
Typechecking Linear Data: Quantum Computation in Haskell

Richard Eisenberg
University of Pennsylvania

eir@seas.upenn.edu

Benoı̂t Valiron
University of Pennsylvania
valiron@seas.upenn.edu

Steve Zdancewic
University of Pennsylvania
stevez@cis.upenn.edu

Abstract
This paper demonstrates how to use type classes to get Haskell’s
type inference engine to infer the types of an embedded language
for quantum computation. The embedded language, a variant of
Selinger & Valiron’s quantum lambda calculus (QLC), uses linear
types to express the non-duplicability of quantum data, along with
subtyping to allow convenient mixing of classical data with quan-
tum data. The embedding makes sophisticated use of Haskell’s type
classes to do logic programming at the type level.

1. Introduction
This paper shows how to hijack Haskell’s type inference algorithm
to infer types for an embedded language. More specifically, this
paper shows how to encode non-trivial linearity constraints, includ-
ing a subtyping relation, using the Haskell typechecker. We demon-
strate the technique by embedding a variant of Selinger & Valiron’s
quantum lambda calculus (QLC) [10]. The technique makes heavy
use of Haskell’s type classes—functional dependencies and equal-
ity constraints guide the unification algorithm to typecheck embed-
ded terms.

Programming languages tailored to the situation of quantum
computing enable researchers to concisely describe such algo-
rithms, abstracting the complexities of the underlying physics [2].
In this regard, Haskell provides a compelling framework for experi-
menting with quantum computing language designs, partly because
Haskell provides good support for embedded domain-specific lan-
guages, and partly because Haskell’s monads provide a natural way
of handling quantum side effects.

Indeed, Green and Altenkirch [3], and Vizzotto, da Rocha
Costa, and Sabry [12] have previously investigated interfacing
quantum computation with Haskell, using a quantum IO-monad
and with arrows, respectively.

Physics imposes several unusual constraints on the kinds of pro-
grams that can be expressed in models of quantum computation [8].
In particular, quantum data (built from qubits) must be treated lin-
early—it cannot be duplicated—and observing it in a computation
yields a probabilistic result. As a consequence, any programming
language for describing quantum computations must take into ac-
count these rather nonstandard properties. In exchange for adhering
to these physical constraints, such programs can potentially harness
quantum properties in new algorithms that go beyond what can eas-
ily be expressed by classical computers [8].

[Copyright notice will appear here once ’preprint’ option is removed.]

This paper’s goal, like that of the previous works, is to obtain
a “natural” way of describing quantum features in Haskell. Unlike
the earlier works, however, here we focus on the linearity aspects
of quantum data. As we explain, one novel aspect of the encoding
is that it fully piggy-backs on Haskell’s type inference algorithm to
infer the types of terms in the embedded language.

The Haskell folklore has it that type classes with functional
dependencies are very versatile [5, 7, 9]. The use proposed here is
another concrete example of their logic programming capabilities.
The result is a direct embedding of QLC, a previously designed
language that is consistent with one of the common models of
quantum computation (i.e. the QRAM model). We believe that this
approach to expressing type constraints for an embedded language
is general enough to be applied in other domains.

Before describing the Haskell encoding (Sections 3 through 6),
we first explain the details of the QLC, mainly by way of exam-
ple. Section 7 shows the usability of the embedding and revisits
the examples in their Haskell form. Section 8 sketches how to at-
tach a monad to the embedding for concrete experimentation and
Section 9 concludes with some discussion of related approaches.

Software and code. The Haskell code in this paper is available
in full on the web [11]. We used GHC version 7.4.1 with some
extensions listed in Appendix A.

2. QLC: A lambda-calculus for quantum
computation

A quantum program can essentially be viewed as a classical
program that interacts with a random access memory bank (the
QRAM) with non-standard properties [6]. The memory holds
qubits, the quantum equivalent of classical Booleans.

This section presents QLC, a language for interacting with
a QRAM. A variant of the Selinger-Valiron quantum lambda-
calculus [10], QLC is a typed, functional, call-by-value language.
The salient properties of the QRAM model are presented along
with the language.

2.1 QLC terms
QLC is an ML-style language, featuring term variables x, y, z . . .
and terms r, s, t, At their core, terms are made of the usual
lambda-calculus constructors

x | λx.s | (s)t.

As usual for a linearly typed language, there are no direct projec-
tions for pairs; instead, a let-notation is used to extract the compo-
nents:

〈s, t〉 | let 〈x, y〉 = s in t.

For convenience, we use the macros

let x = s in t := ((λx.t)s),
λ〈x, y〉.s := λt.(let 〈x, y〉 = t in s).

Typechecking Linear Data: Quantum Computation in Haskell 1 2012/6/1

The language supports classical Booleans through tt , ff and the if-
then-else construct:

tt | ff | if s then t else t′.
Support for access to the QRAM is given by the four term con-
structs:

new(s) | H (s) | CNOT (s) |meas(s).

The construct new(s) allocates a new qubit in the memory and sets
its value to the qubit corresponding to s (assumed to be a Boolean).
The output of the function is a pointer to the corresponding qubit.
With meas (standing for “measure”), one can retrieve a classical
Boolean out of a qubit. Because of the physics behind the QRAM,
this operation is probabilistic, and it destroys the quantum bit.
Finally,H and CNOT are two operations on qubits, returning their
input. The operation H acts upon one qubit, whereas CNOT acts
upon a pair of (distinct) qubits.

The simple program

meas (H (new ff))

first creates a qubit initialized to (quantum) false, then applies H
on it, then measures it. The output of the program is the classical
Boolean, that is the output of meas. In quantum computing, this
program tosses a coin: it returns either tt or ff with equal probabil-
ity.

A more involved program encodes so-called “quantum telepor-
tation”. This algorithm captures the spirit of the strange nature of
quantum computation. It consists of three parts, summarized by this
diagram:

qbit //

bellmeas

epr

qbit //

qbit // u
qbit //

bit,bit

��

The input qubit on top of the diagram is in the same state as the one
coming at the bottom right: it is “as if” one had encoded a qubit
into the two classical bits flowing from bellmeas to u.

In QLC, the code is as follows.

epr = λx.CNOT 〈H (newff), (newff)〉

bellmeas =
λx.λy.let 〈z, t〉 = CNOT 〈x, y〉

in 〈meas (Hz),meas t〉

u =
λz.λ〈x, y〉.if x

then (if y then U1 z else U2 z)
else (if y then U3 z else U4 z)

telep =

let 〈x, y〉 = epr ff in
let z = bellmeasx in
let t = u y in

λx.t(zx)〉
where the Ui’s are one-qubit operations. The function epr does
not use its input: it merely constructs two qubits with new and
does some operation on them before returning them. The func-
tion bellmeas takes two qubits x and y, processes them and ul-
timately returns a pair of classical Booleans, created with meas.
The function u takes a qubit z and a pair of classical bits 〈x, y〉. It
applies an operation on z depending on the values of the bits, and
returns the result.

