
c© Benoı̂t Valiron
This work is licensed under the
Creative Commons Attribution License.

Semantics of a Typed Algebraic Lambda-Calculus

Benoı̂t Valiron
Laboratoire d’Informatique de Grenoble

Université Joseph Fourier
Grenoble
France

benoit.valiron@monoidal.net

Algebraic lambda-calculi have been studied in various ways, but their semantics remain mostly un-
touched. In this paper we propose a semantic analysis of a general simply-typed lambda-calculus
endowed with a structure of vector space. We sketch the relation with two established vectorial
lambda-calculi. Then we study the problems arising from theaddition of a fixed point combinator
and how to modify the equational theory to solve them. We sketch an algebraic vectorial PCF and its
possible denotational interpretations.
Keywords: typed lambda-calculus, module over ring and semi-ring, fixpoints, semantics, computa-
tional model.

1 Introduction

Notions of lambda-calculus with vectorial structures haveat least three distinct origins. A first line
of work [6, 5, 3], from which the term “algebraic lambda-calculus” comes from, focuses on general
algebraic rewrite systems and studies the conditions needed for obtaining properties such as confluence
or strong normalization. The second one is the calculus of Vaux [17], building up upon the work of
Ehrhard and Regnier [7]. The goal here is to capture a notion of differentiation within lambda-calculus.
Finally, algebraic lambda-calculus also arises in the workof Arrighi and Dowek [2] where they define a
lambda-calculus oriented towards quantum computation, inthe style of Van Tonder [16].

Both [2] and [17] are concerned with a lambda-calculus endowed with a structure of vector space.
They both acknowledge the fact that for an untyped lambda-calculus, a naive rewrite system renders
the language inconsistent, as any term can be made equal to the zero of the vectorial space of terms.
However, coming from different backgrounds, they provide different solutions to the problem. In [2],
the rewriting system is restrained in order to avoid unwanted equalities of terms. In [17], the rewriting
system is untouched, but the scalars over which the vectorial structure is built are made into a semiring
with particular properties, making the system consistent.Finally, [1] shows that a type system enforcing
strong normalization is also a mean of solving the problem.

In this paper, we turn to the question of a semantics for a lambda-calculus endowed with a structure
of vector space (or more generally, a structure of module). Starting with an untyped lambda-calculus and
a naive rewrite system, we recall where inconsistencies occur. Then we construct a simply-typed version
of the untyped language together with an equational description. In this restricted setting, the rewrite
system is sound, and we describe a denotational semantics using a computational model a la Moggi [12].
We also show how one can relate this language to the one described in [2] and [17]. We then re-read the
problems that occurred in the untyped world, and find a simplesolution for making the system sound
again in the presence of diverging terms, finding an agreement with the solution in [17]. The solution in
this paper goes however a step further, proposing a denotational framework for the calculus.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Semantics of a Typed Algebraic Lambda-Calculus

1.1 An untyped calculus

Consider a ring(A ,+,0,×,1). Elements ofA are calledscalars. We define a call-by-value language
as follows.

s, t ::= x | λx.s | st | s+ t | α ·s | 0 | [s] | { s},
u,v ::= x | λx.u | uv | [s],

whereα ranges overA , and wherex ranges over a fixed set of variables. Terms of the forms, t are
calledcomputationsand terms of the formu,v are calledvalues. We define variable substitution as usual
and consider terms up toα-equivalence. The meanings of the unusual terms are explained in the next
section.

1.2 A naive reduction system

A very naive reduction is to make the set of terms into a moduleover a ringA , with the term0 as unit
of the addition. More precisely, a terms reduces to a termt, written s→ t, if there exist termss′ andt ′

respectively equivalent modulo congruence, associativity and commutativity of+ to sandt such that the
relations′ → t ′ is derived from the rules of Table 1. Although we do not describe formally the system
here (a complete development is done in Section 2.1), the reduction should be straightforward enough
for the remainder of the discussion.

In particular, the addition is commutative and associative, the termst− t and 0· t equate the term
0. All term constructs are linear with respect to addition andscalar multiplication except[−], which
“lifts” a computation into a value. One can unlift it using{ − }, and retrieve the computation. Finally,
the system is call-by-value: the beta-reduction(λx.s)v reduces tos[x← v] only if v is a value.

GroupE

α ·0 → 0 0+s → s α · (β ·s) → (αβ) ·s
(∗) 0·s → 0 1·s → s α · (s+ t) → α ·s+ α · t

GroupF

α ·s + β ·s → (α + β) ·s
α ·s + s → (α +1) ·s

s + s → (1+1) ·s
GroupA

(s+ t)r → sr+ tr (α ·s)r → α · (sr) 0r → 0
r(s+ t)→ rs+ rt r (α ·s)→ α · (rs) r0→ 0

λx.(s+ t)→ λx.s+ λx.t λx.(α ·s)→ α ·λx.s λx.0→ 0
{ s+ t } → { s}+{ t } { α ·s} → α · { s} { 0 } → 0

GroupB

(λx.s)v→ s[x← v] { [s] } → s

Table 1: Reduction systemL.

