
About Typed Algebraic Lambda-calculi

Benoı̂t Valiron
INRIA Saclay/LIX
Palaiseau, France

valiron@lix.polytechnique.fr

Abstract

Arrighi and Dowek (2008) introduce an untyped lambda-
calculus together with a structure of module over a ring of
scalars. They show that diverging terms may break con-
fluence if a naive rewriting system is used. In this paper,
we explore the semantics of a typed version of their lan-
guage. First, we describe a simply-typed language with no
fixpoints. We show that in this restricted setting, no diverg-
ing term exists, and the language admits a simple denota-
tion using the monad coming from the adjunction between
the category of sets and the category of modules. Then we
add the possibility of fixpoints, and we examine the differ-
ences with the previous language. In particular, we show
how several notions of zeros and infinities naturally arise
in the presence of fixpoints and we sketch a denotational
description for catching these notions.

Keywords: typed lambda-calculus, module over ring
and semi-ring, fixpoints, semantics, computational model.

1. Introduction

Notions of lambda-calculus with vectorial structures
have at least two distinct origins. The first one is the cal-
culus of Vaux [10], building up upon the work of Ehrhard
and Regnier [4]. The goal here is to capture a notion of
differentiation within lambda-calculus. Another origin of
algebraic lambda-calculi is the work of Arrighi and Dowek
[2], defining a lambda-calculus in the style of van Tonder
[9]. Here, the goal is to describe a lambda-calculus with
superposition of states in a quantum computational style.

Both [2] and [10] acknowledge the fact that for an un-
typed lambda-calculus, a naive rewriting system renders the
language inconsistent, as any term can be made equal to the
zero of the vectorial space of terms. However, coming from
different backgrounds, they provide different solutions to
the problem. In [2], the rewriting system is restrained in
order to avoid unwanted equalities of terms. In [10], the

rewriting system is untouched, but the scalars over which
the vectorial structures in built are made into a semiring.
This also brings a consistent system.

In this paper, we describe a semantics for an algebraic
lambda-calculus. Starting with an untyped lambda-calculus
and a naive rewrite system, we show where inconsisten-
cies occur. Then we construct a simply-typed version of
the untyped language, together with an equational descrip-
tion. In this restricted setting, the rewrite system is sound,
and we describe a denotational semantics using a computa-
tional model a la Moggi [8]. We then re-read the problems
that occurred in the untyped world, and find a simple so-
lution for making the system sound again in the presence
of diverging terms. We demonstrate that several notions
of convergence arise when considering algebraic lambda-
calculus, and sketch denotational models accounting for di-
vergence.

1.1. An untyped calculus

Suppose the existence of a ring (A, +, 0,×, 1). Ele-
ments of A are called scalars. We define a language by
the following term grammar:

s, t ::= x | λx.s | st | s + t | α · s | 0 | [s] | { s },
u, v ::= x | λx.u | uv | [s],

where α ranges over A, and where x ranges over a set of
variables. Terms of the form s, t are called composite and
terms of the form u, v are called pure terms. We define
variable substitution as usual and consider term up to α-
equivalence.

1.2. A naive reduction system

A very naive reduction is to make the system of term into
a monad over a ring A, with the term 0 as unit of the addi-
tion. More precisely, a term s reduces to a term t, written
s → t, if there exists a term s′ and a term t′ respectively
equivalent modulo congruence, associativity and commuta-
tivity of + to s and t such that the relation s′ → t′ is derived

from the rules of Table 1. Although we do not describe
formally the system here (a complete development can be
found in Section 2.1), the reduction should be straightfor-
ward enough for the remainder of the discussion.

In particular, the addition is commutative and associa-
tive, the terms t − t and 0 · t equate the term 0. All terms
constructs are linear except [−], which “lift” a composite
term into a pure term. One can unlift it using { − }, and
retrieve the composite term. Finally, the system is call-by-
value: the beta-reduction (λx.s)v reduces to s[x← v] only
if v is a pure term.

