where V is a value, we define the substitution (with capture avoiding)
!∆,Γ1, Γ2 ⊲ M [V/x] : B as follows: we replace each free instance xA′

(where
A <: A′ from Lemma 2) in M by {∆ ⊲ V : A <: A′}.

Lemma 5 (Substitution Lemma). In Definition 2, !∆,Γ1, Γ2 ⊲ M [V/x] : B
is well-typed. Also, if M is a value, so is M [V/x].

Proof. Proof by structural induction on M , using Lemmas 2 and 4. ⊓⊔

2.6 Axiomatic equivalence

We define an equivalence relation on (indexed) typing judgments. We write ∆ ⊲

M ≈ax M ′ : A, or simply M ≈ax M ′, to indicate that ∆ ⊲ M : A and ∆ ⊲ M ′ :
A are equivalent. Axiomatic equivalent is defined as the reflexive, symmetric,
transitive, and congruence closure of the rules from Tables 2, so long as both
sides of the equivalences are well-typed. The symbol “−” is a place holder for x,
∗, or 〈x, y〉.

Lemma 6. The equivalences of Table 3 are derivable. ⊓⊔

The following result stipulates that all the indexations of a given erasure live
in the same axiomatic class. In other words, the axiomatic equivalence class of
a term is independent of its indexation.

Theorem 1. If Erase(M) = Erase(M ′) and if ∆ ⊲ M,M ′ : A are valid typing
judgments, then M ≈ax M ′.

Proof (Sketch). The actual proof is long and technical, and is omitted here for
space reasons. We proceed by first defining a special subset of terms, called
neutral terms, for which the Theorem is obvious. We then prove that every term
is axiomatically equivalent to a neutral term via a series of rewrite systems. ⊓⊔

3 Linear category for duplication

As it was advertised, the structure of the categorical semantics will closely follow
the one proposed by Bierman [8], but with the added twist of a computational
monad à la Moggi [14]. Indeed, since one has tensor product and a tensor unit,
one can expect the categorical model to be symmetric monoidal. Since one can
construct candidate maps for building a comonad, a comonoid structure for each
!A and coherence maps for the comonad, we have a linear category. Finally, the
computational aspect will be taken care by Moggi’s computational monad.

3.1 Linear exponential comonads

In his Ph.D. thesis, Bierman [8] gives the definition of a linear category. We prefer
here the terminology given in [15], and use the concept of linear exponential
comonad.

Definition 3. Let (C,⊗,⊤) be a symmetric monoidal category [13], where αA,B,C :
A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C, λA : ⊤ ⊗ A → A, ρA : A ⊗ ⊤ → A and
σA,B : A ⊗ B → B ⊗ A are the usual associativity, left unit, right unit and
symmetry morphisms. Let (L, δ, ǫ, dL, dL) be a monoidal comonad [8], where
ǫA : LA → A, δA : LA → LLA, dL

A,B : LA⊗LB → L(A⊗B) and dL
⊤ : ⊤ → L⊤.

We say that L is a linear exponential comonad [15] provided that

1. each object in C of the form LA is equipped with a commutative comonoid
(LA,△A,♦A), where △A : LA → LA ⊗ LA and ♦A : LA → ⊤;

2. △A and ♦A are monoidal natural transformations;
3. △A : (LA, δA) → (LA⊗LA, (δA ⊗ δA); dA) and ♦A : (LA, δA) → (⊤, dL

⊤) are
L-coalgebra morphisms;

4. Every map δA is a comonoid morphism (LA,♦A,△A) → (L2A,♦LA,△LA).

The equations for 2–4 are to be found in Table 4.

3.2 Strong monad and T -exponentials.

To capture the computational effect of the probabilistic measurement, we use
the notion of strong monad, as in [14]. Recall that a monad over a category C

is a triple (T, η, µ) where T : C → C is a functor, η : id →̇ T and µ : T 2 →̇ T
are natural transformations and such that TµA;µA = µTA;µA and ηTA;µA =
idTA = TηA;µA. Given a map f : A → TB, we define the map f∗ : TA → TB
by Tf ;µB .