Benoı̂t Valiron 3

For example, the term(λ f x.(f x)x)(y + z) reduces toλ f .(f y)y+ λ f .(f z)z. On the contrary, the
computation(λx f.(f{ x }){ x })[y+z] reduces to the sum of termsλ f .(f y)y+λ f .(f z)y+λ f .(f y)z+
λ f .(f z)z.

It is possible to build the same term constructs as with the regular untyped lambda-calculus [4]. For
example, the product〈 s, t 〉 of two termss andt can be encoded asλ f .(f s)t, the first projectionπ1(s)
of a pairs as the terms(λxy.x) and the second projectionπ2(s) ass(λxy.y). Note that, since all usual
lambda-term constructs are linear with respect to additionand scalar multiplication in each variable, the
new term constructs〈 −,− 〉, π1, π2 are also linear in each variable. In particular, one can check that
〈 s+s′, t + t ′ 〉= 〈 s, t 〉+ 〈 s′, t 〉+ 〈 s, t ′ 〉+ 〈 s′, t ′ 〉. These term constructs are introduced in the simply-
typed lambda-calculus of Section 2.

1.3 Breaking consistency

Although the set of requirements looks reasonable, as was shown in [2], the equational system is not
sound. Indeed, given any term b one can construct the termYb = { (λx.[{ xx}+b])(λx.[{ xx}+b]) }
verifying the reduction

Yb→Yb +b. (1)

This creates a problem of consistency, as enlightened in thefollowing sequence of equalities:

0 = Yb−Yb = (Yb +b)−Yb = b+(Yb−Yb) = b. (2)

This successfully shows that any term can be equated to0, rendering the system inconsistent.

2 A simply-typed lambda-calculus

The problem occurring in Section 1.3 is due to the possibility of constructing diverging terms. In this
section we study a simply-typed, algebraic lambda-calculus. Equipped with a naive reduction system, it
verifies strong normalization. This allows us in Section 3 toanalyze carefully the pitfalls occurring when
adding divergence.

∆,x : A⊢ x : A,
∆ ⊢ ∗ :⊤,
∆ ⊢ 0 : A

∆,x : A⊢ s : B ⇒ ∆ ⊢ λx.s : A→ B,

∆ ⊢ s : A→ B
∆ ⊢ t : A

}

⇒ ∆ ⊢ st : B,

∆ ⊢ s : A×B ⇒ ∆ ⊢ π1(s) : A,
∆ ⊢ s : A×B ⇒ ∆ ⊢ π2(s) : B,

∆ ⊢ s : A
∆ ⊢ t : B

}

⇒ ∆ ⊢ 〈 s, t 〉 : A×B,

∆ ⊢ s : A ⇒ ∆ ⊢ α ·s : A,
∆ ⊢ s : MA ⇒ ∆ ⊢ { s} : A,
∆ ⊢ s : A ⇒ ∆ ⊢ [s] : MA.

∆ ⊢ s : A
∆ ⊢ t : A

}

⇒ ∆ ⊢ s+ t : A,

Table 2: Typing rules.

Definition 2.1. We suppose the existence of a ringA , containing a multiplication and an addition.
A simply-typed, call-by-value, algebraic lambda-calculus called thecomputational algebraic lambda-
calculusis constructed as follows. Types are of the form

A,B ::= ι | A→ B | A×B | ⊤ |MA,

4 Semantics of a Typed Algebraic Lambda-Calculus

whereι ranges over a set of type constants. Terms again come in two flavors:

s, t ::= x | λx.s | st | 〈 s, t 〉 | π1(s) | π2(s) | ∗ | s+ t | α ·s | 0 | [s] | { s},
u,v ::= x | λx.u | uv | 〈 u,v 〉 | π1(u) | π2(u) | ∗ | [s],

whereα ∈A . Terms of the forms, t are calledcomputationsand terms of the formu,v are calledvalues.
The term[s] is the closure of a computation: such a term is not linear and can be duplicated “as it”. The
term construct{ − } breaks such a closure and “runs” the computation.

We define the notions of typing context∆ and of typing derivation∆ ⊢ s : A in the usual way [13].
Terms are considered up toα-equivalence, and valid typing derivations are built usingthe rules of Ta-
ble 2.

2.1 Small-step semantics

The type system is valid with respect to the reduction systemdescribed in Table 1, modulo the addition
of rules for the added term constructs concerning the product. In the following, we use the terminology
of [2].