For example, the term (λfx.(fx)x)(y + z) reduces to

(λxf.(fx)x)y + (λxf.(fx)x)z,

and then to λf.(fy)y+λf.(fz)z. On the contrary, the com-
posite term (λxf.(f{ x }){ x })[y + z] reduces to

λf.(f{ [y + z] }){ [y + z] },
and then to

λf.(fy)y + λf.(fz)y + λf.(fy)z + λf.(fz)z.

It is possible to build the same term constructs as with
the regular untyped lambda-calculus [3]. For example, the
product 〈 s, t 〉 of two terms s and t can be encoded as
λf.(fs)t, the first projection π1(s) of a pair s as the term
s (λxy.x) and the second projection π2(s) as s (λxy.y).
Note that, since each usual lambda-terms constructs are lin-
ear in each variable, the new term constructs 〈 −,− 〉, π1,
π2 are also linear in each variable. In particular,

〈 s + s′, t + t′ 〉 = λf.(f(s + s′))(t + t′) =
λf.((fs)t + (fs′)t + (fs)t′ + (fs′)t′) =

λf.(fs)t + λf.(fs′)t + λf.(fs)t′ + λf.(fs′)t′ =
〈 s, t 〉+ 〈 s′, t 〉+ 〈 s, t′ 〉+ 〈 s′, t′ 〉.

1.3. Breaking consistency

Although the set of requirements look reasonable, the
equational system is not sound. Indeed, given any term b,
one can construct the term

Yb = { (λx.[{ xx }+ b])(λx.[{ xx }+ b]) }.
This term verify the reduction

Yb → Yb + b. (1)

This creates a problem of consistency, as enlightened in the
following sequence of equalities:

0 = Yb − Yb = (Yb + b)− Yb = b + (Yb − Yb) = b. (2)

This successfully shows that any term can be equated to
0, making the system inconsistent (this argument is issued
from [2]).

2. A simply-typed lambda-calculus

The problem occurring in Section 1.3 is due to the pos-
sibility of constructing diverging terms. In this section we
study a simply-typed, algebraic lambda-calculus. Equipped
with a naive reduction system, it verifies strong normaliza-
tion. This allows us in Section 3 to analyse carefully the
pitfalls occurring when adding divergence.

Definition 2.1. We suppose the existence of a ring A, con-
taining a multiplication and an addition. A simply-typed
algebraic lambda-calculus is constructed as follows. Types
are of the form

A,B ::= ι | A→ B | A×B | > |MA,

where ι ranges over a set of type constants. Terms come in
two flavors:

s, t ::= x | λx.s | st | 〈 s, t 〉 | π1(s) | π2(s) | ∗ |
s + t | α · s | 0 | [s] | { s },

u, v ::= x | λx.u | uv | 〈 u, v 〉 | π1(u) | π2(u) | ∗ |
[s],

where α ∈ A. Terms of the form s, t are called composite
and terms of the form u, v are called pure terms. The term
[s] is the closure of a computations: such a term is not
linear and can be duplicated “as it”. The term construct
{ − } breaks such a closure and “run” the computation.

We define the notions of typing context ∆ and of typing
derivation ∆ ` s : A in the usual way. Terms are considered
up to α-equivalence, and valid typing derivations are built
using the rules of Table 2.

2.1. Operational semantics

The type system is valid with respect to the reduction
system described in Table 1, modulo the addition of rules
for the added term constructs concerning the product. In
the following, we use the terminology of [2].

Definition 2.2. Given any relation R on terms, we say that
it is a congruent relation if for all pairs (s, s′), (t, t′) ∈
R, the pairs (λx.s, λx.s′), (st, s′t′), (s + t, s′ + t′),
(〈 s, t 〉, 〈 s′, t′ 〉), (π2s, π2s

′), (π1s, π1s
′), (α · s, α · s′),

([s], [s′]) and ({ s }, { s′ }) are in R.

Definition 2.3. We define 'AC to be the smallest congru-
ent, equivalent relation on terms satisfying s + t'AC t + s
and r + (s + t) 'AC (r + s) + t. We say that a relation R
is consistent with 'AC if

s'AC s′Rt′ 'AC t ⇒ sRt.