LA ⊗ LB

dL
A,B

²²

△A⊗△B // (LA ⊗ LA) ⊗ (LB ⊗ LB)

sw

²²
(LA ⊗ LB) ⊗ (LA ⊗ LB)

dL
A,B⊗dL

A,B

²²
L(A ⊗ B)

△(A⊗B)

// L(A ⊗ B) ⊗ L(A ⊗ B)

⊤
λ
−1
⊤ //

dL
⊤ ²²

⊤⊗⊤

dL
⊤⊗dL

⊤²²
L⊤

△⊤

// L⊤⊗ L⊤

LA ⊗ LB
♦A⊗♦B//

dL
A,B ²²

⊤⊗⊤

λ⊤

²²
L(A ⊗ B)

♦A⊗B

// ⊤

⊤
id //

dL
⊤

%%LLLLLLLL ⊤;

L⊤
♦⊤

88rrrrrrrr

△A and ♦A are monoidal natural transformations.

LA
△A //

δA

²²

LA ⊗ LA

δA⊗δA²²
L2A ⊗ L2A

dL
LA,LA²²

L2A
L△A

// L(LA ⊗ LA),

LA
♦A //

δA

²²

⊤

dL
⊤

²²
L2A

L♦A

// L⊤;

LA
δA //

△A

²²

L2A,

△LA

²²
LA ⊗ LA

δA⊗δA

// L2A ⊗ L2A

LA
δA //

♦A ¾¾7
77

77
7 L2A.

♦LA¢¢¥¥
¥¥

¥¥

⊤

△A and ♦A are L-coalgebra maps. δA is a comonoid morphism.

Table 4. Equations for a linear exponential comonad

Definition 4. A strong monad over a monoidal category C is a monad (T, η, µ)
together with a natural transformation tA,B : A ⊗ TB → T (A ⊗ B), called the
tensorial strength, subject to a number of coherence conditions.

Remark 1. If the category C is symmetric, the tensorial strength t induces two
natural transformations TA ⊗ TB → T (A ⊗ B), namely

Ψ1 : TA ⊗ TB
σT A,T B

−−−−−→ TB ⊗ TA
tT B,A

−−−−→ T (TB ⊗ A)
(σT B,A;tA,B)∗

−−−−−−−−−→ T (A ⊗ B),

Ψ2 : TA ⊗ TB
tT A,B

−−−−→ T (TA ⊗ B)
(σT A,B ;tB,A)∗

−−−−−−−−−→ T (B ⊗ A)
TσB,A

−−−−→ T (A ⊗ B).

Note that Ψ1 and Ψ2 might not be equal: the map Ψ1 “evaluates” the first variable
and then the second one. The map Ψ2 does the opposite. The strength is called
commutative if Ψ1 = Ψ2.

Definition 5. A symmetric monoidal category (C,⊗,⊤) together with a strong
monad (T, η, µ) is said to have T -exponentials [14], or Kleisli exponentials, if it
is equipped with a bifunctor ⊸ : C

op × C → C, and a natural isomorphism

Φ : C(A,B ⊸ C)
∼=

−−−−−→ C(A ⊗ B, TC).

Lemma 7. The map Φ induces a natural transformation εA,B : (A⊸B)⊗A →
TB defined by Φ(idA⊸B). ⊓⊔

3.3 Idempotent, strong monoidal comonad

A comonad (L, ǫ, δ) on some category is said to be idempotent if δ : L →̇ LL is
an isomorphism. A monoidal comonad (L, δ, ǫ, dL, dL) is strong monoidal if dL

⊤

and dL
A,B are isomorphisms.

Definition 6. Given a monoidal category (C,⊗,⊤) with an idempotent, strong
monoidal comonad (L, ǫ, δ), a bifunctor ⊸ : C

op × C → C, we define a canonical
arrow for C with respect to duplication by induction: For all objects A, the arrows
idA, ǫA, δA, dL

⊤ and dL
A,B are canonical. All expansions of canonical arrows with

respect to duplication are also canonical. An expansion of an arrow f : A → B
is defined to be either f or any of Lg,X ⊗ g, g ⊗ X, X ⊸ g, g ⊸ X, where
g is an expansion of f and X ranges over the objects of the category. Finally,
compositions of canonical arrows are also canonical.

Theorem 2 (Coherence for idempotent comonads). Given a category C

with the structure in Definition 6, if f, g : A → B are two canonical arrows with
respect to duplication, then they are equal. ⊓⊔

3.4 Linear category for duplication

We now have enough background to define a candidate for the categorical model
of the language we describe in Section 2.