Finally, the program telep constructs the diagram above: it
creates two qubits 〈x, y〉 with epr and then feeds x to bellmeas

and y to u. That is, z inputs a qubit and outputs a pair of bits,
whereas t inputs a pair of bits and returns a qubit. The final opera-
tion is the composition of these operations: it is a map from a qubit
to a qubit.

Note that since the code builds two auxiliary quantum bits, the
function telep is non-duplicable.

2.2 QLC’s type system
As described so far, the language is completely untyped. As usual,
this fact allows us to write non-sensical code, such as meas (λx.x).
The usual type constructs are sufficient to prevent these run-time
errors: basic types bit and qbit and type constructors for functions
(→) and for pairing (⊗).

However, due to the peculiarity of the QRAM, this is not quite
enough: a qubit is a non-duplicable piece of data. This means that
duplicating a pointer to a qubit can yield a run-time error:

let x = new tt in CNOT 〈x, x 〉
will try to apply the operation CNOT on two copies of the same
qubit, a prohibited operation, as described in Section 2.1. Another
source of error comes from measurement: if s constructs a qubit,

let x = s in 〈meas x,meas (Hx) 〉
is not well-defined. Once we are done with one of the branches of
the pair, the variable x does not point to any valid qubit anymore,
as the measurement is destructive.

The solution proposed is to use a linear type system. A term
is non-duplicable, unless explicitly typed as such, and, by default,
functions are to use their argument only once. The type system is
defined as follows:

A,B ::= !mbit | !mqbit | !m(A→ B) | !m(A⊗B),
m ::= True | False.

The flag “!” is used to indicate whether a term is duplicable or not:
If the term s is of type !mA, it is duplicable if m = True and
it is not if m = False. There is a canonical subtyping relation
A<:B driven by the remark that a duplicable term does not need
to be duplicated. In particular, !TrueA<: !FalseA. The formal rules
for the relation is as follows:

!mA<:A

A<:A′ B<:B′ m<:n

!m(A′ → B)<: !n(A→ B′)

A<:A′ B<:B′ m<:n

!m(A⊗B)<: !n(A′ ⊗B′)

The notation m<:n means “m = True or n = False”. Note
that as expected, the type constructor (→) is covariant on the right
and contravariant on the left.

The typing rules for the language are given in Table 1, and they
define a variant of the linear lambda-calculus with subtyping. We
use the following conventions:

• When multiple contexts ∆ and Γ are used, it is assumed that
they are independent, sharing no variables.

• !∆ denotes a context containing only duplicable types.
• When the context is clear, we write A and !A respectively

instead of !FalseA and !True.

We briefly discuss the typing rules.

• The typing rule for a variable term makes use of the subtyping
relation. With this rule, it is possible to show that if ∆ ` s : A
and A<:B, then ∆ ` s : B, as one would expect.

• There are two rules for the lambda-abstraction: one for typing
a non-duplicable lambda-abstraction, having no particular con-
straints, and one for typing duplicable ones. Since the language

Typechecking Linear Data: Quantum Computation in Haskell 2 2012/6/1

A<:B
∆, x : A ` x : B

∆, x : A ` B
∆ ` λx.s : A→ B

!∆,Γ, x : A ` s : B dom(∆) ∪ {x} ⊇ FV(s)

!∆,Γ ` λx.s :!(A→ B)

!∆,Γ1 ` s : A→ B !∆,Γ2 ` t : A

!∆,Γ1,Γ2 ` (s)t : B

!∆,Γ1 ` s :!m∨nA !∆,Γ2 ` t :!m∨oB

!∆,Γ1,Γ2 ` 〈s, t〉 :!m(!nA⊗!oB)
⊗I

!∆,Γ2 ` s :!o(!mA⊗!nB) !∆,Γ1, x :!m∨oA, y :!n∨oB ` t : C

!∆,Γ1,Γ2 ` let 〈x, y〉 = s in t : C
⊗E

∆ ` tt , ff :!mbit

!∆,Γ1 ` s : bit !∆,Γ2 ` t, t′ : A

!∆,Γ1,Γ2 ` if s then t else t′ : A

∆ ` s : bit
∆ ` new(s) : qbit

∆ ` s : qbit

∆ ` meas(s) :!mbit

∆ ` s : qbit

∆ ` had(s) : qbit

∆ ` s : qbit ⊗ qbit

∆ ` CNOT (s) : qbit ⊗ qbit

Table 1. Typing rules for the quantum lambda-calculus

is call-by-value, a lambda-abstraction is only duplicable when
all of its constituents are duplicable. A duplicable closure over
non-duplicable terms is disallowed.

• The typing rule for the application is a good example of where
duplicable and non-duplicable variables play a role. The only
way of having the same free variable appearing both in s and in
t is to have it in !∆, making sure it is duplicable.

• Concerning the tensor, the rules ⊗I and ⊗E use the same
philosophy regarding the typing context. The flags on the “!” are
set up so that a duplicable pair is made of duplicable elements,
and a pair of duplicable elements is duplicable.

• In the if-then-else rule, the terms t and t′ share the same typing
context, as usual in a linear setting. In particular, if a non-
duplicable variable appears in t, it also appears in t′. However,
if a variable appears both in s and in t, then it has to be
duplicable.

• Finally, the Booleans can be seen as duplicable or not, and they
are of type bit . The term constructor new takes a Boolean and
return a non-duplicable quantum bit, the constructor meas takes
a quantum bit and returns a bit, theH operation takes a quantum
bit and returns a quantum bit, and the CNOT operation acts on
a pair of quantum bits.
Note that all the term constructs that build quantum bits make
them non-duplicable.

Teleportation algorithm, revisited. We can now type the telepor-
tation algorithm and its components, as follows:

epr : A→ qbit ⊗ qbit ,
bellmeas : qbit → qbit → bit ⊗ bit ,
u : qbit → (bit ⊗ bit)→ qbit ,
telep : qbit → qbit .

The function telep is the composition of bellmeasx of type
qbit → bit ⊗ bit and of u y of type (bit ⊗ bit) → qbit . It cannot
be typed with !(qbit → qbit): it is a non-duplicable function.

3. Haskell Encoding: A simply-typed
lambda-calculus with named variables

This section develops the methodology used for encoding typing
judgments. We first present the general techniques for embedding
a simply-typed lambda-calculus in Haskell. The later sections will
be devoted to upgrading this techniques to QLC.

