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Algebraic lambda-calculi have been studied in various whystheir semantics remain mostly un-
touched. In this paper we propose a semantic analysis of ergiesimply-typed lambda-calculus
endowed with a structure of vector space. We sketch theioplatith two established vectorial
lambda-calculi. Then we study the problems arising fromatidition of a fixed point combinator
and how to modify the equational theory to solve them. Weckah algebraic vectorial PCF and its
possible denotational interpretations.
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1 Introduction

Notions of lambda-calculus with vectorial structures havdeast three distinct origins. A first line
of work [6, [8,[3], from which the term “algebraic lambda-aales” comes from, focuses on general
algebraic rewrite systems and studies the conditions need@btaining properties such as confluence
or strong normalization. The second one is the calculus oik\l&7], building up upon the work of
Ehrhard and Regnier][7]. The goal here is to capture a nofialifferentiation within lambda-calculus.
Finally, algebraic lambda-calculus also arises in the vadrkrrighi and Dowek[[2] where they define a
lambda-calculus oriented towards quantum computatiotharstyle of Van Tonde([16].

Both [2] and [17] are concerned with a lambda-calculus ertbwith a structure of vector space.
They both acknowledge the fact that for an untyped lambdaikes, a naive rewrite system renders
the language inconsistent, as any term can be made equad eth of the vectorial space of terms.
However, coming from different backgrounds, they providiéecent solutions to the problem. Inl[2],
the rewriting system is restrained in order to avoid unwamgualities of terms. I [17], the rewriting
system is untouched, but the scalars over which the vetsiriacture is built are made into a semiring
with particular properties, making the system consistemtally, [1] shows that a type system enforcing
strong normalization is also a mean of solving the problem.

In this paper, we turn to the question of a semantics for a tivdalculus endowed with a structure
of vector space (or more generally, a structure of modul@yti8g with an untyped lambda-calculus and
a naive rewrite system, we recall where inconsistenciesrod@tien we construct a simply-typed version
of the untyped language together with an equational desmmip In this restricted setting, the rewrite
system is sound, and we describe a denotational semanitigsausomputational model a la Mog@L]12].
We also show how one can relate this language to the one beddri [2] and[[1F]. We then re-read the
problems that occurred in the untyped world, and find a sirsplation for making the system sound
again in the presence of diverging terms, finding an agreewmi¢éimthe solution in[[1F]. The solution in
this paper goes however a step further, proposing a demoshtramework for the calculus.
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2 Semantics of a Typed Algebraic Lambda-Calculus

1.1 Anuntyped calculus

Consider a rind 7, +,0, x,1). Elements ofe7 are calledscalars We define a call-by-value language
as follows.

st = x|Axs|st|s+t|a-s|0|[s]|{s},
uv = X|Axu|uv|[s],

wherea ranges over, and wherex ranges over a fixed set of variables. Terms of the ferrare
calledcomputationsnd terms of the form, v are calledvalues We define variable substitution as usual
and consider terms up tw-equivalence. The meanings of the unusual terms are egplamthe next
section.

1.2 A naive reduction system

A very naive reduction is to make the set of terms into a modubs a ring«/, with the term0 as unit
of the addition. More precisely, a terareduces to a term writtens — t, if there exist terms andt’
respectively equivalent modulo congruence, associatantd commutativity of+ to sandt such that the
relations — t’ is derived from the rules of Tablé 1. Although we do not ddsefiormally the system
here (a complete development is done in Sediich 2.1), thectiedh should be straightforward enough
for the remainder of the discussion.

In particular, the addition is commutative and associatitie termg —t and 0-t equate the term
0. All term constructs are linear with respect to addition aodlar multiplication exceqt_ |, which
“lifts” a computation into a value. One can unlift it usiqg- }, and retrieve the computation. Finally,
the system is call-by-value: the beta-reductidix.s)v reduces tex < V] only if vis a value.