Definition 7. A linear category for duplication is a category C with the follow-
ing structure:

– a symmetric monoidal structure (⊗,⊤, α, λ, ρ, σ);
– an idempotent, strongly monoidal, linear exponential comonad (L, δ, ǫ, dL, dL,

♦,△);
– a strong monad (T, µ, η);
– a Kleisli exponential ⊸.

The computational linear category is defined to be the Kleisli category CT , as
defined in [14].

Remark 2. A linear category for duplication gives rise to a double adjunction

CL

UL

&&
⊥ C

F L

gg

UT

((
⊥ CT , .

F T

ff Here the left adjunction arises from the co-

Kleisli category CL of the comonad L. It is as in the linear-non-linear models of
[4], and CL is a category of classical (non-quantum) values. The right adjunction
arises from the Kleisli category CT of the computational monad T , as in [14].
Here CT is a category of (effectful) quantum computations.

3.5 The category Cλ

Definition 8. We can define a category Cλ as follows: Objects are types, and
arrows A → B are axiomatic classes of valid typing judgments of the form
x : A ⊲ V : B, where V is a value. We define the composition of arrows
x : A ⊲ V : B and y : B ⊲ W : C to be x : A ⊲ let y = V in W : C.
The identity on A is set to be the arrow x : A ⊲ x : A.

Lemma 8. The category Cλ is well-defined.

αA,B,C = x : A⊗(B⊗C) ⊲ let〈y, z〉 = x in let〈t, u〉 = z in 〈〈y, t〉, u〉 : (A⊗B)⊗C
λA = x : ⊤⊗ A ⊲ let〈y, z〉 = x in let ∗ = y in z : A
ρA = x : A ⊗⊤ ⊲ let〈y, z〉 = x in let ∗ = z in y : A
σA,B = x : A ⊗ B ⊲ let〈y, z〉 = x in 〈z, y〉 : B ⊗ A
ηA = x : A ⊲ λ∗.x : ⊤⊸ A
µA = x : ⊤⊸(⊤⊸ A) ⊲ λ∗.(x∗)∗ : ⊤⊸ A
tA,B = z : A ⊗ (⊤⊸ B) ⊲ let〈x, y〉 = z in λ∗.〈x, y∗〉 : ⊤⊸(A ⊗ B)
ǫA = x : !A ⊲ xA : A

δA = x : !A ⊲ x!2A : !2A

d!
A,B = z : !A ⊗ !B ⊲ let〈x, y〉 = z in 〈x, y〉 : !(A ⊗ B)

d!
⊤ = z : ⊤ ⊲ let ∗ = z in ∗ : !⊤

△A = x : !A ⊲ 〈x, x〉 : !A ⊗ !A
♦A = x : !A ⊲ ∗ : ⊤

(x : A ⊲ V : B) ⊗ (y : C ⊲ W : D) = z : A ⊗ B ⊲ let〈x, y〉 = z in 〈V, W 〉 : C ⊗ D
(x : A ⊲ V : B) ⊸ (y : C ⊲ W : D) = z : B ⊸ C ⊲ λx.(let y = zV in W) : A ⊸ D
(x : A ⊲ V : ⊤⊸ B)∗ = y : ⊤⊸ A ⊲ λ∗. let x = (y∗) in (V ∗) : ⊤⊸ B
ΦA,B,C (x : A ⊲ V : B ⊸ C) = t : A ⊗ B ⊲ λ∗. let 〈x, y〉 = t in V y : ⊤ ⊸ C

Table 5. Definitions of maps and operations on maps in Cλ

Proof. The composition of two arrows yields an arrow axiomatically equivalent
to a value due to Axiom (βλ) and Lemma 5. Composition is associative due to
Axiom (let1). The arrow x : A ⊲ x : A is indeed the identity on A due to axioms
(αlet) and (β2

λ). ⊓⊔

Lemma 9. Given a valid typing judgment ∆ ⊲ V : A where V is a value,
there exists a canonical value V ′ such that Erase(V ′) = Erase(V) and such that
!∆ ⊲ V ′ : !A. We denote this V ′ by {!∆ <: ∆ ⊲ V : A :> A′}.