This simply-typed lambda-calculus has variables denoted with
natural numbers: the natural numbers are the set of available vari-

able names. The syntax is therefore

s, t ::= n | λn.s | (s)t
A,B ::= X | A→ B

The encoding in Haskell is using the class Judg and its in-
stance J::* → * → *. The type J c a denotes a typing judg-
ment whose context is c and whose term is of type a. Formally,
Judg and J are defined as follows:

class Judg j where
var :: (GetVar x a c) ⇒ x→ j c a
appl :: (Zip c1 c2 c3) ⇒
j c1 (a→ b)→ j c2 a→ j c3 b

lamb :: (AddVar x a c2 c1) ⇒
x→ j c1 b→ j c2 (a→ b)

data J c a = J (c→ a)
instance Judg J where
lamb x (J f) = J $ λc a→ f (add x a c)
appl (J f) (J g) =
J $ λx→ let (x1,x2) = split x in f x1 (g x2)

var x = J $ λz→ get_var z x

In order to type-check our variables, it is necessary to use a type-
level encoding of the natural numbers, using Z and S n. These
types are singleton types, so the name of a variable can also be
known at runtime.

data Z = Z
data S a = S a

The typing context is a tower of pairs

(A0, (A1, . . . , (An, ()) . . .))

where the type Ai is the type of the variable named i. The type
operators Used and Free, both of kind * → *, record which
variables are used and free by tagging the types.

data Used a = Used a
data Free a = Free a

For example, the typing judgment

x : a, y : u, z : a→b ` z x : b

is the term

let x = Z in
let y = S Z in
let z = S (S Z) in
appl (var z) (var x) ::
J (Used a, (Free u, (Used (a→ b), ()))) b

Typechecking Linear Data: Quantum Computation in Haskell 3 2012/6/1

The following sections describe the typing rules and the constraints
that are being used in the class Judg and its instance J.

3.1 Typing a variable
The GetVar class and its instances type a variable expression. The
constraint GetVar x a c states that c contains only the used
variable x of type a (all others are free). The constraint is defined as
a relation in logic programming: each instance describes a property
that has to be satisfied by the relation. If it were to be defined in
prolog, we would write:

GetVar(Z, a, [Used a]).
GetVar(S n, a, (Free u):c) :- GetVar(n,a,c)

The corresponding type-class is

class GetVar x a c | x a→ c where
get_var :: c→ x→ a

instance GetVar Z a (Used a,()) where
get_var (Used a,c) Z = a

instance GetVar n a c ⇒
GetVar (S n) a (Free u,c) where

get_var (u,c) (S n) = get_var c n

Typing a variable is both a base case in our formal typing rules
and also the place where the Haskell type checker bottoms out.
Because the Haskell type of a variable expression (Z or S n) is
easy to infer, the type checker builds its proof of a term’s type from
its variables. The GetVar class instances direct this process, by
forcing the type checker to build a context exactly big enough to
hold a type for the variable under consideration. The GetVar class
enforces a relationship among three types: the type x of the variable
expression, the type a of the value of the variable, and the type
c of the context. In general, the type-checker cannot immediately
infer the value of a, but it does assert that a take its correct place
within the context and gives get_var, the run-time value-lookup
function, the correct return type.

Note that the functional dependency of GetVar indicates that
the context is a function of the variable name and its type. This
dependency follows directly from our understanding of how the
type checker processes a variable expression, though it is not what
we naı̈vely might guess.

3.2 Typing an application
The Zip class and its instances type an application.

class Zip c1 c2 c3 | c1 c2→ c3 where
split :: c3→ (c1,c2)

The typing rule for an application has three contexts. The Zip
class represents the relationship among these contexts: c1 is the
context for the function, c2 is the context for its argument, and
c3 is the context of the completed application. In the regular
simply-typed lambda-calculus, the context c3 would be equal to
c1 and c2. However, in our formulation, the contexts are built
first from the variables and may not necessarily be the same when
the type checker addresses an application. We can also see at this
point that the final context c3 is a function of the two component
contexts c1 and c2. This relationship is expressed in the functional
dependency.

To unify the two contexts, the Zip instances will assert that they
match on the part they have in common, allowing the contexts c1
and c2 to be of differing size. Furthermore, any variable flagged as
Used in c1 or c2 must be flagged as such in c3. To get the type
checker to unify the types of the variables in the context, we could
be tempted to write

-- broken instance

instance (Zip c1 c2 c3) ⇒
Zip (Free a, c1) (Free a, c2) (Free a, c3)
where ...

Unfortunately, the type checker will fail to solve a constraint of the
form

Zip (Free a, ()) (Free b, ()) (Free c, ())

if the types a, b and c are distinct. We somehow need to add this
as an instance and enforce the fact that these types should be equal.
This is possible thanks to the constraint ∼.

instance Zip () c c where
split c = ((),c)

instance Zip c () c where
split c = (c,())

instance Zip () () () where
split () = ((),())

instance (Zip c1 c2 c3, c ˜ a, c ˜ b) ⇒
Zip (Free a, c1) (Free b, c2) (Free c, c3) where
split (Free c,c3) =
let (c1,c2) = split c3 in
((Free c,c1),(Free c, c2))

instance (Zip c1 c2 c3, c ˜ a, c ˜ b) ⇒
Zip (Free a, c1) (Used b, c2) (Used c, c3) where
split (Used c,c3) =
let (c1,c2) = split c3 in
((Free c,c1),(Used c,c2))

instance (Zip c1 c2 c3, c ˜ a, c ˜ b) ⇒
Zip (Used a, c1) (Free b, c2) (Used c, c3) where
split (Used c,c3) =
let (c1,c2) = split c3 in
((Used c,c1),(Free c,c2))

instance (Zip c1 c2 c3, c ˜ a, c ˜ b) ⇒
Zip (Used a, c1) (Used b, c2) (Used c, c3) where
split (Used c,c3) =
let (c1,c2) = split c3 in
((Used c,c1),(Used c,c2))

When typing an application, the function must indeed be typed
as an arrow and the argument must be of an appropriate type.
These constraints are enforced by the type of the appl function,
j c1 (a → b) → j c2 a → j c3 b. As the Haskell type
checker is unifying the variable a in this definition, it assigns the
correct arrow type to the function being applied.

Lastly, we must consider how to perform the application at run-
time. Recalling that Haskell evaluates each term into a continuation
wrapped with the data constructor J, an application must force
evaluation of its function and then apply that to the evaluated form
of its argument. To do this, the application context c3 splits into its
initial contexts c1 and c2, for that is what the sub-terms expect.
The split function does exactly this.