2

Group E

α · 0 → 0 0 + s → s α · (β · s) → (αβ) · s
(∗) 0 · s → 0 1 · s → s α · (s + t) → α · s + α · t

Group F

α · s + β · s → (α + β) · s
α · s + s → (α + 1) · s

s + s → (1 + 1) · s
Group A

(s + t)r→ sr + tr (α · s)r→ α · (sr) 0r→ 0
r(s + t)→ rs + rt r(α · s)→ α · (rs) r0→ 0

λx.(s + t)→ λx.s + λx.t λx.(α · s)→ α · λx.s λx.0→ 0
{ s + t } → { s }+ { t } { α · s } → α · { s } { 0 } → 0

Group B

(λx.s)v → s[x← v] { [s] } → s

Table 1. Reduction system L.

∅ ⇒ ∆, x : A ` xA : A,
∆, x : A ` s : B ⇒ ∆ ` λxA.s : A→ B,

∆ ` s : A→ B
∆ ` t : A

}
⇒ ∆ ` st : B,

∆ ` s : A×B ⇒ ∆ ` π1(s) : A,
∆ ` s : A×B ⇒ ∆ ` π2(s) : B,

∆ ` s : A
∆ ` t : B

}
⇒ ∆ ` 〈 s, t 〉 : A×B,

∆ ` s : A ⇒ ∆ ` α · s : A,
∆ ` s : MA ⇒ ∆ ` { s } : A,
∆ ` s : A ⇒ ∆ ` [s] : MA.

∆ ` s : A
∆ ` t : A

}
⇒ ∆ ` s + t : A,

Table 2. Typing rules.

Definition 2.4. We define the reduction systems E, F,A
and B of terms as the smallest congruent relations consis-
tent with 'AC , satisfying the rules in Table 1 where B is
augmented with the rules

π1〈 u, v 〉 → u, π2〈 u, v 〉 → v.

In all the given rules, the terms r, s, t are assumed to be
neutral and the terms u, v are assumed to be pure. We write
L for the relation A ∪B ∪ E ∪ F .

Convention 2.5. If R is a relation, we write s →R t in
place of (s, t) ∈ R. We simply right→ in place of→L, and
if s → t, we say that s reduces to t. We denote with →∗

R

the reflexive, transitive closure of→R.

Lemma 2.6 (Substitution). Let ∆ ` v : A and ∆, x : A `
s : B be two valid typing derivations, where v is a pure
term. Then ∆ ` s[x← v] : B is a valid typing derivation.

Proof. Proof by structural induction on the typing deriva-
tion of ∆, x : A ` s : B.

Lemma 2.7 (Subject reduction). Let ∆ ` s : A be a valid
typing judgement such that s → t. Then ∆ ` t : A is also
valid.

Proof. Proof by structural induction on the term s and in-
spection of the reduction rules, using Lemma 2.6 for the
first rule of group B.

Definition 2.8. A neutral term is a term built from the fol-
lowing grammar:

s, t ::= 0 | u | α · u | s + t.

where u is a pure term.
A normal term is a term s such that there does not exists

a term t such that s → t. A rewrite sequence is a sequence
(si)i of terms such that for all i, either si → si+1 or si is
normal and i is the last index of the sequence.

Lemma 2.9. A normal term is neutral.

3

Theorem 2.10 (Safety). Suppose that ` s : A is a valid
typing judgement. Then either s → t, and then ` t : A, or
s is a term in neutral form.

Proof. Proof by case distinction on the structure of s, using
Lemma 2.7.

As for the simply-typed lambda-calculus, the reduction
system is normalizable. The proof uses the fact that the
rewrite system consists of two parts: the rules of groups
E,F,A and the rules of group B.

Lemma 2.11. Let s be any term. There exists a natural
number n such that any rewrite sequence (si)i in E∪F ∪A
consists of at most n elements.