GroupE

a-0 - 0 0+s — s a-(B-s) — (aB)-s
(x) 0os — O 1.s - s a-(s+t) — a-s+a-t

GroupF

+ B's — (a+p)s

+ s — (a+1)-s

+ s — (1+1)-s
GroupA

a -
a -

n nu un

(s+t)r — sr+tr (a-s)r —a-(sr) or—0

r(s+t) —rs+rt r(a-s)— a-(rs) ro—0

AX.(S+1t) = AXSs+Axt  Ax(a-s)— a-Axs Ax0—0

{s+t}—{s}+{t} {a-s}j—a-{s} {0}—-0
GroupB

(AX.S)V — gX V] {[s]}—s

Table 1: Reduction systein
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For example, the term fx.(fx)x)(y + z) reduces to f.(fy)y+ A f.(fz)z On the contrary, the
computationAxf.(f{x }){ x })[ y+ z] reduces to the sum of terms.(fy)y+ A f.(fz)y+A f.(fy)z+
Af.(fz)z

It is possible to build the same term constructs as with thalag untyped lambda-calculus [4]. For
example, the produgts,t ) of two termss andt can be encoded asf.(fs)t, the first projectiorvg (s)
of a pairs as the terns(Axyx) and the second projectiam(s) ass(Axy.y). Note that, since all usual
lambda-term constructs are linear with respect to adddiwh scalar multiplication in each variable, the
new term construct$ —, — ), 7, 7& are also linear in each variable. In particular, one can ctieat
(s+8,t+t')=(st)+(s,t)+(st')+(s,t'). These term constructs are introduced in the simply-
typed lambda-calculus of Sectibh 2.

1.3 Breaking consistency

Although the set of requirements looks reasonable, as wasrsin [2], the equational system is not
sound. Indeed, given any term b one can construct theXgen{ (Ax.[{ xx} +b])(Ax[{xx}+b]) }
verifying the reduction

Yo — Yo+ b. (l)
This creates a problem of consistency, as enlightened ifotlosving sequence of equalities:
0=Y%—Yo=M+b)—Yo=b+Y—Yp) =h. (2

This successfully shows that any term can be equat&drendering the system inconsistent.

2 A simply-typed lambda-calculus

The problem occurring in Sectidn_1.3 is due to the possybdit constructing diverging terms. In this

section we study a simply-typed, algebraic lambda-catcuiquipped with a naive reduction system, it
verifies strong normalization. This allows us in Secfibn @nalyze carefully the pitfalls occurring when
adding divergence.

AX:AEX:A,
AbEx:T, AFs:A—B .
AFO:A AFt:A } = AFst:B,
AXx:AFs:B = AFAXS:A—B,
AFs:AxB = AFTm(s) A, AFs:A .
AFs:AxB — AFm(s):B,  Art:B [ — AF{St):AxB

AFs:A = AR a-s:A
AFs:MA = AF{s}:A
AFs:A = AF[s]:MA

AFs:A

ALt:A } = AFSs+t:A

Table 2: Typing rules.

Definition 2.1. We suppose the existence of a rimg, containing a multiplication and an addition.
A simply-typed, call-by-value, algebraic lambda-calaukalled thecomputational algebraic lambda-
calculusis constructed as follows. Types are of the form

AB = I |[A—>B|AxB|T|MA,
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wherel ranges over a set of type constants. Terms again come in tvaodla

st = x|Axs|st|(st)|m(s)|m®m(s) | * |s+t|a-s|O0|[s]|{s},
uv = X|Axuluv|{(uVv)|m(u)| m) | |[s],

wherea € «7. Terms of the forns,t are calledcomputation@nd terms of the form, v are calledvalues
The term[ s] is the closure of a computation: such a term is not linear ancoe duplicated “as it”. The
term construcf{ — } breaks such a closure and “runs” the computation.

We define the notions of typing contei&tand of typing derivatiod - s: A in the usual way(113].
Terms are considered up toequivalence, and valid typing derivations are built uding rules of Ta-
ble[2.

2.1 Small-step semantics

The type system is valid with respect to the reduction systestribed in TablEl1, modulo the addition
of rules for the added term constructs concerning the ptodnche following, we use the terminology
of [2].

Definition 2.2. Given any relatiorR on terms, we say that it is @all-by-value congruent relatioif
for all pairs (s,9),(t,t') € R, the pairs(st,st'), (st,St), (s+t,s+1t'), (s+t,8 +1), ({st),(st')),
((st),(d,t)), (BS,®9), (ms,ms), (a-s,a-5)and({s},{s }) are inR We say thaR is con-
gruentif it is call-by-value congruent and if for all paifs,s) € R, we also havgAx.s,Ax.s), ([s],[S])
inR.