3.3 Typing a lambda-abstraction
The AddVar class and its instances type a lambda-abstraction.

class AddVar x a c2 c1 | x a c1→ c2 where
add :: x→ a→ c2→ c1

instance AddVar n a () () where
add n a () = ()

instance a1 ˜ a2 ⇒
AddVar Z a1 (Free b,c) (Free a2,c) where
add Z a (Free b,c) = (Free a, c)

instance a1 ˜ a2 ⇒
AddVar Z a1 (Free b,c) (Used a2,c) where
add Z a (Free b,c) = (Used a, c)

Typechecking Linear Data: Quantum Computation in Haskell 4 2012/6/1

instance (AddVar n a c d) ⇒
AddVar (S n) a (b,c) (b,d) where
add (S n) a (b,c) = (b,add n a c)

The constraints on a lambda-abstraction are encoded in the class
AddVar and in the lamb function whose type is x → j c1 b
→ j c2 (a → b). The AddVar class enforces a constraint on
a variable type x, an argument type a, a result context c2, and an
internal context c1. Note that, in a typical formal setting, c1 = (c2,
x : a). Since the contexts are built up from the variables, the type
checker will have inferred the internal context c1 before inferring
the outer context. This leads to the functional dependency stating
that c2 is a function of x, a, and c1.

The contexts must remain the same length. This is necessary to
keep the lower-valued variables matched with their correct types.
Thus, in the second and third instances listed, the outer context
starts with Free b, even though the type b is not needed to encode
the lambda-abstraction. The variable is marked Free because it
cannot have been used in this context: even if the variable is bound
by an enclosing lambda-abstraction, it is shadowed by the inner
lambda-abstraction and is unused, as of yet.

A further constraint on the types is made by the type of the
lamb function requiring, in particular, that the return type of the
lambda-abstraction matches the type of its term.

At runtime, the implementation of lamb produces a continu-
ation that returns a function. When this function is given a value
a, it inserts a at the appropriate place in its context (using the add
function in the AddVar class). It then evaluates f, the continuation
formed when evaluating the term inside the lambda-abstraction.

3.4 Examples
The identity written in this embedded language can be written as

*> :t lamb Z (var Z)
lamb Z (var Z) :: (Judg j) ⇒

j (Free b, ()) (a→ a)
*> :t lamb (S Z) (var (S Z))
lamb (S Z) (var (S Z))
:: (Judg j) ⇒

j (Free u, (Free b, ())) (a→ a)

In both cases, we would like to be able to get back the function
(a → a). This amounts to feeding the context with a dummy
entry since none of the variables are being used. Since the context
is of variable size (depending on which variables were used in the
term), it is parametrized with a class Eval. The type in the context
is forced to be Dummy using the constraint ∼.

data Dummy = Dummy

class Eval c a where
eval :: (J c a)→ a

instance Eval () a where
eval (J f) = f ()

instance (Eval c a, (Free Dummy) ˜ b) ⇒
Eval (b,c) a where
eval (J f) =
eval (J $ λc→ f (Free Dummy, c))

It behaves as expected.

*> :t eval (lamb Z (var Z))
eval (lamb Z (var Z)) :: a→ a
*> eval (lamb Z (var Z)) 0
0
*> :t eval (lamb (S Z) (var (S Z)))
eval (lamb (S Z) (var (S Z))) :: a→ a

*> eval (lamb (S Z) (var (S Z))) 42
42

4. Implementing the subtyping relation
We now turn to the question of encoding the subtyping relation of
Table 1 in Haskell.

Since we still want to represent a type in our calculus with a
Haskell type, the type system is augmented with an additional con-
struct for the “!” operator. The type constructor Flag encapsulates
flags on types. The flags are written Dup (for “duplicable”) in place
of “!True” and Sim (for “simple”) in place of “!False”. Since the
flags do not carry any computational meaning, Dup and Sim are
empty types.

data Flag f a = Flag a
data Dup
data Sim

The type for quantum bits has a dummy implementation.

data Qbit = Qbit Bool

The arrow type is still the Haskell arrow. For example, the type
!(Bool → Qbit) is encoded with

Flag Dup ((Flag Sim Bool)→ (Flag Sim Qbit))

4.1 Subtyping relation
Consider the typing derivation of term variables in Table 1: there
is a subtyping constraint on types appearing on the left and on the
right of the turnstile. A Haskell type class enforces this relation, so
that the typing rule

a<:b
x : a ` x : b

yields the type

TestSubType a b ⇒ j (a, ()) b

instead of the first projection

j (a, ()) a

as it was for the judgment x : a ` x : a.
We then need to be able to state whether a type is a subtype of

another one with the type class TestSubType. Due to the nature
of the subtyping relation, if A is a subtype of B then both types
have the same internal structure; the only parts that change are the
flags. In particular, the proposition TestSubType a b implies
that a and b can safely be extended using a unification algorithm.
A bidirectional functional dependency enables the use of Haskell’s
unification in both directions.

class TestSubType a b | a→ b, b→ a where
subType :: a→ b

instance TestSubType Bool Bool where subType x = x
instance TestSubType Qbit Qbit where subType x = x

instance (TestSubType a b, FlagSubType f1 f2) ⇒
TestSubType (Flag f1 a) (Flag f2 b) where
subType (Flag x) = Flag (subType x)

instance (TestSubType c a, TestSubType b d) ⇒
TestSubType (a→ b) (c→ d) where
subType f x = subType (f (subType x))

Typechecking Linear Data: Quantum Computation in Haskell 5 2012/6/1

Suppose the constraint TestSubType a b for some open types
a and b. The double functional dependency calls the unification
algorithm of Haskell so that a and b have the same skeleton. It
also propagates the subtyping constraints to flags recorded in an
auxiliary type class FlagSubType.

Here is an example of how the Haskell type checker builds the
set of constraints when asked to solve the relation

TestSubType (Flag f1 (a→ b)) (Flag g1 d)

The list of constraints, unwound one by one, grows as follows:

FlagSubType f1 g1,
TestSubType (a→ b) d.

Then, unification on d is done to yield

d = (a1→ b1)
FlagSubType f1 g1,
TestSubType (a→ b) (a1→ b1),

then

d = (a1→ b1)
FlagSubType f1 g1,
TestSubType a1 a,
TestSubType b b1.

which is what we could have inferred by hand from the subtyping
rules.

4.2 Constraints on flags
Let us now define the type class FlagSubType. Dup is a subtype
of anything and Sim is above any other flag.

class FlagSubType a b

instance FlagSubType Dup a
instance FlagSubType a Sim

Then FlagSubtype a Dup should imply that a is precisely
Dup. Similarly, FlagSubType Sim a implies that a is equal
to Sim. Following the identification of relations on types and type
classes, we use a type constraint ∼ and write

instance (Dup ˜ a) ⇒ FlagSubType a Dup
instance (Sim ˜ a) ⇒ FlagSubType Sim a

The constraint a ˜ b forces the Haskell type checker into identi-
fying the structure of b with the structure of a. In particular, in the
case Sim ˜ a it will replace a with Sim, the expected behavior.

These various instances allow the type checker to correctly in-
fer the flags “!” appearing in types. In all non-ambiguous cases,
the type checker can, if necessary, set the corresponding flag vari-
ables to the values they should have. For example, if A<: !B, for
sure A is duplicable. This will be enforced by the third instance
of TestSubType and by the instance of FlagSubType corre-
sponding to the case a<:Dup.