Theorem 2.12 (Normalization). Let ` s : A a valid typing
judgement. There exists an index ns such that any rewrite
sequence (si)i starting ar s0 = s is finite and of at most ns

elements.

Proof. The proof uses reducibility candidates. The set
REDA of reducibility candidates of type A is constructed
in the usual way. The typing judgement ∆ ` s : > is in
RED> if and only if s is strongly normalizable. For s of
type A × B, s ∈ REDA×B if and only if π1(s) ∈ REDA

and π2(s) ∈ REDB . A term ∆ ` s : MA is in REDMA

if and only if { s } ∈ REDA, and ∆ ` s : A → B is
in REDA→B if for all term ∆ ` t : A, the term st is in
REDB . Then the proof follows the one provided in [5],
using Lemma 2.11 to handle the cases where addition and
multiplication by scalar are involved.

2.2. Equational theory

Together with its type system, the simply-typed lambda-
calculus shares some strong similarities with Moggi’s com-
putational lambda-calculus [8]. Indeed, there are notions of
value and computation, respectively described by the notion
of pure and the notion of composite term.

Definition 2.13. We define an equivalence relation 'ax on
terms as the smallest equivalence relation closed under α-
equivalence, the usual congruence rules, the associativity
and commutativity of +, and the equations of Table 3.

Two valid typing judgements ∆ ` s, t : A are said to be
axiomatically equivalent, written ∆ ` s'ax t : A, if s'ax t
is provable.

Definition 2.14. We define a A-enriched computational
category to be

• a cartesian closed category (C,×,⇒,1),

• together with a strong monad (M, η, µ, t),

• such that the Kleisli category is enriched over the cat-
egory of A-modules.

We refer the reader to the literature for the definitions (e.g.
[6, 7, 8]).

We claim that the simply-typed algebraic lambda-
calculus is an internal language for A-enriched computa-
tional categories.

Definition 2.15. We define the category Cl as follows: ob-
jects are types and morphisms A→ B are axiomatic equiv-
alent classes of typing judgements x : A ` v : B (where v
is a pure term).

Theorem 2.16. The category Cl is a A-enriched compu-
tational category. The cartesian closed structure is given
by the classical subset of the language: The unit is >, the
product of A and B is A×B. The structural maps are

π1 = x : A×B ` π1(x) : A,

π2 = x : A×B ` π2(x) : B,

if f and g are respectively x : A ` u : A and x : A ` v : B,
then 〈 f, g 〉 is the map x : A ` 〈 u, v 〉 : A×B. The unique
map sending A to > is x : A ` ∗ : >. The natural map
from Cl(A×B, C) to Cl(A,B → C) is sends the morphism
x : A×B ` u : C to y : A ` λz.((λx.u)〈 y, z 〉) : B → C.

The monad M sends A to MA and x : A ` u : B to
y : MA ` [(λx.u){ y }] : MB, and the three required
morphisms are

ηA = x : A ` [x] : MA,

µA = x : MMA ` [{ { x } }] : MA,

tA,B = x : MA×B ` [〈 {π1(x)}, π2(x) 〉] : M(A×B).

The enrichment of Cl(A,MB) is given by the module struc-
ture of the term algebra. Consider the two maps f = (x :
A ` u : MB) and g = (x : A ` v : MB). We define

0 = (x : A ` [0] : MB)
f + g = (x : A ` [{ u }+ { v }] : MB),
α · f = (x : A ` [α · { u }] : MB).

Proof. Proof by inspection of the required commutative di-
agrams.