Definition 2.2. Given any relationR on terms, we say that it is acall-by-value congruent relationif
for all pairs (s,s′),(t, t ′) ∈ R, the pairs(st,st′), (st,s′t), (s+ t,s+ t ′), (s+ t,s′ + t), (〈 s, t 〉,〈 s, t ′ 〉),
(〈 s, t 〉,〈 s′, t 〉), (π2s,π2s′), (π1s,π1s′), (α · s,α · s′) and ({ s},{ s′ }) are inR. We say thatR is con-
gruentif it is call-by-value congruent and if for all pairs(s,s′)∈R, we also have(λx.s,λx.s′), ([s], [s′])
in R.

Definition 2.3. We define≃AC to be the smallest congruent, equivalent relation on terms satisfyings+
t≃ACt +sandr +(s+t)≃AC(r +s)+t. We say that a relationR is consistent with≃AC if s≃ACs′Rt′≃ACt
impliessRt.

Definition 2.4. A normalterms is such that there does not exist a termt with s→ t. A rewrite sequence
is a sequence(si)i of terms such that for alli, eithersi → si+1 or si is normal andi is the last index of the
sequence.

Definition 2.5. We define the call-by-value reduction systemsE,F,A andB of terms as the smallest call-
by-value congruent relations consistent with≃AC, satisfying the rules in Table 1 whereB is augmented
with the rulesπ1〈 u,v 〉 → u andπ2〈 u,v 〉 → v. In all the given rules, the termsu,v are assumed to be
values. We writeL for the relationA∪B∪E∪F.

Convention 1. If R is a relation, we writes→R t in place of(s, t) ∈ R. We simply write→ in place of
→L, and ifs→ t, we say thats reduces tot. We denote with→∗R the reflexive, transitive closure of→R.

Lemma 2.6(Substitution). Let ∆ ⊢ v : A and∆,x : A⊢ s : B be two valid typing derivations, where v is a
value. Then∆ ⊢ s[x← v] : B is a valid typing derivation.

Proof. By structural induction on the typing derivation of∆,x : A⊢ s : B.

Lemma 2.7(Subject reduction). Let ∆ ⊢ s : A be a valid typing judgment such that s→ t. Then∆ ⊢ t : A
is also valid.

Proof. Proof by structural induction on the termsand inspection of the reduction rules, using Lemma 2.6
for the first rule of group B.

Benoı̂t Valiron 5

Theorem 2.8(Safety). Suppose that⊢ s : A is a valid typing judgment. Then either s→ t with ⊢ t : A,
or s is normal.

Proof. By case distinction on the structure ofs, using Lemma 2.7.

As for the simply-typed lambda-calculus, the reduction system is normalizing. The proof uses the
fact that the rewrite system consists of two parts: the rulesof groups E,F,A and the rules of group B.

Lemma 2.9. Let s be any term. There exists an index ns such that any rewrite sequence(si)i in E∪F ∪A
with s0 = s consists of at most ns elements.

Proof. We define two measures on terms. First, the “plus-number ofs”, written np(s), and defined
by np(0) = np(x) = np(∗) = 1, np(λx.s) = np(π2(s)) = np(π1(s)) = np({ s}) = np(α · s) = 2np(s),
np(st) = np(〈 s, t 〉) = 2np(s)np(t), andnp(s+ t) = 1+ np(s) + np(t). Then, the “scalar-complexity
of s”, written cx(s), and defined bycx(0) = cx(x) = cx(∗) = 1, cx(λx.s) = cx(π2(s)) = cx(π1(s)) =
cx({ s}) = 2cx(s), cx(st) = cx(〈 s, t 〉) = cx(s+ t) = 2np(s)np(t), andcx(α ·s) = 1+cx(s). The lemma
is proved by induction on(np(s),cx(s)) with the lexicographic order.

Theorem 2.10(Normalization). Let ⊢ s : A be a valid typing judgment. There exists an index ns such
that any rewrite sequence(si)i with s0 = s is finite and of at most ns elements.

Proof. The proof uses reducibility candidates, and follows the proof provided in [9]. Lemma 2.9 is used
to handle the cases where addition and scalar multiplication are involved.

Theorem 2.11(Confluence). Suppose that s is typable. If s→∗ t and s→∗ t ′, there exists a term r such
that t→∗ r and t′→∗ r.

Proof. We first prove that for all termss, if s→ t ands→ t ′ then there exists a termr such thatt →∗ r
andt ′ →∗ r. We then prove the theorem using strong normalization, by induction on the length of the
longest sequence of reductions.

2.1.1 Example: simulating quantum computation

As an example of the expressiveness of the language, we follow the motivation of [2] and show that we
can simulate quantum computation using the computational algebraic lambda-calculus.