Although it seems that we are now done, we are not quite
there yet as there are overlapping instances for the type class
FlagSubType. Note that although this is a potential problem
in general as it might yield inconsistent operational behavior of
Haskell programs, in our case, this is not an issue since the compu-
tational content of the type class is completely empty. It is possible
to close the overlapping cases as follows.

-- close overlapping cases
instance FlagSubType Dup Sim
instance FlagSubType Dup Dup
instance FlagSubType Sim Sim
instance (Dup ˜ Sim) ⇒ FlagSubType Sim Dup

The last instance has a blatantly false constraint; this is on purpose:
the flag Sim should not be a subtype of Dup. This trick is already
known [5] and makes use of Haskell’s type error to get meaningful
information on the cause of the error. For example, the following
code

*Main> :t undefined :: FlagSubType Sim Dup ⇒ a

produces the error

<interactive>:1:1:
Couldn’t match type ‘Dup’ with ‘Sim’
In the expression:

undefined :: FlagSubType Sim Dup ⇒ a

This can be used to raise an error when some linear data is being
duplicated, and provide a meaningful error message. Sections 5
and 7 show uses of this trick.

Note that compiling requires two potentially dangerous exten-
sions of GHC:

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE IncoherentInstances #-}

These extensions can cause computational inconsistencies. In our
case, they are needed because of the overlapping instances of
FlagSubType. Since this class has no computational content,
these extensions are not problematic here.

The classes TestSubType, FlagSubType and their in-
stances deserve particular attention, as they are at the core of the
construction presented in this paper: they are really the one fully
piggy-backing on Haskell’s type inference algorithm, and they can
be said to be among this paper’s main contributions.

5. Adding linearity constraints and subtyping
This section incorporates the type system and subtyping relation
described in Section 4 to the lambda-calculus of Section 3.

The class of judgments. The class Judg becomes

class Judg j where
var :: (GetVar x a c) ⇒ x→ j () c a
appl :: Zip c1 c2 c3 ⇒
j w1 c1 (Flag f (a→ b))→ j w2 c2 a→
j (w1,w2,a,f) c3 b

lamb :: (AddVar x a c2 c1, TestCont c2 f1,
FlagSubType f1 f) ⇒

x→ j w c1 b→ j (w,f,f1) c2 (Flag f (a→ b))

The type constructor j now features a new variable as its first
argument. This change deserves some explanation.

The problem with the new type system is the presence of open
types for flags, together with constraints on them. In many cases,
these open flags do not cause any problem. But in some situations,
they do, as depicted with the term

let x = Z in
let y = S Z in
let z = S (S Z) in
(lamb z (appl (lamb x (var z)) (lamb y (var y))))

of type TestSubType u b ⇒Flag f (u → b).
The type inference algorithm creates a type with open flags

for lamb y (var y), together with a subtyping constraint on
a type that will then be completely dropped from the final type.
However, the constraints on these forgotten types will remain,
creating the type-checking error

<interactive>:1:46:
Ambiguous type variables ‘a’, ‘b0’

Typechecking Linear Data: Quantum Computation in Haskell 6 2012/6/1

in the constraint:
(TestSubType a b0) arising from a use of ‘var’
...

An easy solution is to keep these types around, in order for
Haskell’s type checker not to complain. However, we only need
to keep a trace of them: they can be stored as phantom types; this
is the purpose of this new first argument of the judgment j: store
the constrained types that might get erased. A canonical instance
of the typeclass Judg is

data J w c a = J (c→ a)

The other type classes. Let’s go through the other type classes.
First, GetVar is almost the same as the one used in Section 3.1.
The difference lies in the first instance that now reads

instance TestSubType a b ⇒ GetVar Z b (Used a,())
where get_var (Used a,c) Z = subType a

The type in the context can be a subtype of the type of the variable.
This is enforced by the constraint TestSubType a b.

The type class Zip now has one more constraint in the last
instance, reading as follows:

instance (Zip c1 c2 c3, (Flag Dup d) ˜ c,
c ˜ a, c ˜ b) ⇒

Zip (Used a, c1) (Used b, c2) (Used c, c3)
where ...

This constraint says that a variable can be used in both branches
only when it is duplicable.

For constraints used for the creation of the lambda-abstraction,
the class AddVar is unchanged. However, there is a new type class
TestCont. It asserts that the free variables of the body (not in-
cluding the argument) of a duplicable lambda-abstraction are them-
selves duplicable. In other words, there cannot be a duplicable clo-
sure over non-duplicable variables. This assertion can be decom-
posed into two propositions:

1. If any of the variables of the context used in the term is non-
duplicable, the lambda-abstraction is not duplicable either. This
makes a function from the context to the type of the lambda-
abstraction.

2. If the lambda-abstraction is duplicable, then all the used vari-
ables in the context are also duplicable. That makes a function
from the type of the lambda-abstraction to its context.

Clearly, these two propositions say the same thing. However, from
a logic programming point of view, they do not behave the same
way: the first one generates the flag for the lambda-abstraction’s
type from the context, whereas the second one generates the flags
of the types in the context from the lambda-abstraction. These
two propositions are encoded in two type-classes TestCont1 and
TestCont2; the type class TestCont is their conjunction.

class TestCont1 cont d | cont→ d
instance TestCont1 () Dup
instance (TestCont1 c f) ⇒

TestCont1 (Used (Flag Dup a), c) f
instance TestCont1 (Used (Flag Sim a), c) Sim
instance (TestCont1 c f) ⇒

TestCont1 (Free a, c) f

class TestCont2 c f
instance TestCont2 () Dup
instance (TestCont2 c Dup, (Flag Dup a) ˜ b) ⇒

TestCont2 (Used b, c) Dup
instance (TestCont2 c Dup) ⇒

TestCont2 (Free b, c) Dup
instance TestCont2 c Sim

class TestCont c d
instance (TestCont1 c d, TestCont2 c d) ⇒

TestCont c d

Now, we can try to type some expressions with Haskell’s inter-
preter. Let us define the following terms.

*Main> let x = Z
*Main> let y = S Z
*Main> let non_dup_x = (var x) ::

J () (Used (Flag Sim Bool), ()) (Flag Sim Bool)
*Main> let const_fun = lamb y non_dup_x
*Main> let two = lamb y (lamb x (appl (var y)

(appl (var y) (var x))))

The term two is the Church numeral 2̄. The term non_dup_x is
x made non-duplicable, and const_fun is a constant function
returning this non-duplicable variable x.