Definition 2.17. Consider aA-enriched computational cat-
egory C. We define the interpretation of a composite typing
judgement [[x1 : A1, . . . , xn : An ` t : B]]c as a morphism
in CM and the interpretation of a pure typing judgement
[[x1 : A1, . . . , xn : An ` t : B]]v as a morphism in C. They
are defined inductively, together with their usual mean-
ings: The interpretation of π2(s) and π1(s) are the projec-
tions and 〈 s, t 〉 the product of the cartesian structure; the
lambda-abstraction corresponds to the internal homomor-
phism of C; the term [s] makes a computation A → MB
into a value using the unit of the monad and { s } produces

4

(∗) 0 · u 'ax 0 u + 0 'ax u

1 · u 'ax u α · u + α · v 'ax α · (u + v)

α · u + β · u 'ax (α + β) · u (r + s) + t 'ax r + (s + t)

α · (β · s) 'ax (αβ) · s s + t 'ax t + s

〈 r + α · s, t 〉 'ax 〈 r, t 〉+ α · 〈 s, t 〉 π1(s + α · t) 'ax π1(s) + α · π1(t)

〈 r, s + α · t 〉 'ax 〈 r, s 〉+ α · 〈 r, t 〉 π2(s + α · t) 'ax π2(s) + α · π2(t)

〈 0, t 〉 'ax 0 π1(0) 'ax 0

〈 t,0 〉 'ax 0 π2(0) 'ax 0

(r + α · s)t 'ax rt + α · (st) 0t 'ax 0

r(s + α · t) 'ax rs + α · (rt) t0 'ax 0

λx.(s + α · t) 'ax λx.s + α · (λx.t) λx.0 'ax 0

{ (s + α · t } 'ax { s }+ α · { t } { 0 } 'ax 0

π1〈 u, v 〉 'ax u [{ u }] 'ax u

π2〈 u, v 〉 'ax v { [s] } 'ax s

〈 π1(u), π2(u) 〉 'ax u (λx.{ s })t 'ax { (λx.s)t }
(λx.u)v 'ax u[v/x] ((λxy.r)s)t 'ax ((λyx.r)t)s

λx.(ux) 'ax u (λx.r)((λy.s)t) 'ax (λy.(λx.r)s)t

(λx.x)s 'ax s

Table 3. Axiomatic equivalence relation.

a computation through the multiplication of the monad; fi-
nally, the sum and the external multiplication are handled
by the enriched structure.

Theorem 2.18. If we interpret the simply-typed al-
gebraic lambda-calculus in Cl then the equations
[[x : A ` v : B]]v 'ax (x : A ` v : B) and
[[x : A ` t : B]]c 'ax (x : A ` [t] : MB) hold.

2.3. Example: quantum computation

The main motivation behind [2] was quantum computa-
tion. In this section, we show that one can simulate quan-
tum computation with the simply-typed algebraic lambda-
calculus.

Quantum computation is a paradigm where data is en-
coded on the state of objects governed by the law of quan-
tum physics. The mathematical description of a quantum
boolean is a (normalized) vector in a 2-dimensional Hilbert
spaceH. In order to give sense to this vector, one chooses an
orthonormal basis {|0〉, |1〉}. A vector α|0〉+β|1〉 is under-
stood as the “quantum superposition” of the boolean 0 and
the boolean 1. If one consider two quantum boolean, the

state of the corresponding system is an element of H ⊗ H.
The chosen basis is {|0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉, |1〉⊗|1〉}.
The operations one can performed on quantum booleans
are of two sorts: Quantum gates and measurements. In the
mathematical description, the former correspond to unitary
maps. The latter has a probabilistic outcome and does not
have a satisfactory description in term of vectors. To be able
to interpret it, one uses the notion of density matrices to rep-
resent quantum booleans, that is, positive matrices of norm
one. The measurement operation is then the map sending a
matrix to its diagonal.

For simulating quantum computation, choose the ring A
to be the field of complex numbers. Given an arbitrary type
X , one can represent a quantum boolean in the simply-
typed algebraic lambda-calculus as a closed value of type
bit = MX → (MX →MX). One encode α|0〉+ β|1〉 as
λxy.[α · { x }+ β · { y }]. One writes tt for λxy.[{ x }]
and ff for λxy.[{ y }]. The Hadamard gate, sending |0〉 to
1√
2
(|0〉+ |1〉) and |1〉 to 1√

2
(|0〉−|1〉), can be written as the

term

H = λx.λab.[{x[1√
2
·({a}+ {b})][1√

2
·({a} − {b})]}]

5

of type bit → bit . Applying the Hadamard gate to a quan-
tum boolean b is computing the term Hb.