Proof. By induction on V . ⊓⊔

Lemma 10. If ∆ ⊲ V ≈ax W : A, and if V ′ = {!∆ <: ∆ ⊲ V : A :> A′} and
W ′ = {!∆ <: ∆ ⊲ W : A :> A′}, then V ′

≈ax W ′.

Proof. By induction on V ≈ax W . ⊓⊔

Theorem 3. If we define T (A) := ⊤ ⊸ A and L(A) =!A, together with the
maps and the operations on maps defined in Table 5, Cλ is a linear category for
duplication.

Proof. The proof is mainly a long list of verifications. It uses Theorem 1, Lem-
mas 8, 9 and 10. ⊓⊔

4 Denotational semantics

4.1 Interpretation of the language

The lambda-calculus defined in Section 2 is thought as a computational lambda-
calculus. Using Moggi’s technique, we split the interpretation of the language

into the interpretation of the values in a linear category for duplication C and
the interpretation of the computations, i.e. general terms, in its Kleisli category
CT . Without loss of generality, for notation purposes, we assume the category
to be strictly monoidal.

We define an interpretation of the type system to be a map Θ that assigns
to each constant type α an object Θ(α). Each type A is interpreted as an object
of C: [[α]]Θ = Θ(α), [[⊤]]Θ = ⊤, [[!A]]Θ = L[[A]]Θ, [[A ⊗ B]]Θ = [[A]]Θ ⊗ [[B]]Θ and
[[A ⊸ B]]Θ = [[A]]Θ ⊸ [[B]]Θ.

Given a valid subtyping A<:B, there exists a canonical arrow [[A]]Θ → [[B]]Θ
in C with respect to duplication, as defined in Definition 6. Moreover, this arrow
is unique by Theorem 2. We extend the map Θ to interpret A<:B as this unique
arrow and we denote it by IA,B .

We use the following straightforward shortcut definitions, where A,A′, B,B′

are types and ∆, Γ and Γ ′ are typing contexts:

– Split !∆,Γ,Γ ′ : [[!∆]] ⊗ [[Γ]] ⊗ [[Γ ′]] → [[!∆]] ⊗ [[Γ]] ⊗ [[!∆]] ⊗ [[Γ ′]].
– Given f : [[!∆]] ⊗ [[Γ]] → [[A]] and g : [[!∆]] ⊗ [[Γ ′]] → [[B]], we define the map

f ⊗!∆ g : [[!∆]] ⊗ [[Γ]] ⊗ [[Γ ′]] → A ⊗ B.
– Given a natural transformation nA : FA → GA, if ∆ = {x1 : A1 . . . xn : An}

we define n∆ = n[[A1]] ⊗ . . . ⊗ n[[An]].

Definition 9. The map Θ is said to be an interpretation of the language if
moreover it assigns to each constant term c : Ac an arrow Θ(c) : ⊤ → [[Ac]] in C.

Given a linear category for duplication C, it is possible to interpret the typing
derivation of a well-typed value as a map in C and the typing derivation of a valid
computation as a map in the Kleisli category CT . We define them inductively.

– If x1 : A1, . . . xn : An ⊲ V : B is a value with typing derivation π, its value
interpretation [[π]]

v
Θ is an arrow [[A1]] ⊗ . . . ⊗ [[An]] →C [[B]];

– if x1 : A1, . . . xn : An ⊲ M : A is a term with typing derivation π, its
computational interpretation [[π]]

c
Θ is an arrow [[A1]]⊗ . . .⊗ [[An]] →C T ([[B]]).

Table 6 formulates the definition in the simple case where the contexts ∆, Γ1 and
Γ2 contain only one variable. One can easily extend this to the general setting.

As we already noted in Section 2.4, a valid typing judgment does not have a
unique typing tree per se. However the following result holds:

Theorem 4. Given a valid typing judgment with two typing derivations π and
π′, for any interpretation Θ we have [[π]]

c
Θ = [[π′]]

c
Θ (and [[π]]

v
Θ = [[π′]]

v
Θ if the

typing judgment is a value).