Definition 2.3. We define~ac to be the smallest congruent, equivalent relation on teatisfging s+
t~act+sandr+ (s+t)~ac(r+s)+t. We say that a relatioR is consistent with~ac if sS~acSRY ~act
impliessRt

Definition 2.4. A normaltermsis such that there does not exist a termith s— t. A rewrite sequence
is a sequencés ); of terms such that for all eithers — s.; or 5 is normal and is the last index of the
sequence.

Definition 2.5. We define the call-by-value reduction systei$, A andB of terms as the smallest call-
by-value congruent relations consistent withc, satisfying the rules in Tabld 1 wheBeis augmented
with the rulesrq (u,v) — uandm(u,v) — v. In all the given rules, the termsv are assumed to be
values. We writd for the relationAUBUEUF.

Convention 1. If Ris a relation, we writes —rt in place of(s;t) € R. We simply write— in place of
—, and ifs—t, we say thasreduces td. We denote with—§ the reflexive, transitive closure efg.

Lemma 2.6(Substitution) LetA v: A andA,x: At s: B be two valid typing derivations, where vis a
value. Ther\F s[x < v] : B is a valid typing derivation.

Proof. By structural induction on the typing derivation &fx : A+ s: B. O

Lemma 2.7(Subject reduction)LetAt+ s: A be a valid typing judgment such thatst. ThenAFt: A
is also valid.

Proof. Proof by structural induction on the tesand inspection of the reduction rules, using Lerhimh 2.6
for the first rule of group B. O
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Theorem 2.8(Safety) Suppose that s: A is a valid typing judgment. Then eitherst with -t : A,
or s is normal.

Proof. By case distinction on the structure $fusing Lemma&2]7. O

As for the simply-typed lambda-calculus, the reductiontesysis normalizing. The proof uses the
fact that the rewrite system consists of two parts: the rofegoups E,F,A and the rules of group B.

Lemma 2.9. Let s be any term. There exists an indgsuch that any rewrite sequen¢g); in EUF UA
with § = s consists of at most lements.

Proof. We define two measures on terms. First, the “plus-numbes’,ofvritten np(s), and defined
by np(0) = np(x) = np() = 1, np(Ax.) = Np(7e()) = Np(7a(s)) = np({ s }) = np(a - §) = 2np(9),
np(st) = np({s,t)) = 2np(s)np(t), andnp(s+t) = 1+ np(s) + np(t). Then, the “scalar-complexity
of &', written cx(s), and defined byx(0) = cx(X) = cx(x) = 1, cx(Ax.s) = cX(T&(S)) = cX(Ta(s)) =
cx({ s}) =2cx(s), ex(st) =cx(( st )) = cx(s+t) = 2np(s) np(t), andcx(a - s) = 1+ cx(s). The lemma
is proved by induction oiinp(s),cx(s)) with the lexicographic order. O

Theorem 2.10(Normalization) Let - s: A be a valid typing judgment. There exists an indgsuch
that any rewrite sequends; ); with § = s is finite and of at mostrelements.

Proof. The proof uses reducibility candidates, and follows theppoovided in [9]. Lemm&Z]9 is used
to handle the cases where addition and scalar multiplicatie involved. O

Theorem 2.11(Confluence) Suppose that s is typable. Ifs*t and s—* t/, there exists a term r such
thatt —*randt —*r.

Proof. We first prove that for all terms, if s— t ands — t’ then there exists a termsuch that —* r
andt’ —* r. We then prove the theorem using strong normalization, Hudtion on the length of the
longest sequence of reductions. O

2.1.1 Example: simulating quantum computation

As an example of the expressiveness of the language, weavftii® motivation of[[2] and show that we
can simulate quantum computation using the computatidgabeaic lambda-calculus.

Quantum computation is a paradigm where data is encodedeastdle of objects governed by the
law of quantum physics. The mathematical description ofamtium boolean is a (hormalized) vector in
a 2-dimensional Hilbert spadd. In order to give sense to this vector, we choose an orthcaldoasis
{10),]1)}. A vectora|0) + B|1) is understood as the “quantum superposition” of the booleand the
boolean 1.

For simulating quantum computation, we therefore chooseritig <7 to be the field of complex
numbers. Given an arbitrary type we can represent a quantum boolean in the computationethraig
lambda-calculus as a closed value of tygmol= MX — (MX — MX). We encodex|0) + 3]1) as
Axyla-{x}+B-{y}]. Wewritett for Axy.[ { x } | andff for Axy.[{y}].