In order to model measurements, we can use the fact that
the language features higher-order and encode a positive
matrix as a term of type bit → bit . The quantum boolean
α|0〉+ β|1〉 is encoded as the term v equal to

λx.λab.[{x [αᾱ·{a}+ αβ̄·{b}][ᾱβ·{a}+ ββ̄·{b}]}].

The application of the Hadamard gate to v is H ′v, where
H ′ is the term H ′ = λx.H(xH) of type (bit → bit) →
(bit → bit). The measurement is also of type (bit →
bit) → (bit → bit) and can be encoded as the term P
equal to

λv.λx.λab.[{(v x)[{ a }][0] + (v x)[0][{ b }]}].

One can check that Pv is indeed equal to

λx.λab.[{x [αᾱ·{a}][ββ̄·{b}]}].

3. Adding controlled divergence

Because of Theorem 2.12, a term Yb behaving as in
Equation (1) is not constructable in the simply-typed alge-
braic lambda-calculus. In this section, we add to the lan-
guage a notion of fixpoint in order to understand what goes
wrong in the untyped system.

3.1. A fixpoint operator

In order to stay typed and to be able to keep most of the
computational interpretation of Section 2.2 but still to be
able to have a term Yb, we add to the language a unary term
operator Y verifying the reduction

Y (s)→ s(Y (s))

and satisfying the typing rule

∆ ` s : MA→MA =⇒ ∆ ` Y (s) : MA. (3)

We can now build a term Yb behaving as required in Equa-
tion (1).

Yb ≡ { Y (λx.[b + { x }]) }. (4)

Indeed:

{ Y (λx.[b + { x }]) }
→ { (λx.[b + { x }])(Y (λx.[b + { x }])) }
→ { [b + { Y (λx.[b + { x }]) }] }
→ b + { Y (λx.[b + { x }]) }.

Provided that ∆ ` b : B, the term Yb satisfies the typing
judgement ∆ ` Yb : B.

Remark 3.1. Of course, if we keep the operational seman-
tics of Section 2, the system becomes as inconsistent as with
the untyped calculus. Let us review the problems that can
occurs.

3.2. The zero in the algebra of terms

To understand what goes wrong, consider the typing
judgement

x : MA ` x− x : MA.

With the equational system of Section 2.2, this typing
judgement is equivalent to x : MA ` 0 : MA. We claim
that this interpretation is correct as long as the term x “does
not contain any potential infinity”. With the additional con-
struct Y , one can replace x with [Ya] (where Ya is con-
structed as in (4)), for some term a of type A. Consider the
two terms

(λy.∗)((λx.(x− x))[Ya]), (5)
(λy.{ y })((λx.(x− x))[Ya]). (6)

Term (5) reduces to (λy.∗)(0 · [Ya]) and then to 0 · ∗. It is
reasonable to think that this is equivalent to 0, thus making
0 · [Ya] also equivalent to 0. Term (6), on the contrary,
reduces to Ya − Ya, the flawed term of Equation (2).

The problem does not show up when writing the equa-
tion [Ya]− [Ya] = 0 · [Ya] but when one equates it with
0. The term 0 · [Ya] is a “weak zero”. It makes a com-
putation “null” as long as it does not diverge (and there is
always a diverging term of any inhabited type by using the
construction (4)). Therefore, despite the fact that A is a
ring, the set of terms of the form α · s for a fixed term s
is only a commutative monoid: addition does not admit an
inverse, it only have an identity element 0 · s.

3.3. Recasting the equational theory

With the possible addition of fixpoints, the equational
theory given in Section 2.2 is not valid. In the discussion
of the previous section, we noted that the module of terms
needs to be weakened to a commutative monoid by remov-
ing the rule 0 · s'ax 0. It is the only required modification,
and one can rewrite the whole theory without this rule.

We do not include explicitly in this study the notion of
fixpoints. Instead, we developed a general framework for
working with diverging terms. The addition of fixpoints will
be considered in the Section 4.