Proof. The proof is done by showing that given any typing judgment ∆ ⊲ M : A
with denotation f one can factor f as ♦!Γ ⊗ f̄ , where f̄ is the denotation of
∆′ ⊲ M : A, where ∆′, !Γ = ∆ and |Γ | is the set of dummy variables. ⊓⊔

Definition 10. Given a interpretation Θ of the language in a category C, we de-
fine the denotation of a valid typing judgment ∆ ⊲ M : A with typing derivation
π to be [[∆ ⊲ M : A]]

c
Θ = [[π]]

c
Θ and [[∆ ⊲ M : A]]

v
Θ = [[π]]

v
Θ if M is a value.

Interpretation of core values:

[[!∆, x : A ⊲ x : B]]vΘ = [[!∆]] ⊗ [[A]]
♦∆⊗IA,B
−−−−−−−→ [[B]]

[[!∆ ⊲ c : B]]vΘ = [[!∆]]
♦∆−−→ ⊤

Θ(c)
−−−→ [[Ac]]

IAc,B
−−−−→ [[B]]

[[!∆ ⊲ ∗ : !n⊤]]vΘ = [[!∆]]
♦∆−−→ ⊤

dL
⊤−−→ L⊤

I!⊤,!n⊤
−−−−−→ Ln⊤

[[∆, x : A ⊲ M : B]]cΘ = [[∆]] ⊗ [[A]]
f
−→ T ([[B]])

[[∆ ⊲ λx.M : A ⊸ B]]vΘ = [[∆]]
Φ−1(f)
−−−−−→ [[A]] ⊸ [[B]]

[[!∆, x : A ⊲ M : B]]cΘ = [[!∆]] ⊗ [[A]]
f
−→ T ([[B]])

[[!∆ ⊲ λx.M : !n+1(A ⊸ B)]]
v

Θ = [[!∆]]
L(Φ−1f);I

!(A⊸B),!n+1(A⊸B)
−−−−−−−−−−−−−−−−−−−−→ Ln+1([[A]] ⊸ [[B]])

Interpretation of extended values:

[[!∆, Γ1 ⊲ V : A]]vΘ = [[!∆]]⊗[[Γ1]]
f
−→ [[A]] [[!∆, Γ2, x : A ⊲ W : B]]vΘ = [[!∆]]⊗[[Γ2]]⊗[[A]]

g
−→ [[B]]

[[!∆, Γ2, Γ1 ⊲ let x = V in W : B]]vΘ = [[!∆]]⊗[[Γ2]]⊗[[Γ1]]
id⊗!∆f
−−−−−→ [[!∆]]⊗[[Γ2]]⊗[[A]]

g
−→ [[B]]

[[!∆, Γ1, ⊲ V : !n(A1 ⊗ A2)]]
v

Θ = [[!∆]]⊗[[Γ1]]
f
−→ Ln([[A1]] ⊗ [[A2]])

[[!∆, Γ2, x : !nA1, y : !nA2 ⊲ W : C]]vΘ = [[!∆]]⊗[[Γ2]]⊗Ln[[A1]] ⊗ Ln[[A2]]
g
−→ [[C]]

[[!∆, Γ2, Γ1 ⊲ let〈x, y〉n = V in W : C]]vΘ = [[!∆]]⊗[[Γ2]]⊗[[Γ1]]
id⊗!∆f
−−−−−→ [[!∆]]⊗[[Γ2]]⊗Ln([[A1]]⊗[[A2]])

id⊗
“

dLn

[[A1]],[[A2]]

”

−1

−−−−−−−−−−−−−→ [[!∆]]⊗[[Γ2]]⊗Ln[[A1]]⊗Ln[[A2]]
g
−→ [[C]]

[[!∆, Γ2 ⊲ V : ⊤]]vΘ = [[!∆]] ⊗ [[Γ2]]
f
−→ ⊤ [[!∆, Γ1 ⊲ W : C]]vΘ = [[!∆]] ⊗ [[Γ1]]

g
−→ [[C]]

[[!∆, Γ1, Γ2 ⊲ let ∗ = V in W : C]]vΘ = [[!∆]]⊗[[Γ1]]⊗[[Γ2]]
id⊗!∆f
−−−−−→ [[!∆]] ⊗ [[Γ1]]

g
−→ [[C]]

[[!∆, Γ1 ⊲ V : !nA]]vΘ = [[!∆]] ⊗ [[Γ1]]
f
−→ Ln[[A]] [[!∆, Γ2 ⊲ W : !nB]]vΘ = [[!∆]] ⊗ [[Γ2]]

g
−→ Ln[[B]]

[[!∆, Γ1, Γ2 ⊲ 〈V, W 〉n : !n(A ⊗ B)]]vΘ = [[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]
f⊗!∆g
−−−−→ Ln[[A]] ⊗ Ln[[B]]

dLn

A,B
−−−→ Ln([[A]] ⊗ [[B]])

Interpretation of computations: First, if U is a core value, [[∆ ⊲ U : A]]cΘ = [[∆ ⊲ U : A]]vΘ; ηA.