If we furthermore write in the Haskell interpreter the command

*Main> :t lamb x (appl two const_fun)

the interpreter answers

Couldn’t match type ‘Sim’ with ‘Dup’

since this code tries to duplicate the variable var x of type Flag
Sim Bool hidden in const_fun, that is, an non-duplicable
object. If we define instead

*Main> let dup_x = (var x) ::
J () (Used (Flag Dup Bool), ()) (Flag Dup Bool)

*Main> let const_fun = lamb y dup_x

with Dup instead of Sim and try again

*Main> :t lamb x (appl two const_fun)

we get the type of the term, with a dangling subtyping constraint:

(lamb x (appl two const_fun))
:: FlagSubType f2 f1 ⇒

J (...) -- phantom type
(Free b, (Free b1, ())) -- typing context
(Flag f (Flag Dup Bool→

Flag f3 (Flag Dup Bool→
Flag f2 Bool)))

Modifying the class Eval. The class Eval also needs to be
changed. Its goal is to take a closed term and strip the empty
context. In the new situation, it is still desirable to be able to do
this. However, the trace of the derivation in the first parameter of
the judgment type cannot be removed: the class is written with an
auxiliary type E as follows.

data E w a = E a

class Eval c a where
eval :: (J w c a)→ E w a

instance Eval () a where
eval (J f) = E (f ())

The last instance is not modified:

instance (Eval c a, (Free Dummy) ˜ b) ⇒
Eval (b,c) a where

eval (J f) = eval (J (λc→ f (Free Dummy, c)))

Typechecking Linear Data: Quantum Computation in Haskell 7 2012/6/1

Instead of returning a bare type, the function eval now returns
a type enclosed in a construct that keeps track of the dangling
constraints.

One slight inconvenience of this new version is that it is not easy
to directly enforce an embedded term to have a particular type by
using ascription. Before, the following worked:

:t (eval (lamb Z (var Z))) ::
Flag Dup (Flag Dup Bool→ Flag Dup Bool)

Now, the trace has to be added:

:t eval (lamb Z (var Z)) ::
E ((), Dup, Dup, Flag Dup Bool)
(Flag Dup (Flag Dup Bool→ Flag Dup Bool))

There is a trick to avoid the need to produce the trace: the
function setType:

setType :: E w a→ a→ E w a
setType x y = x

We can now write

*Main> let u = undefined
*Main> :t setType (eval (lamb Z (var Z)))

(u :: Flag Dup (Flag Dup Bool→ Flag Dup Bool))

if we wish to enforce a type. And of course, it still fails in case of
non-existing type derivation:

*Main> let u = undefined
*Main> :t setType (eval (lamb Z (var Z)))

(u :: Flag Dup (Flag Sim Bool→ Flag Dup Bool))

<interactive>:1:16:
Couldn’t match type ‘Sim’ with ‘Dup’
...

A similar trick can be applied to be able to easily enforce a
particular typing derivation, without to have to come up with the
trace:

setJudg :: J w c a→ c→ a→ J w c a
setJudg x y z = x

6. Extending to the full quantum lambda-calculus
Section 5 includes most of the difficulties for encoding the full
quantum lambda-calculus. What is missing from the class Judg
is the three last lines of Table 1.

Classical and quantum Booleans. Let us first concentrate on
the two last ones, concerned with classical Boolean and quantum
Booleans. The class is extended as follows. For legibility, we omit
the trace of existing types: as in Section 5, its only purpose is to
please Haskell’s checking of constraint ambiguity.

class Judg j where
...
tt :: j _ () (Flag f Bool)
ff :: j _ () (Flag f Bool)
ifx :: (Match c21 c22 c2, Zip c1 c2 c3) ⇒

j _ c1 (Flag d Bool)→
j _ c21 a→ j _ c22 a→ j _ c3 a

new :: j _ c (Flag f Bool)→ j _ c (Flag Sim Qbit)
meas :: j _ c (Flag f Qbit)→ j _ c (Flag f’ Bool)
had :: j _ c (Flag f Qbit)→

j _ c (Flag Sim Qbit)
cnot :: j _ c (Flag f1 (Flag f2 Qbit,

Flag f3 Qbit))→

j _ c (Flag Sim (Flag Sim Qbit,
Flag Sim Qbit))

The class Match is a variant of the class Zip. It encodes the
assertion that t and t′ in the typing judgment for if are evaluated in
the same context Γ2.

class Match c1 c2 c3 | c1 c2→ c3 where
match :: c3→ (c1,c2)

instance Match () c c where
match c = ((),c)

instance Match c () c where
match c = (c,())

instance Match () () () where
match () = ((),())

instance (Match c1 c2 c3, c ˜ a, c ˜ b) ⇒
Match (Free a, c1) (Free b, c2) (Free c, c3)
where
match (Free c,c3) =
let (c1,c2) = match c3 in
((Free c,c1),(Free c,c2))

instance (Match c1 c2 c3, c ˜ a, c ˜ b) ⇒
Match (Used a, c1) (Used b, c2) (Used c, c3)
where
match (Used c,c3) =
let (c1,c2) = match c3 in
((Used c,c1),(Used c,c2))

This class ensures that the context c1 and c2 match on their
common subset and that the context c3 is larger than the others.

Note that in the class Judg, a quantum bit can only be created
with a flag set to Sim. This enforces the non-duplication of quan-
tum bits.

Tensors. The typing rules for tensors are more complicated. They
involve a special operation ∨ on flags, encoded in the class Or.
Just as for the class TestCont, there are two components. Or1
declares that the result flag depends on the input flags, and Or2
declares that the input flags depend on the result flag. If the result is
Sim, there is no choice for the inputs e and a. If it is Dup, nothing
further can be deduced.

class Or1 e a x | e a→ x
instance Or1 e Dup Dup
instance Or1 Dup e Dup
instance Or1 Sim Sim Sim
instance (a ˜ b) ⇒ Or1 Sim a b
instance (a ˜ b) ⇒ Or1 a Sim b

class Or2 e a x | x→ e a
instance Or2 Sim Sim Sim
instance Or2 e a Dup

class Or e a x
instance (Or1 e a x, Or2 e a x) ⇒ Or e a x

With this class, the creation of a pair in the class Judg is repre-
sented by

class Judg j where
...
tens :: (Zip c1 c2 c3, Or e xa x, Or e yb y) ⇒
j _ c1 (Flag x a)→ j c2 (Flag y b)→
j _ c3 (Flag e (Flag xa a, Flag yb b))

Again, we omit the trace of existing types in the first parameter of
j. For the last term construct, a new class exposes the types x, a,
y and b: the type checker needs these clues when making of an
instance of this class.