Quantum computation is a paradigm where data is encoded on the state of objects governed by the
law of quantum physics. The mathematical description of a quantum boolean is a (normalized) vector in
a 2-dimensional Hilbert spaceH. In order to give sense to this vector, we choose an orthonormal basis
{|0〉, |1〉}. A vectorα |0〉+ β |1〉 is understood as the “quantum superposition” of the boolean0 and the
boolean 1.

For simulating quantum computation, we therefore choose the ring A to be the field of complex
numbers. Given an arbitrary typeX, we can represent a quantum boolean in the computational algebraic
lambda-calculus as a closed value of typeqbool= MX → (MX → MX). We encodeα |0〉+ β |1〉 as
λxy.[α · { x }+ β · { y }]. We writett for λxy.[{ x }] andff for λxy.[{ y }].

The operations we can perform on quantum booleans are of two sorts: Quantum gates and measure-
ments. In the mathematical description, the former correspond to unitary maps. The Hadamard gate is
such a unitary, sending|0〉 to 1√

2
(|0〉+ |1〉) and|1〉 to 1√

2
(|0〉− |1〉). It can be written as the term

H = λx.λab.[{x[1√
2·({a}+{b})][1√

2·({a}−{b})]}]

6 Semantics of a Typed Algebraic Lambda-Calculus

of typeqbool→ qbool. Applying the Hadamard gate to a quantum booleanb is computing the termHb.
A measurement has a probabilistic outcome and does not have asatisfactory description as function

of H. It is customary to represent quantum booleans withdensity matrices, that is, positive matrices of
norm one. The measurement operation becomes the map sendinga matrix to its diagonal.

In order to model measurements, we can use the fact that the language features higher-order terms
and we encode a positive matrix as a term of typeqbool→ qbool. The quantum booleanα |0〉+ β |1〉 is
encoded as the termv equal to

λx.λab.[{x[αᾱ·{a}+ αβ̄ ·{b}][ᾱβ ·{a}+ ββ̄ ·{b}]}].

The application of the Hadamard gate tov is H ′v, whereH ′ is the termH ′= λx.H(xH) of type(qbool→
qbool)→ (qbool→ qbool). The measurement is also of type(qbool→ qbool)→ (qbool→ qbool) and
can be encoded as the termP equal toλv.λx.λab.[{(vx)[{ a }][0]+ (vx)[0][{ b }]}]. We can check
thatPv is indeed equal toλx.λab.[{x[αᾱ ·{a}][ββ̄ ·{b}]}].

2.2 Equational theory

(∗) 0·s ≃ax 0 s+0 ≃ax s

1·s ≃ax s α ·s+ α · t ≃ax α · (s+ t)

α ·s+ β ·s ≃ax (α + β) ·s (r +s)+ t ≃ax r +(s+ t)

α · (β ·s) ≃ax (αβ) ·s s+ t ≃ax t +s

〈 r + α ·s, t 〉 ≃ax 〈 r, t 〉+ α · 〈 s, t 〉 π1(s+ α · t) ≃ax π1(s)+ α ·π1(t)

〈 r,s+ α · t 〉 ≃ax 〈 r,s〉+ α · 〈 r, t 〉 π2(s+ α · t) ≃ax π2(s)+ α ·π2(t)

〈 0, t 〉 ≃ax 0 π1(0) ≃ax 0

〈 t,0 〉 ≃ax 0 π2(0) ≃ax 0

(r + α ·s)t ≃ax rt + α · (st) 0t ≃ax 0

r(s+ α · t) ≃ax rs+ α · (rt) t0 ≃ax 0

λx.(s+ α · t) ≃ax λx.s+ α · (λx.t) λx.0 ≃ax 0

{ s+ α · t } ≃ax { s}+ α · { t } { 0 } ≃ax 0

π1〈 u,v 〉 ≃ax u [{ u }] ≃ax u

π2〈 u,v 〉 ≃ax v { [s] } ≃ax s

〈 π1(u),π2(u) 〉 ≃ax u (λx.{ s})t ≃ax { (λx.s)t }
(λx.u)v ≃ax u[v/x] ((λxy.r)s)t ≃ax ((λyx.r)t)s

λx.(ux) ≃ax u (λx.r)((λy.s)t) ≃ax (λy.(λx.r)s)t

(λx.x)s ≃ax s u≃ax ∗

Table 3: Axiomatic equivalence relation.

Benoı̂t Valiron 7

Together with its type system, the computational algebraiclambda-calculus shares some strong sim-
ilarities with Moggi’s computational lambda-calculus [12] (although the notations used for the monad
term constructs are closer to [8]). We follow the same path for defining a model for the algebraic lambda-
calculus.

Definition 2.12. We define an equivalence relation≃ax on terms as the smallest congruent equivalence
relation consistent with≃AC, closed underα-equivalence and the equations of Table 3. The relation is
the symmetric closure of the reductionL of Table 1, together with the rules taking into account the new
term constructs.