[[!∆, Γ1 ⊲ M : A ⊸ B]]cΘ = [[!∆]] ⊗ [[Γ1]]
f
−→ T ([[A]] ⊸ [[B]]) [[!∆, Γ2 ⊲ N : A]]cΘ = [[!∆]] ⊗ [[Γ2]]

g
−→ T ([[A]])

[[!∆, Γ1, Γ2 ⊲ MN : B]]cΘ = [[!∆]]⊗[[Γ1]]⊗[[Γ2]]
f⊗!∆g
−−−−→ T ([[A]]⊸[[B]])⊗T ([[A]])

Ψ1−−→ T (([[A]]⊸[[B]])⊗[[A]])
ε∗A,B
−−−→ T ([[B]])

[[!∆, Γ1 ⊲ M : !n(A1 ⊗ A2)]]
c

Θ = [[!∆]] ⊗ [[Γ1]]
f
−→ TLn([[A1]] ⊗ [[A2]])

[[!∆, Γ2, x : !nA1, y : !nA2 ⊲ N : C]]vΘ = [[!∆]] ⊗ [[Γ2]] ⊗ Ln[[A1]] ⊗ Ln[[A2]]
g
−→ T ([[C]])

[[!∆, Γ2, Γ1 ⊲ let〈x, y〉n = M in N : !nC]]cΘ = [[!∆]] ⊗ [[Γ2]] ⊗ [[Γ1]]
id⊗!∆f
−−−−−→ [[!∆]] ⊗ [[Γ1]] ⊗ TLn([[A1]] ⊗ [[A2]])

t;T

„

id⊗
“

dLn ”

−1
«

−−−−−−−−−−−−→ T ([[!∆]] ⊗ [[Γ1]] ⊗ Ln[[A1]] ⊗ Ln[[A2]])
g∗

−→ T [[C]]

[[!∆, Γ2 ⊲ M : ⊤]]cΘ = [[!∆]] ⊗ [[Γ2]]
f
−→ T (⊤) [[!∆, Γ1 ⊲ N : C]]cΘ = [[!∆]] ⊗ [[Γ1]]

g
−→ T ([[C]])

[[!∆, Γ1, Γ2 ⊲ let ∗ = M in N : C]]cΘ = [[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]
id⊗!∆f
−−−−−→ [[!∆]] ⊗ [[Γ1]] ⊗ T (⊤)

t;g∗

−−→ T ([[C]])

[[!∆, Γ1 ⊲ M : !nA]]cΘ = [[!∆]] ⊗ [[Γ1]]
f
−→ TLn[[A]] [[!∆, Γ2 ⊲ N : !nB]]cΘ = [[!∆]] ⊗ [[Γ2]]

g
−→ TLn[[B]]

[[!∆, Γ1, Γ2⊲〈M, N〉n : !n(A⊗B)]]cΘ = [[!∆]]⊗[[Γ1]]⊗[[Γ2]]
f⊗!∆g
−−−−→ TLn[[A]]⊗TLn[[B]]

Ψ1;TdLn

A,B
−−−−−−→ TLn([[A]]⊗[[B]])

Table 6. Interpretation of values and computations.

Lemma 11. Suppose that ∆ ⊲ V : A is a valid typing judgment where V is a

value. Then [[∆ ⊲ V : A]]
c

= [[∆]]
[[∆⊲V :A]]v

−−−−−−−→ [[A]]
η[[A]]
−−−→ T ([[A]]).

Proof. Proof by induction on V , using the bifunctoriality of ⊗LA and the equa-
tions for strong monadicity in Definition 4. ⊓⊔

4.2 Soundness of the denotation

The axiomatic equivalence and the categorical semantics are two faces of the
same coin. Indeed, as we will prove in this section, two terms in the same ax-
iomatic equivalence class have the same denotation. A corollary is that the in-
dexation of terms does not influence the denotation. This proves semantically
the fact that it is safe to work with untyped terms. An alternate justification of
this fact is of course the operational semantics, which was given in [19].