The operations we can perform on quantum booleans are ofam& ©uantum gates and measure-
ments. In the mathematical description, the former comeggo unitary maps. The Hadamard gate is
such a unitary, sendin@) to %(|O> +1]1)) and|1) to %(|O> —1]1)). It can be written as the term

H =AxAab[{x 7-({a} + {b}) ][ 73-({a} — {b}) ]}]
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of type gbool— gbool Applying the Hadamard gate to a quantum boole@computing the ternii b.

A measurement has a probabilistic outcome and does not heatiséactory description as function
of H. Itis customary to represent quantum booleans wéhsity matricesthat is, positive matrices of
norm one. The measurement operation becomes the map senaliagix to its diagonal.

In order to model measurements, we can use the fact thatrijadge features higher-order terms
and we encode a positive matrix as a term of tgpeol— gbool The quantum booleam|0) + 3|1) is
encoded as the termequal to

AxAab[ {x| aa-{a} +aB-{b} ][aB-{a} +BB-{b} ]} ].

The application of the Hadamard gate/tis H'v, whereH’ is the termH’ = Ax.H (xH) of type (gbool—
gbool) — (gbool— gbool). The measurement is also of tyfghool — gbool) — (gbool— gbool) and
can be encoded as the teRrequal toAvAxAab[ {(vX)[{a}][0]+ (vX)[O][{ b} ]} ]. We can check
thatPvis indeed equal tdx.Aab[ {x[ aa-{a} ][ BB-{b} ]} ].

2.2 Equational theory

() 0-s~g0
1-s~u S
a-S+B-S=~a (a+p)-s

S+0 ~a« S
O-S+a-t ~ga-(s+t)
(r+s)+t ~a r+(s+t)

a-(B-s) ~ax (aB)-s S+t ~ax t+S
(r+a-st) =x (rt)+a-(st) Th(S+ o -t) ~ax TH(S)+ 0 - TH(t)
(rs+a-t) ~a (r,s)+a-(rnt) TB(S+a-t) ~ax TB(S)+a - TB(1)

(0,t) ~ax O m(0) ~ax O
(t,0) ~5x O B5(0) ~ax O
(r+a-sit ~a rt+a-(st) Ot ~ax O
r(s+a-t) ~ax rs+a-(rt) t0 5 O
AX(S+a-t) ~a AXS+a-(AXt) AX.0 25 O
{st+a-t} ~{s}t+a-{t} {0} ~ax O
m(uV) ~a U [{u}] ~axu
TB(UV) ~aq V {[s]} ~ax S
(m(u), (u) ) ~ax U (Ax{ st ~ax { (Ax9)t }
(AX.U)V 2~ U[V/X] ((Axyr)sit ~ax ((Ayxr)t)s
AX.(UX) ~ax U (AXD)((AY.9)t) ~ax (AY.(AXr)s)t
(AX.X)S ~ax S U gy *

Table 3: Axiomatic equivalence relation.
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Together with its type system, the computational algedeaidda-calculus shares some strong sim-
ilarities with Moggi's computational lambda-calculusi2lthough the notations used for the monad
term constructs are closer ad [8]). We follow the same patldéfining a model for the algebraic lambda-
calculus.

Definition 2.12. We define an equivalence relationy on terms as the smallest congruent equivalence
relation consistent with-ac, closed unden-equivalence and the equations of TdHle 3. The relation is
the symmetric closure of the reductiarof Table[d, together with the rules taking into account the ne
term constructs.

Two valid typing judgment& F s t : A are said to bexiomatically equivalentwritten A - s~ t : A,
if s~at is provable.

Definition 2.13. We define a«/-enriched computational category to be a cartesian cloagefjory
(¢, x,=,1), together with a strong mondi, n, u,t), such that the Kleisli category is enriched over
the category ofZ-modules. We refer the reader to the literature for the defims (e.g. [12, 10, 11]).

Example 2.14. The category of sets and functions together with the mdhaénding a seX to the free
module generated by is a.«7-enriched computational category.

Definition 2.15. We define the categoryi as follows: objects are types and morphisfs- B are
axiomatic equivalent classes of typing judgment#\+ v : B (wherev is a value).