Two valid typing judgments∆ ⊢ s, t : A are said to beaxiomatically equivalent, written∆ ⊢ s≃axt : A,
if s≃axt is provable.

Definition 2.13. We define aA -enriched computational category to be a cartesian closed category
(C ,×,⇒,1), together with a strong monad(M,η ,µ , t), such that the Kleisli category is enriched over
the category ofA -modules. We refer the reader to the literature for the definitions (e.g. [12, 10, 11]).

Example 2.14.The category of sets and functions together with the monadM sending a setX to the free
module generated byX is aA -enriched computational category.

Definition 2.15. We define the categoryCl as follows: objects are types and morphismsA→ B are
axiomatic equivalent classes of typing judgmentsx : A⊢ v : B (wherev is a value).

Theorem 2.16.The categoryCl is aA -enriched computational category. The cartesian closed structure
is given by the classical subset of the language in the usual way (see e.g. [11]). The monad M sends A
to MA and x: A ⊢ u : B to y: MA⊢ [(λx.u){ y }] : MB, and the three required morphisms areηA = x :
A ⊢ [x] : MA, µA = x : MMA⊢ [{ { x } }] : MA, tA,B = x : MA×B⊢ [〈 {π1(x)},π2(x) 〉] : M(A×B).
The enrichment ofCl (A,MB) is given by the module structure of the term algebra. Consider the two
maps f= (x : A⊢ u : MB) and g= (x : A⊢ v : MB). We define0 = (x : A⊢ [0] : MB), f +g = (x : A⊢
[{ u }+{ v }] : MB), α · f = (x : A⊢ [α · { u }] : MB).

Definition 2.17. Consider aA -enriched computational categoryC . We define the interpretation of
a computation[[∆ ⊢ t : B]]c as a morphism inCM and the interpretation of a value[[∆ ⊢ v : B]]v as a
morphism inC . They are defined inductively, together with their obvious meanings.

Theorem 2.18. If we interpret the computational algebraic lambda-calculus in Cl then the equations
[[x : A⊢ v : B]]v≃ax(x : A⊢ v : B) and [[x : A⊢ t : B]]c≃ax(x : A⊢ [t] : MB) hold.

2.3 Relation with other algebraic lambda-calculi

In this section, we relate the computational algebraic lambda-calculus we described in the previous
section and the algebraic lambda-calculusλalg of Vaux [17] and lineal, the algebraic lambda-calculus
λlin of Arrighi, Dowek and Dı̀az-Caro [2, 1]. Both languages can be written using the term grammar
s, t ::= x | λx.s | st | s+ t | 0 | α ·s. A possible simple type system isA,B ::= ι | A→ B, whereι is a base
type. The typing rules are the usual ones for the applicationand the lambda-abstraction. For the sum,
the zero and the scalar multiplication, we use the typing rules found in Table 2.

The main difference between the two languages is the reduction system.

Vaux’s lambda-calculus. In λalg, the lambda-abstraction is linear:λx.(s+ t)→ λx.s+λx.t, the appli-
cation is linear on the left and non-linear on the right:(r +s)t→ rt +st but r(s+ t) 6→ rs+ rt . However,
(λx.s)t → s[t/x] for any termt.

8 Semantics of a Typed Algebraic Lambda-Calculus

This language is call-by-name: a function is fed with a computation (that is, a term in superpo-
sition). One can encodeλalg in the computational algebraic lambda-calculus as follows: (|x|)alg =
{ x }, (|λx.s|)alg = λx.(|s|)alg, (|st|)alg = (|s|)alg[(|t|)alg]. Types are encoded as follows:(|ι |)alg = ι ,
(|A→ B|)alg = M(|A|)alg→ (|B|)alg.

If x : A⊢ s : B is a valid typing judgment inλalg, x : MA⊢ (|s|)alg : (|B|)alg is valid in the computational
algebraic lambda-calculus. In particular, ifC is aA -enriched computational model,s described a map
M[[A]]→M[[B]] in the categoryC .

Lineal. In λlin , the lambda-abstraction is non-linear:λx.(s+ t) 6→ λx.s+ λx.t. In this calculus, the
application is bilinear. In particular,(λx.s)u→ s[u/x] only if u is a value.

This calculus is call-by-value: the argument of a function is first reduced to a value before being
substituted in the body of the function. One can encodeλlin in the computational algebraic lambda-
calculus as follows:(|x|)lin = x, (|λx.s|)lin = λx.[(|s|)lin], (|st|)lin = { (|s|)lin(|t|)lin }. Types are encoded as
follows: (|ι |)lin = ι , (|A→ B|)lin = (|A|)lin →M(|B|)lin .