Lemma 12. Suppose M ′ = {∆′ <: ∆ ⊲ M : A <: A′}. Then [[∆′ ⊲ M ′ : A′]]
c

=
I∆′,∆; [[∆ ⊲ M : A]]

c
;T (IA,A′). If M = V is a value, from Lemma 4, M ′ = V ′ is

a value. Then [[∆′ ⊲ V ′ : A′]]
v

= I∆′,∆; [[∆ ⊲ V : A]]
v
; IA,A′ .

Proof. Proof by structural induction on M . ⊓⊔

Lemma 13 (Substitution). Given two valid typing judgments !∆,Γ1, x : A ⊲

M : B and !∆,Γ2 ⊲ V : A, the typing judgment !∆,Γ1, Γ2 ⊲ M [V/x] : B is
valid. Let h be [[!∆,Γ1, Γ2 ⊲ M [V/x] : B]]

c
and h′ be [[!∆,Γ1, Γ2 ⊲ W [V/x] : B]]

v
,

in the case where M = W is a value. Then they are defined by
[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !∆,Γ1,Γ2

²²

h // T ([[B]])

[[!∆]]⊗[[Γ1]]⊗[[!∆]]⊗[[Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆]]⊗[[Γ1]]⊗[[A]],

[[!∆,Γ1,x:A⊲M :B]]c

OO
[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !∆,Γ1,Γ2

²²

h′

// [[B]]

[[!∆]]⊗[[Γ1]]⊗[[!∆]]⊗[[Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆]]⊗[[Γ1]]⊗[[A]].

[[!∆,Γ1,x:A⊲W :B]]v

OO

Proof. Proof by induction on M , using Lemma 1, Lemma 11 and the naturality
of Φ. ⊓⊔

Theorem 5. If ∆ ⊲ M ≈ax M ′ : A then [[∆ ⊲ M : A]]
c
Θ = [[∆ ⊲ M ′ : A]]

c
Θ (and

[[∆ ⊲ M : A]]
v
Θ = [[∆ ⊲ M ′ : A]]

v
Θ if M is a value) for every interpretation Θ.

Proof. Proof by induction on M ≈ax M ′, using Lemmas 12 and 13. ⊓⊔

Corollary 1. If Erase(M) = Erase(M ′) and if ∆ ⊲ M,M ′ : A are valid typing
judgments, then [[M]]

c
= [[M ′]]

c
(and [[M]]

v
= [[M ′]]

v
if M is a value).

Proof. Corollary of Theorems 1 and 5. ⊓⊔

4.3 Completeness

The category Cλ being a linear category for duplication, one can interpret the
language in it. This section states that the defined lambda-calculus is an internal
language of linear categories for duplication.

Since the category Cλ is a monoidal category, one can w.l.o.g. generalize the
notion of pairing to finite tensor products of terms. Then the following results
are true:

Lemma 14. In Cλ, a valid typing judgment x1 : A1, . . . xn : An ⊲ M : B has
for computational denotation (t : A1 ⊗ · · · ⊗ An ⊲ let〈x1, . . . xn〉 = t in λ∗.M :
⊤⊸B). If M = V is a value, the value interpretation is (t : A1 ⊗ · · · ⊗ An ⊲

let〈x1, . . . xn〉 = t in V : B).

Proof. Proof by structural induction on M and V . ⊓⊔

Theorem 6. In Cλ, Θ being the identity, one has [[x : A ⊲ M : B]]
c
Θ ≈ax (x :

A ⊲ λ∗.M : ⊤ ⊸ B) and [[x : A ⊲ V : B]]
v
Θ ≈ax (x : A ⊲ V : B).

Proof. Corollary of Lemma 14 ⊓⊔

5 Towards a denotational model of quantum lambda
calculus

As noted in the introduction, this paper is mostly concerned with the categorical
requirements for modeling a generic call-by-value linear lambda calculus, i.e., its
type system (which includes subtyping) and equational laws. We have not yet
specialized the language to a particular set of built-in operators, for example,
those that are required for quantum computation.