Theorem 2.16. The category¢ is a.o/-enriched computational category. The cartesian closedgire
is given by the classical subset of the language in the usagl(eee e.g.[[11]). The monad M sends A
to MAand x A-u:Btoy: MAF [ (Ax.u){y}]:MB, and the three required morphisms ajg = x:
AF[X]:MA, pa =X MMAF [{{x}}]:MA tag=x: MAXBF [({m(X)}, (X)) ]: M(AxB).
The enrichment 0% (A,MB) is given by the module structure of the term algebra. Comdidge two
maps f= (x: AFu:MB)and g= (x: Ak v:MB). We defind = (x: AF[0]: MB), f+g=(x: Ak
[{u}+{v}]:MB),a-f=(x:A-[a-{u}]:MB). O

Definition 2.17. Consider a</-enriched computational catego#y. We define the interpretation of
a computation[A -t : B]® as a morphism ir6y and the interpretation of a valygA-v: B]Y as a
morphism in%’. They are defined inductively, together with their obviousamings.

Theorem 2.18. If we interpret the computational algebraic lambda-calgulin 4 then the equations
[x:AFV:B]Y~ax(x: AFv:B) and[[x: At :B] ~ax(x: A [t]: MB) hold. O

2.3 Relation with other algebraic lambda-calculi

In this section, we relate the computational algebraic @dentalculus we described in the previous
section and the algebraic lambda-calculag of Vaux [17] and lineal, the algebraic lambda-calculus
Aiin Of Arrighi, Dowek and Diaz-Card [Z] 1]. Both languages canwritten using the term grammar
sti=x|Axs|st|s+t|0]a-s. Apossible simple type systemAsB::=1 | A— B, wherel is a base
type. The typing rules are the usual ones for the applicaiwhthe lambda-abstraction. For the sum,
the zero and the scalar multiplication, we use the typingsfibund in Tablgl2.

The main difference between the two languages is the remfusgistem.

Vaux’s lambda-calculus. In Ayg, the lambda-abstraction is linearx.(s+t) — Ax.s+Ax.t, the appli-
cation is linear on the left and non-linear on the righti s)t — rt +stbutr(s+t) 4 rs+rt. However,
(Ax.9)t — s[t/x] for any termt.
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This language is call-by-name: a function is fed with a cotapon (that is, a term in superpo-
sition). One can encodg,yg in the computational algebraic lambda-calculus as folloWs|)aig =
{x}, (AxS)ag = AX.(|S])alg, (St)aig = (S|)aig] (t)aig]- Types are encoded as followsi |)ag = 1,
(A = Bl)aig = M(|Alaig — (|B)alg-

If x: AFs:Bis avalid typing judgment iRag, X: MAF (|S))aig : (|B|)ag is valid in the computational
algebraic lambda-calculus. In particulardfis a.<7-enriched computational modeldescribed a map
M[A] — M[B] in the category¢ .

Lineal. In Aj,, the lambda-abstraction is non-linearx.(s+t) /4 Ax.s+ Axt. In this calculus, the
application is bilinear. In particulafA x.s)u — s[u/x] only if uis a value.

This calculus is call-by-value: the argument of a functisrfiist reduced to a value before being
substituted in the body of the function. One can encagein the computational algebraic lambda-
calculus as follows(|X|)iin = X, (AX.8)iin = AX.[ (|S)iin ], (St])iin = { (S)iin ([t])in }- Types are encoded as
follows: (|t])iin =1, (A — B|)iin = (Al)iin — M(B])iin-

If x: Ak s:Bis a valid typing judgment imj,, x: A+ (S)in : (B|)in is valid in the computa-
tional algebraic lambda-calculus. In particulargifis a.e7-enriched computational modaldescribes a
morphism[[A] — M[B] of ¢

3 Adding controlled divergence

Because of TheoremZl10, the teYpof Equation[l) is not constructable in the computationgéhtaic
lambda-calculus. In this section, we add to the languagdiamof fixpoint in order to understand what
goes wrong in the untyped system.