If x : A ⊢ s : B is a valid typing judgment inλlin , x : A ⊢ (|s|)lin : (|B|)lin is valid in the computa-
tional algebraic lambda-calculus. In particular, ifC is aA -enriched computational model,sdescribes a
morphism[[A]]→M[[B]] of C .

3 Adding controlled divergence

Because of Theorem 2.10, the termYb of Equation (1) is not constructable in the computational algebraic
lambda-calculus. In this section, we add to the language a notion of fixpoint in order to understand what
goes wrong in the untyped system.

3.1 A fixpoint operator

In order to stay typed and to be able to keep most of the computational interpretation of Section 2.2 but
still to be able to have a termYb, we add to the language a unary term operatorY satisfying the reduction
Y(v)→{ v[Y(v)] }, linear with respect to the module structure and satisfyingthe typing rule

∆ ⊢ s : MA→MA =⇒ ∆ ⊢Y(s) : A. (3)

We can now build a termYb behaving as required in Equation (1):

Yb≡Y(λx.[b+{ x }]). (4)

Indeed,Y(λx.[b+{ x }]) reduces to the term{ (λx.[b+{ x }])[Y(λx.[b+{ x }])] }, which reduces
to { [b+{ [Y(λx.[b+{ x }])] }] }, itself reducing tob + Y(λx.[b+{ x }]). Provided that∆ ⊢ b : B,
the typing judgment∆ ⊢Yb : B is valid. Of course, if we keep the operational semantics of Section 2, the
system becomes as inconsistent as with the untyped calculus.

3.2 The zero in the algebra of terms

To understand what goes wrong, consider the typing judgmentx : MA⊢ x−x : MA. With the equational
system of Section 2.2, this typing judgment is equivalent tox : MA ⊢ 0 : MA. We claim that this inter-
pretation is correct as long as the termx “does not contain any potential infinity”. With the additional

Benoı̂t Valiron 9

constructY, we can replacex with [Ya] (whereYa is constructed as in Equation (4)) for some terma of
typeA. Consider the two terms

(λy.∗)((λx.(x−x))[Ya]), (5) (λy.{ y })((λx.(x−x))[Ya]). (6)

Term (5) reduces to(λy.∗)(0· [Ya]) and then to 0· ∗. It is reasonable to think that this is equivalent to0,
thus making 0· [Ya] also equivalent to0. Term (6), on the contrary, reduces toYa−Ya, the flawed term
of Equation (2).

The problem does not show up when writing the equation[Ya]− [Ya] = 0· [Ya] but when one equates
it with 0. The term 0· [Ya] is a “weak zero”. It makes a computation “null” as long as it does not diverge
(and there is always a diverging term of any inhabited type byusing the construction (4)). Therefore,
despite the fact thatA is a ring, the set of terms of the formα ·s for a fixed terms is only a commutative
monoid: addition does not admit an inverse, it only has an identity element 0·s. This is consistent with
previous studies [17, 15].

3.3 Recasting the equational theory

With the addition of fixpoints, the equational theory given in Section 2.2 is not valid. In the discussion of
the previous section, we noted that the module of terms needsto be weakened to a commutative monoid
by removing the rule 0· s≃ax 0. This is the only required modification, and one can rewrite the whole
theory without this rule.

In the following, we do not consider the language extended with the fixpoint combinator; instead, we
give a general theory for possible divergence in the contextof a simple type system.

Definition 3.1. A weakA -moduleis a module overA whereA is seen as a semiring. In particular,
a weakA -module is only a commutative monoid, andv− v = 0 · v 6= 0. Given a setX, the free weak
A -module over Xis the structure consisting of all the finite sums∑i αi ·xi, whereαi ∈A andxi ∈ X.

Definition 3.2. A weakA -enriched computational categoryconsists of a cartesian closed category
(C ,×,⇒,1), together with a strong monad(M,η ,µ , t), such that the Kleisli categoryCM is enriched
over the category of weakA -modules.

Remark 3.3. As we saw in Section 3.2, the two zero-functionsx : A ⊢ 0 : A andx : A⊢ 0 · x : A behave
differently in general. In a weakA -enriched computational category, the former is interpreted as the
unit element of the monoidCM(A,A) whereas the latter is of the form 0· idA, whereidA is the identity
map inCM(A,B).

Lemma 3.4. AnyA -enriched computational category is also a weakA -enriched computational cate-
gory.

Proof. Any A -module is also a weakA -module.

Remark 3.5. In particular, in aA -enriched computational category, the two zero-functionsx : A⊢ 0 : B
andx : A⊢ 0·x : B are identified.

Definition 3.6. Consider the typed language of Definition 2.1, with the axiomatic equivalence of Table 3
minus the very first rule, marked as(∗), stating 0·u≃ax0. Let us call this language theweak algebraic
computational lambda-calculusand the corresponding category of valuesC w

l .