Typechecking Linear Data: Quantum Computation in Haskell 8 2012/6/1

class JudgTens j x a y b where
lambtens ::

(TestCont c3 f1, FlagSubType f1 f,
Add2Var n (Flag x a) m (Flag y b) c3 c1,
Or e xa x, Or e yb y) ⇒

n→ m→ j _ c1 d→
j _ c3 (Flag f ((Flag e (Flag xa a,

Flag yb b))→ d))

The construct lettens and letx are defined as follows.

lettens x y m n = appl (lambtens x y n) m
letx x m n = appl (lamb x n) m

The class Add2Var behaves in a manner similar to AddVar, ex-
cept that it works with two variables. An auxiliary class IsNotEq
is needed in the definition of Add2Var, failing when two variable
names that should be distinct are not.

class IsNotEq a b
instance IsNotEq Z (S n)
instance IsNotEq (S n) Z
instance IsNotEq m n ⇒ IsNotEq (S m) (S n)

class Add2Var x a y b c2 c1 | x a y b c1→ c2 where
add2 :: x→ a→ y→ b→ c2→ c1

instance (IsNotEq m n) ⇒ Add2Var m a n b () ()
instance (IsNotEq Z Z) ⇒ Add2Var Z a Z b c c
instance (a1 ˜ a2, AddVar m b c2 c1) ⇒

Add2Var Z a1 (S m) b (Free y, c2) (Free a2, c1)
instance (a1 ˜ a2, AddVar m b c2 c1) ⇒

Add2Var Z a1 (S m) b (Free y, c2) (Used a2, c1)
instance (a1 ˜ a2, AddVar m b c2 c1) ⇒

Add2Var (S m) b Z a1 (Free y, c2) (Free a2, c1)
instance (a1 ˜ a2, AddVar m b c2 c1) ⇒

Add2Var (S m) b Z a1 (Free y, c2) (Used a2, c1)
instance (Add2Var n a m b c d) ⇒

Add2Var (S n) a (S m) b (y,c) (y,d)

The first instance of Add2Var always succeeds, as long as the
names are distinct. This is similar to what happens in the creation
of a lambda-abstraction. The second instance always fails since the
names are both equal to Z, and the same name cannot be used
twice for the two variables in the let construct. The other instances
encode induction steps.

7. Examples of terms
We now examine some examples of terms. Due to the fact that QLC
has a native non-duplicable object, it is possible to write examples
of computations where the non-duplicability might be an issue.

This section does not require particular knowledge of quantum
computation apart from the understanding that a quantum bit is
non-duplicable.

7.1 Non-duplicability
Using quantum computation, one can build a perfect coin toss using
the following code.

*Main> :t eval (meas (had (new ff)))
eval (meas (had (new ff)))
:: E ... (Flag f’ Bool)

Although it internally creates a qubit, this term is duplicable since
it is ultimately a Boolean. And indeed:

*Main> :t setType (eval (meas (had (new ff))))
(undefined :: Flag Dup Bool)

succeeds. This is correct behavior, because the code is call-by-
value: it consumes the qubit as well in the meas construct. The
following code also type checks: duplicating the result of the coin
toss is valid.

setType (eval (appl (lamb Z (tens (var Z) (var Z)))
(meas (had (new ff)))))

(undefined ::
Flag Dup (Flag Dup Bool, Flag Dup Bool))

7.2 Reporting errors
If instead of passing the result of the coin toss, we try to duplicate
the the qubit before measuring it, the term does not type check.

*> :t appl (lamb Z (tens (meas (var Z))
(meas (var Z))))

(had (new ff))

<interactive>:1:7:
Couldn’t match type ‘Sim’ with ‘Dup’
In the first argument of ‘appl’, namely
‘(lamb Z (tens (meas (var Z)) (meas (var Z))))’

In the expression:
appl (lamb Z (tens (meas (var Z))

(meas (var Z)))) (had (new ff))

Note that this is a meaningful message indicating the place were
the type checker stopped. The error message says that a Sim type
and a Dup type did not unify. This is one of the benefits of having
the Haskell type checker do the job for us.

7.3 Non-duplicable functions
Quantum bits are not the only terms to be non-duplicable. In the
following example, the function is non-duplicable as it contains the
quantum bit that was fed to the outer lambda-abstraction.

*> let f = appl (lamb Z (lamb (S Z)
(meas (var Z)))) (new ff)

*> :t f
... :: Judg j ⇒

j ... (Free b, ())
(Flag Sim (a→ Flag f’ Bool))

Trying to duplicate this term fails, as before.

*> :t appl (lamb Z (tens (var Z) (var Z))) f

<interactive>:1:7:
Couldn’t match type ‘Dup’ with ‘Sim’
...

7.4 A non-duplicable pair of functions
As a larger example to show the robustness of the implementation,
we encode the teleportation algorithm presented in Section 2. It
shows that the Haskell compiler can infer the type of a non-trivial
term.

For a complete correlation with the code Selinger and Valiron
presented, assume that we add the maps

u1 :: j _ c (Flag f Qbit)→ j _ c (Flag Sim Qbit)
u2 :: j _ c (Flag f Qbit)→ j _ c (Flag Sim Qbit)
u3 :: j _ c (Flag f Qbit)→ j _ c (Flag Sim Qbit)
u4 :: j _ c (Flag f Qbit)→ j _ c (Flag Sim Qbit)

to the class Judg. These extra operations do not affect any sub-
stantive quality of the language. They are included here merely to
match up with the example.

The term telep is constructed as follows.

Typechecking Linear Data: Quantum Computation in Haskell 9 2012/6/1

x = Z
y = S Z
z = S (S Z)

epr = lamb x (cnot (tens (had (new ff)) (new ff)))

bellmeas =
lamb x (
lamb y (
lettens z t
(cnot (tens (var x)

(var y)))
(tens (meas (had (var z)))

(meas (var t)))))

u =
lamb z (
lambtens x y (
ifx (var x)

(ifx (var y) (u1 (var z)) (u2 (var z)))
(ifx (var y) (u3 (var z)) (u4 (var z)))))

telep =
lettens x y (appl epr ff) (
letx z (appl bellmeas (var x)) (
letx t (appl u (var y)) (
(lamb x (appl (var t) (appl (var z) (var x)))))))

The type of this term is supposed to be (qbit → qbit), and cannot
be made duplicable. The Haskell interpreter types the term with the
type described in Section 2.2.

*> :t eval telep
eval telep :: (...) ⇒ E ...
(Flag Sim
(Flag Sim (Flag f7 Qbit→ Flag Sim Qbit)))

It is non-duplicable, as the following attempt fails:

*> :t appl (lamb x (tens (var x) (var x))) telep

<interactive>:1:7:
Couldn’t match type ‘Sim’ with ‘Dup’
...

The type of the other terms are as described in Section 2.2:

*> :t eval u
eval u
:: ... ⇒ E ...

(Flag f3 (Flag f Qbit→
Flag f5 (Flag e
(Flag xa Bool, Flag yb Bool)→
Flag Sim Qbit)))

*> :t eval bellmeas
eval bellmeas
:: ... ⇒ E ...

(Flag f2 (Flag f1 Qbit→
Flag f4 (Flag f Qbit→

Flag e (Flag xa Bool, Flag yb Bool))))
*> :t eval epr
eval epr
:: E ...