3.1 A fixpoint operator

In order to stay typed and to be able to keep most of the cortipnigd interpretation of Sectidn 2.2 but
still to be able to have a teri, we add to the language a unary term oper#teatisfying the reduction
Y(v) — {Vv[Y(v) ]}, linear with respect to the module structure and satisfyrgtyping rule

AFs:MA—-MA = AFY(s):A (3)
We can now build a tern, behaving as required in Equatidd (1):
Yo=YAx[b+{x}]). 4)

Indeed,Y (Ax.[b+{x}]) reduces to the terfh (Ax.[b+ {x} |)[Y(Ax.[b+{x}])] }, which reduces
to{[b+{[Y(Ax[b+{x}])]}]}, itself reducing td + Y(Ax.[b+{ X} ]). Provided thah+ b: B,
the typing judgmenfA Y, : Bis valid. Of course, if we keep the operational semanticseatiSn2, the
system becomes as inconsistent as with the untyped calculus

3.2 The zero in the algebra of terms

To understand what goes wrong, consider the typing judgmeMA - x — x: MA. With the equational
system of Sectioh 2.2, this typing judgment is equivalent 1A+ 0: MA. We claim that this inter-
pretation is correct as long as the texrfdoes not contain any potential infinity”. With the additadn
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constructY, we can replace with [ Y, | (whereY; is constructed as in Equatiod (4)) for some texiof
type A. Consider the two terms

Ay (Ax(x=x)[Ya]), @  Ay{y}H((Axx=x)[Yal). @

Term [B) reduces tOAy.x)(0- [ Ya ]) and then to Ox. It is reasonable to think that this is equivalendto
thus making 0[ Y, | also equivalent t®. Term [®), on the contrary, reduces¥p— Y, the flawed term
of Equation[R).

The problem does not show up when writing the equathan — [ Ya ] = 0-[ Ya | but when one equates
it with 0. The term O[ Ya ] is a “weak zero”. It makes a computation “null” as long as iesmot diverge
(and there is always a diverging term of any inhabited typeiding the constructioril4)). Therefore,
despite the fact that/ is a ring, the set of terms of the form- sfor a fixed termsis only a commutative
monoid: addition does not admit an inverse, it only has antitjeelement Gs. This is consistent with
previous studies [17, 15].

3.3 Recasting the equational theory

With the addition of fixpoints, the equational theory givarSiectiod ZR is not valid. In the discussion of
the previous section, we noted that the module of terms rteduks weakened to a commutative monoid
by removing the rule 0s~440. This is the only required modification, and one can rewht whole
theory without this rule.

In the following, we do not consider the language extendet thie fixpoint combinator; instead, we
give a general theory for possible divergence in the corteatsimple type system.

Definition 3.1. A weak.«”-moduleis a module over where.</ is seen as a semiring. In particular,
a weaka-module is only a commutative monoid, and-v=0-v £ 0. Given a seK, the free weak
«7/-module over Xs the structure consisting of all the finite sufms; - X, wherea; € &7 andx; € X.

Definition 3.2. A weak.e7-enriched computational categomonsists of a cartesian closed category
(¢,x,=,1), together with a strong monad/, n, u,t), such that the Kleisli categor¥y is enriched
over the category of wealk/-modules.

Remark 3.3. As we saw in Sectioh=3.2, the two zero-functionsA+ 0: Aandx: A 0-x: A behave

differently in general. In a wealks/-enriched computational category, the former is integuteds the

unit element of the monoi@y (A,A) whereas the latter is of the form @@ s, whereida is the identity

map iném(A,B).

Lemma 3.4. Any </ -enriched computational category is also a weakenriched computational cate-
gory.

Proof. Any .2/-module is also a weak/-module. O

Remark 3.5. In particular, in aeZ-enriched computational category, the two zero-functiona - 0: B
andx: A 0-x: B are identified.

Definition 3.6. Consider the typed language of Definit[onl2.1, with the axdatmequivalence of Tabld 3
minus the very first rule, marked &s), stating O u~,x0. Let us call this language theeak algebraic
computational lambda-calculusnd the corresponding category of valGg$.

Theorem 3.7. 1) The weak computational algebraic lambda-calculus isfloemt. 2)%" is a </-
enriched computational category. 3) The weak computalialggbraic lambda-calculus is an internal
language for weak-enriched computational categories. O
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3.3.1 Extension of the language.