Theorem 3.7. 1) The weak computational algebraic lambda-calculus is confluent. 2)C w
l is a A -

enriched computational category. 3) The weak computational algebraic lambda-calculus is an internal
language for weakA -enriched computational categories.

10 Semantics of a Typed Algebraic Lambda-Calculus

3.3.1 Extension of the language.

Here, we assume that the language is extended to a call-by-value PCF with a fixpoint combinatorY and
an algebraic structure, as follows

A,B ::= bit | int | A→ B | A×B | ⊤ |MA,

r,s, t ::= xA | λxA.s | st | 〈 s, t 〉 | π1(s) | π2(s) | ∗ |Y(s) | s+ t | α ·s | 0 |
[s] | { s} | tt | ff | if r then s else t| 0̄ | succ(s) | pred(s) | iszero(s),

whereα ∈A . The meaning of the terms is the usual one for PCF[14]. The terms tt andff respectively
stand for the boolean true and the boolean false; the termif r then s else tis the test function onr;
the term0̄ stands for the natural number 0; the termiszero(s) tests whethers is null or not; pred and
succare respectively the predecessor and the successor function; finally Y is the fixpoint combinator of
Section 3.1. The notion of value is defined as in Definition 1.1.

The rewrite system of Section 2.1 can be reformulated for thealgebraic PCF. Again, apart from the
rule (∗) of Table 1 which is not valid, all the other ones are correct. The reduction systemsE,F,A andB
of terms as the smallest congruent relations consistent with≃AC, satisfying the rules in Table 1 whereB is
augmented with the rulesY(v)→{ v[Y(v)] }, succ(pred(u))→ u, iszero(0̄)→ tt, iszero(succ(u))→ ff ,
π1〈 u,v 〉 → u, π2〈 u,v 〉 → v, if tt then s else t→ s, if ff then s else t→ t, In all the given rules, the terms
u,v are assumed to be values. We writeL′ for the relationA∪B∪E∪F, and as before we write→ in
place of→L′ .

Remark 3.8. Again, the rewrite system verifies subject reduction and progress. However, the system
does not satisfy weak normalization. For example, the typing derivation⊢Yλx.[{ x }] : A is valid, and
the termYλx.[{ x }] reduces to itself.

Example 3.9. An element ofM(int) can be regarded as the encoding of a polynomial as follows. The
function

Exp= Yλ f .[λnx.if iszero(n) then{ x } else{ f }(pred(n))x]

of type int→ (M⊤→M⊤) takes an integern and returns the map sending[α · ∗] to [αn · ∗]. The map
Pow: M(int)→ (M⊤→M⊤) defined asλx.Expxtakes as input[∑i βi ·ni] and return the map sending
[α · ∗] to [(∑i βi αni) · ∗].

3.3.2 Concrete models based on Set

The categorySetof sets and functions can be made into a weakA -enriched computational category. It
is also possible to model the PCF extension of the language:[[⊤]] = {∗}, the one-element set,[[int]] = N,
the set of natural numbers, and[[bit]] = {0,1}, the two-elements sets. The denotation of the product is
the product inSet and the denotation ofA→ B is the set ofSet-function between[[A]] and [[B]]. The
corresponding term constructs have their obvious meanings. Provided that the ringA is endowed with
a suitable notion of limit (for example, takingA to be the reals with the usual topology), we give two
monads that can be used and an intuition on their operationalinterpretation.

Strong convergence. The monadMs defined asMs(X) = 〈 X 〉
A
∪{⊥}, with 〈 X 〉

A
is the free weak

A -module generated fromX. We can define a fixpoint off : Ms(A)→Ms(A) as limn f n(⊥) if it exists,
⊥ otherwise. We define[[Y(s)]] as the fixpoint of[[s]].

Benoı̂t Valiron 11

In this model, the morphism[[x : A⊢ 0 : B]] is the constant function of value 0∈ 〈 X 〉
A

and the
morphism[[x : A⊢Yλx.[{ x }] : B]] is the constant function of value⊥. Moreover any non-converging
well-typed termshave the same denotation⊥.

The setMN is⊥ together with all the finite linear combinations∑i αi ·ni . The image ofMN by the
operator[[Pow]] of Example 3.9 is a set of functionsp : A ∪{⊥}→A ∪{⊥} sending⊥ to⊥ andβ ∈A

to p(β). The functionsp are either constant of value⊥ (when f is the image of⊥) or polynomials (when
f is the image of a linear combination).