(Flag f (a→
Flag Sim (Flag Sim Qbit, Flag Sim Qbit)))

8. Operational description
The proposed techniques for embedding linearity constraints are
compatible with a monadic approach. This approach is given below
for QLC as evidence that it can be used in a practical context for
experimenting with the language.

For the language QLC, this section formalizes the QRAM
model: This can easily be interpreted as a state monad.

type Qram :: *
data Prob a = ...
data PQM a = PQM (Qram→ Prob (Qram, a))
instance Monad Prob where ...
instance Monad PQM where ...

The monad PQM is also an instance of the classes

data Qbit = ...
class QC m where

qc_new :: Bool→ m Qbit
qc_had :: m Qbit→ m Qbit
qc_CNOT :: m (Qbit, Qbit)→ m (Qbit, Qbit)
qc_meas :: m Qbit→ m Bool

class (Monad m) ⇒ StrongMonad m where
strength :: m a→ m b→ m (a,b)

The class QC gives access to the low-level operation of the QRAM
device. The class StrongMonad states that the monad m is strong.

A slight modification of the classes Judg, JudgTens and
Eval needs to be done for that goal. Here is a fragment of this
work; the complete development is available on the web [11].

class Judg j m where
lamb :: (AddVar x a c2 c1, TestCont c2 f1,

FlagSubType f1 f) ⇒
x→ j m _ c1 (m (Flag f’ b))→
j m _ c2 (m (Flag f (a→ (m (Flag f’ b)))))

appl :: Zip c1 c2 c3 ⇒
j m _ c1 (m (Flag f ((Flag f’’ a)→

m (Flag f’ b))))→
j m _ c2 (m (Flag f’’ a))→
j m _ c3 (m (Flag f’ b))

var :: (GetVar m x a c) ⇒ x→ j m _ c (m a)
...

The data type J changes as follows.

data J m w c a = J (c→ m a)

It is an instance of Judg, parametrized by m.

instance (Monad m, StrongMonad m, QC m) ⇒
Judg J m where ...

Two implementations of this quantum state monad are on the
web [11].

9. Discussion and related work
9.1 Scalability of the approach
We believe that the technique devised here can be applied to pro-
gramming languages other than QLC. We found that the encoding
of the type system in a logic programming manner was relatively
fast, and the benefit—having Haskell at hand to develop an opera-
tional semantics—noticeable.

The main drawback of this approach is the need for keeping a
trace of the typing derivation of the term. Since it is kept within the
type, it potentially makes a large overhead for the type checker. The
telep algorithm, for instance, has 114 elements in its trace, mak-
ing the actual size of the type gigantic. This hampers the scalability

Typechecking Linear Data: Quantum Computation in Haskell 10 2012/6/1

of the approach for uses other than small-scale experimentations
with the embedded language.

However, it should be noted that the reason the trace is needed—
the ambiguity check—could be eliminated with an extension that
either instantiates “orphan” constraints to defaults values, or forgets
them altogether. For QLC’s type system, the orphan constraints
deal only with flags that happen to be type variables: setting them
all to Sim would do the trick.

9.2 Linearity constraints and type classes
Kiselyov [4] provides an alternative way of enforcing linearity
constraints on a lambda-calculus with de Bruijn indices, using
Haskell’s type classes. His approach is based on a more algorithmic
presentation of the typing rules in which the interpretation of a term
is a function from input contexts to output contexts. He considers
adding duplicable variables, but does not implement a subtyping
relation as we do here. We have found our embedding to be a more
natural representation of the typing rules that is more convenient to
work with.

9.3 GADTS and type families
We believe that our approach cannot easily be transposed to
GADT’s and type families: the implementation we propose uses
Haskell’s unification algorithm. Using type families would require
reimplementing this unification algorithm, at the type level.

9.4 Quantum computation
Altenkirch and Grattage design QML, a language specific for a
quantum computation with quantum control [1]. In that paper,1

Haskell is only used as the language for writing the QML com-
piler. However, the quantum IO monad can probably be used as a
candidate for the quantum state monad described in this paper.

10. Conclusion
This paper provides a concrete case of use for the logic program-
ming features of the Haskell type system. We make the type system
check non-trivial linearity constraints while keeping a natural inter-
pretation of terms as regular Haskell code. Because the constraints
on types are checked on the fly, the compiler also provides mean-
ingful error messages.

We have found a concrete use of functional dependencies for
logic programming where we believe type families cannot be used.

Acknowledgments
We’d like to thank the UPenn PL-Club and Stephanie Weirich
for their useful feedback. Supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior
National Business Center contract number D11PC20168. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of IARPA, DoI/NBC, or the U.S. Government.

References
[1] T. Altenkirch and J. Grattage. A functional quantum programming lan-

guage. In Proceedings of the 20th Symposium on Logic in Computer
Science, LICS’05, pages 249–258, 2005.

[2] S. J. Gay. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science, 16(4):581–600, 2006.

1 see also http://sneezy.cs.nott.ac.uk/qml/compiler/

[3] A. S. Green and T. Altenkirch. Shor in haskell: The quantum io monad.
In S. Gay and I. Mackie, editors, Semantic Techniques in Quantum
Computation, chapter 1. CUP, 2009.

[4] O. Kiselyov. Linear and affine lambda-calculi. Lecture notes, accessi-
ble on http://okmij.org/ftp/tagless-final/course/
course.html#linear, 2010.

[5] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heteroge-
neous collections. In Haskell 2004: Proceedings of the ACM SIG-
PLAN workshop on Haskell, pages 96–107. ACM Press, 2004. ISBN
1-58113-850-4. doi: http://doi.acm.org/10.1145/1017472.1017488.

[6] E. H. Knill. Conventions for quantum pseudocode. Technical report,
Los Alamos National Laboratory, 1996.

[7] C. McBride. Faking it: Simulating dependent types in haskell. J.
Funct. Program., 12(5):375–392, 2002. ISSN 0956-7968.

[8] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[9] C. Parker. Type-level instant insanity. The Monad.Reader, 8, Septem-
ber 2007.

[10] P. Selinger and B. Valiron. A lambda calculus for quantum compu-
tation with classical control. Mathematical Structures in Computer
Science, 16:527–552, 2006.

[11] B. Valiron. http://www.monoidal.net/papers/qhaskell.
[12] J. K. Vizzotto, A. C. da Rocha Costa, and A. Sabry. Quantum arrows

in haskell. In P. Selinger, editor, Proceedings of the Fourth Interna-
tional Workshop on Quantum Programming Languages, volume 210
of Electronic Notes in Theoretical Computer Science, Oxford, UK.,
2006.

A. Extensions of GHC
The code requires a few extensions to compile with GHC 7.4.1.

• The first ones are there to allow more expressive type classes,
but are not known to cause major operational issues.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

• Finally, we use these extensions already discussed in Sec-
tion 4.2.

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE IncoherentInstances #-}

Typechecking Linear Data: Quantum Computation in Haskell 11 2012/6/1