Here, we assume that the language is extended to a calllbg-RP&LF with a fixpoint combinatof and
an algebraic structure, as follows

AB = bit|int|A—B|AxB| T |MA,
st i= xAyAxA.s]st](s,t>\n1(s)\n2(s)]_* |Y(s)|s+t|a-s|0]|
[s]|{s}|t|ff]|if rthenselsetO]|sucqs)|pred(s) |iszerqs),

wherea € /. The meaning of the terms is the usual one for PCF[14]. Thed#randff respectively
stand for the boolean true and the boolean false; the terrthen s else tis the test function om;
the termO stands for the natural number 0; the tasrerds) tests whethes is null or not; pred and
succare respectively the predecessor and the successor funfitially Y is the fixpoint combinator of
Sectior31L. The notion of value is defined as in Definifion 1.1

The rewrite system of Secti¢n 2.1 can be reformulated foathebraic PCF. Again, apart from the
rule () of Table[d which is not valid, all the other ones are corretie Teduction systents, F,A andB
of terms as the smallest congruent relations consistehtwit, satisfying the rules in Tablg 1 wheltds
augmented with the rulég(v) — { v[Y(v) | }, sucdpred(u)) — u, iszerq0) — t, iszerqsucqu)) — ff,
m(uv)—u m(uVv)—v,if tthen s else t- s, if ff then s else t- t, In all the given rules, the terms
u,v are assumed to be values. We wiitefor the relationAUBUE UF, and as before we writes in
place of—..

Remark 3.8. Again, the rewrite system verifies subject reduction andy@es. However, the system
does not satisfy weak normalization. For example, the tygierivation- YAx.[{ x } ] : Aiis valid, and
the termYAx.[ { x } ] reduces to itself.

Example 3.9. An element ofM(int) can be regarded as the encoding of a polynomial as follows. Th
function

Exp=YA f.[Anxif iszeran) then{ x } else{ f }(pred(n))x]

of typeint — (MT — MT) takes an integem and returns the map sendifg -« | to [ a" -« |. The map
Pow: M(int) — (MT — MT) defined as\ x.Expxtakes as inputy; 5 -0 | and return the map sending

[a-x]to[(ZiBa™) ]

3.3.2 Concrete models based on Set

The categonsetof sets and functions can be made into a weélenriched computational category. It
is also possible to model the PCF extension of the langupgé:= {*}, the one-element sdfint] = N,

the set of natural numbers, afjtit] = {0,1}, the two-elements sets. The denotation of the product is
the product inSetand the denotation ok — B is the set ofSetfunction betweerfA]] and[[B]]. The
corresponding term constructs have their obvious meanigs/ided that the rings is endowed with

a suitable notion of limit (for example, taking’ to be the reals with the usual topology), we give two
monads that can be used and an intuition on their operatiotexpretation.

Strong convergence. The monadVs defined adVis(X) = ( X ), U{L}, with ( X)_, is the free weak
</-module generated frold. We can define a fixpoint of : Mg(A) — Mg(A) as lim, (L) if it exists,
1 otherwise. We defingY(s) ] as the fixpoint of] s] .
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In this model, the morphisnjx: A 0:B] is the constant function of value® (X ) , and the
morphism[[x: AEYAx.[{ x } ]:B] is the constant function of value. Moreover any non-converging
well-typed terms have the same denotatidn

The setMN is L together with all the finite linear combinatioys a; - nj. The image oMN by the
operator] Pow] of Exampld3.D is a set of functioms &7 U{ L} — &7 U{L} sendingL to L andp € </
to p(B). The functionsp are either constant of value (whenf is the image ofL) or polynomials (when
f is the image of a linear combination).

Weak convergence. Define the semiringZ U {w} by extending the semiringZ with a new element
w. The sum and the multiplication are extended as followsy = w, a + w = w. We setM(X) =
(o7 U{w})*, the functions fromX to o7 U {w}. The fixpoint of f : My,(A) — My(A) is defined as the
map sending € X to limy, f"(0)(x) if it exists, w otherwise. As previously, the denotation¥s) is the
fixpoint of [ s].

Here,[x: AF0:B] and[[x: AFYAx.[{x}]:B] are the constant functions of value=Q{ X ) ,.
However, all diverging terms do not have the same image. ¥ample, the ternYAx.[ 0+ sucd X } |
of typeint corresponds to the elemeh& M,,(N) sending alne Nto 1€ 7.

In this model, the image & (N) by Powis the set of (generalized) entire functiows— <7, sending
B to3;iai(B)". By “generalized”, we mean that the functions may send sfrteecw.

4 Conclusion

In this paper, we sketched the required structures for asirador a typed algebraic lambda-calculus
and discussed relation with previous works. We showed tiegptoblems occurring with divergence can
be solved by using a weak module. Finally, we described agbadgc PCF and its interpretation in two
concreteSetbased models.

This raises the question of the complete description of th&siple operational behaviors of the
algebraic PCF and the study of their denotational semantics
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