Weak convergence. Define the semiringA ∪{ω} by extending the semiringA with a new element
ω . The sum and the multiplication are extended as follows:αω = ω , α + ω = ω . We setMw(X) =
(A ∪{ω})X, the functions fromX to A ∪{ω}. The fixpoint of f : Mw(A)→ Mw(A) is defined as the
map sendingx∈ X to limn f n(0)(x) if it exists,ω otherwise. As previously, the denotation ofY(s) is the
fixpoint of [[s]].

Here, [[x : A⊢ 0 : B]] and [[x : A⊢Yλx.[{ x }] : B]] are the constant functions of value 0∈ 〈 X 〉
A

.
However, all diverging terms do not have the same image. For example, the termYλx.[0̄+succ{ x }]
of type int corresponds to the elementf ∈Mw(N) sending alln∈ N to 1∈A .

In this model, the image ofM(N) by Powis the set of (generalized) entire functionsA →A , sending
β to ∑i αi(β)ni . By “generalized”, we mean that the functions may send someβ to ω .

4 Conclusion

In this paper, we sketched the required structures for a semantics for a typed algebraic lambda-calculus
and discussed relation with previous works. We showed that the problems occurring with divergence can
be solved by using a weak module. Finally, we described an algebraic PCF and its interpretation in two
concreteSet-based models.

This raises the question of the complete description of the possible operational behaviors of the
algebraic PCF and the study of their denotational semantics.

5 Acknowledgments

I would like to thank Gilles Dowek for introducing me to algebraic calculi. I would also like to thank
Pablo Arrighi and the research group CAPP in Grenoble for helpful discussions.

References

[1] Pablo Arrighi & Alejandro Dı́az-Caro (2009).A System F accounting for scalars. Preprint: arXiv:0903.3741.

[2] Pablo Arrighi & Gilles Dowek (2008):Linear-algebraic lambda-calculus: higher-order, encodings, and
confluence.In: Proceedings of the 19th international conference on Rewriting Techniques and Applications
(RTA’08), Lecture Notes in Computer Science5117, pp. 17–31.

[3] Franco Barbanera & Maribel Fernández (1993):Combining first and higher-order rewrite systems with type
assignment systems. In: Proceedings of the International Conference on Typed Lambda Calculi and Appli-
cations, TLCA’93, Lecture Notes in Computer Science664, pp. 60–74.

[4] Henk P. Barendregt (1984):The Lambda-Calculus, its Syntax and Semantics. North Holland.

12 Semantics of a Typed Algebraic Lambda-Calculus

[5] Frédéric Blanqui, Jean-Pierre Jouannaud & MitsuhiroOkada (1999):The Calculus of algebraic Construc-
tions. In: RtA ’99: Proceedings of the 10th International Conference on Rewriting Techniques and Applica-
tions, Springer-Verlag, London, UK, pp. 301–316.

[6] Val Breazu-Tannen & Jean Gallier (1991):Polymorphic rewriting conserves algebraic strong normalization.
Theoretical Computer Science83(1), pp. 3–28.

[7] Thomas Ehrhard & Laurent Regnier (2003):The differential lambda-calculus. Theoretical Computer Science
309(1–2), pp. 1–41.

[8] Andrzej Filinski (1996):Representing Monads. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 446–457.

[9] Jean-Yves Girard, Yves Lafont & Paul Taylor (1990):Proofs and Types. Cambridge University Press.

[10] Gregory M. Kelly (1982): Basic Concepts of Enriched Category Theory, London Mathematical Society
Lecture Notes Series64. Cambridge University Press. Avalaible in Reprint in Theory and Application of
Categories, No 10, 1982.

[11] Joachim Lambek & Philip Scott (1989):Introduction to Higher Order Categorical Logic. Cambridge Uni-
versity Press.

[12] Eugenio Moggi (1991):Notions of Computation and Monads. Information and Computation93, pp. 55–92.

[13] Benjamin C. Pierce (2002):Types and Programming Languages. MIT Press.

[14] Gordon D. Plotkin (1977):LCF Considered as a Programming Language. Theoretical Computer Science5,
pp. 223–255.

[15] Peter Selinger (2003):Order-Incompleteness and Finite Lambda-Reduction Models. Theoretical Computer
Science309, pp. 43–63.

[16] André van Tonder (2004):A Lambda Calculus for Quantum Computation. SIAM Journal of Computing33,
pp. 1109–1135.

[17] Lionel Vaux (2008):Algebraic lambda-calculus. Mathematical Structures in Computer ScienceTo appear.

	Introduction
	An untyped calculus
	A naive reduction system
	Breaking consistency

	A simply-typed lambda-calculus
	Small-step semantics
	Example: simulating quantum computation

	Equational theory
	Relation with other algebraic lambda-calculi

	Adding controlled divergence
	A fixpoint operator
	The zero in the algebra of terms
	Recasting the equational theory
	Extension of the language.
	Concrete models based on Set

	Conclusion
	Acknowledgments