However, since the quantum lambda calculus [19] is the main motivation
behind our work, we will comment very briefly on what additional properties
would be required to interpret its primitives. The quantum lambda calculus is
obtained by instantiating and extending the call-by-value language of this paper
with the following primitive types, constants, and operations:

Types: bit , qbit
Constants: 0 : !bit , 1 : !bit

new : !(bit ⊸ qbit), U : !(qbitn
⊸ qbitn), meas : !(qbit ⊸ !bit)

Operations:
Γ1, !∆ ⊲ P : bit Γ2, !∆ ⊲ M : A Γ2, !∆ ⊲ N : A

Γ1, Γ2, !∆ ⊲ if P then M else N : A
(if)

Here, U ranges over a set of built-in unitary operations. In the intended
semantics, !bit ∼= bit , while !qbit is empty. new creates a new qubit, and meas
measures a qubit.

The denotational semantics of these operations is already well-understood in
the absence of higher-order types. They can all be interpreted in the category
Q of superoperators from [18]. The part that is not yet well-understood is how
these features interact with higher-order types.

In light of our present work, we can conclude that a model of the quantum
lambda calculus consists of a linear category for duplication (C, L, T,⊸), such
that the associated category of computations CT contains the category Q of [18]
as a full monoidal subcategory. To construct an actual instance of such a model
is still an open problem.

6 Conclusion

We have developed a call-by-value, computational lambda-calculus for manip-
ulating duplicable and non-duplicable data, together with an axiomatic equiv-
alence relation on typed terms. We use a subtyping relation in order to have
implicit promotion, dereliction, copying and discarding. Then we developed cat-
egorical model for the language, inspired by the work of [8] and [14]. We finally
showed that the model is sound and complete with respect to the axiomatic
equivalence.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer
Science 111 (1993) 3–57

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In:
Proceedings of LICS’04. (2004) 415–425

3. Barendregt, H.P.: The Lambda-Calculus, its Syntax and Semantics. North Holland
(1984)

4. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models (ex-
tended abstract). In: Proceedings of CSL’94, Selected Papers. Volume 933 of Lec-
ture Notes in Computer Science. (1994) 121–135

5. Benton, N., Bierman, G., de Paiva, V.C.V., Hyland, M.: A term calculus for
intuitionistic linear logic. In: Proceedings of TLCA’93. Volume 664 of Lecture
Notes in Computer Science. (1993) 75–90

6. Benton, N., Bierman, G., Hyland, M., de Paiva, V.C.V.: Linear lambda-calculus
and categorical models revisited. In: Proceedings of CSL’92, Selected Papers.
Volume 702 of Lecture Notes in Computer Science. (1992)

7. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Pro-
ceedings of LICS’96. (1996) 420–431

8. Bierman, G.: On Intuitionistic Linear Logic. PhD thesis, Computer Science De-
partment, Cambridge University (1993)

9. Coecke, B.: Quantum information-flow, concretely, abstractly. [17] 57–73
10. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In Chen, G.,

Kauffman, L., Lomonaco, S.J., eds.: Mathematics of Quantum Computation and
Technology. Chapman & Hall (2007) 559–596

11. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of
POPL’05, ACM Press (2005)

12. Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed
computation: operational semantics. [17] 109–126

13. Mac Lane, S.: Categories for the Working Mathematician. Springer Verlag (1998)
14. Moggi, E.: Notions of computation and monads. Information and Computation

93 (1991) 55–92
15. Schalk, A.: What is a model for linear logic. Manuscript (2004)
16. Seely, R.A.G.: *-autonomous categories and cofree coalgebras. Contemporary

Mathematics 92 (1989)
17. Selinger, P., ed.: Proceedings of QPL’04. TUCS General Publication No 33, Turku

Centre for Computer Science (2004)
18. Selinger, P.: Towards a quantum programming language. Mathematical Structures

in Computer Science 14 (2004) 527–586
19. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical

control. Mathematical Structures in Computer Science 16 (2006) 527–552
20. Selinger, P., Valiron, B.: On a fully abstract model for a quantum linear functional

language. In: Preliminary proceedings of QPL’06. (2006) 103–115
21. van Tonder, A.: A lambda calculus for quantum computation. SIAM Journal of

Computing 33 (2004) 1109–1135
22. Wadler, P.: There’s no substitute for linear logic. Manuscript, presented at

MFPS’92 (1992)
23. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299

(1982) 802–803