Definition 3.2. A weak A-module is a module over A
where A is seen as a semiring. In particular, a weak A-
module is only a commutative monoid. Given a set X , the
free weakA-module over X is the structure consisting of all
the finite sums

∑
i αi · xi, where αi ∈ A and xi ∈ X .

Definition 3.3. A weakA-enriched computational category
consists of the following data.

• A cartesian closed category (C,×,⇒,1),

• together with a strong monad (M,η, µ, t),

6

• such that the Kleisli category CM is enriched over the
category of weak A-modules.

Remark 3.4. As we saw in Section 3.2, the two zero-
functions x : A ` 0 : A and x : A ` 0 · x : A behave
differently in general. In a weak A-enriched computational
category, the former is interpreted as the unit element of the
monoid CM (A,A) whereas the latter is of the form 0 · idA,
where idA is the identity map in CM (A,B).

Lemma 3.5. Any A-enriched computational category is
also a weak A-enriched computational category.

Proof. Any A-module is also a weak A-module.

Remark 3.6. In particular, in a A-enriched computational
category, the two zero-functions x : A ` 0 : B and x : A `
0 · x : B are identified.

Results similar to Theorems 2.16 and 2.18 can be proved
for this weakened system. We state them here.

Definition 3.7. Consider the typed language of Defini-
tion 2.1, with the axiomatic equivalence of Table 3 minus
the very first rule, marked as (∗), stating 0 · u'ax 0. Let us
call this language the weak algebraic simply-typed lambda-
calculus and the corresponding category of values Cw

l .

Theorem 3.8. The weak algebraic simply-typed lambda-
calculus is an internal language for weak A-enriched com-
putational categories.

4. An algebraic PCF

We now turn to the question of finding an operational se-
mantics for a simply-typed algebraic lambda-calculus with
fixpoints. For this purpose, we study a particular lambda-
calculus in the form of a call-by-value PCF language with a
fixpoint Y and an algebraic structure.

Definition 4.1. Let linPCF be the language defined as fol-
lows.

A,B ::= bit | int | A→ B | A×B | > |MA,

r, s, t ::= xA | λxA.s | st | 〈 s, t 〉 | π1(s) | π2(s) | ∗ |
Y (s) | Ω | s + t | α · s | 0 | [s] | { s } |
tt | ff | if r then s else t |
0̄ | succ(s) | pred(s) | iszero(s),

where α ∈ A. The terms tt and ff respectively stand
for the boolean true and the boolean false; the term
if r then s else t is the test function on r; the term 0̄ stands
for the natural number 0; the term iszero(s) tests whether s
is null or not; pred and succ are respectively the predeces-
sor and the successor function; finally, Y is the fixpoint of
Section 3.1, and Ω is a diverging term (we add it for con-
venience: it can be simulated by Y (λx.x)). The notion of
pure term is defined as in Definition 1.1.

u, v ::= xA | λxA.u | uv | 〈 u, v 〉 | ∗ | [s] |
tt | ff | if r then s else t |
0̄ | succ(u) | pred(u) | iszero(s).

We define the notions of typing context ∆ and of typing
derivation ∆ ` s : A as in Definition 2.1. Terms are consid-
ered up to α-equivalence, and valid typing derivations are
built using the rules of Table 2, the rule of Equation (3), and
the usual rules concerning PCF. The rules for the null-ary
terms are

∆ ` tt ,ff : bit , ∆ ` 0̄ : int , ∆ ` Ω : A,

the rules for the unary terms are

∆ ` s : int =⇒
{

∆ ` pred(s), succ(s) : int ,
∆ ` iszero(s) : bit ,

and the rule for the if -term is

∆ ` r : bit ,
∆ ` s, t : A

}
=⇒ ∆ ` if r then s else t : A.

4.1. Rewrite system and equational theory

The rewrite system of Section 2.1 can be reformulated
for linPCF. Again, apart from the rule (∗) of Table 1 which
is not valid, all the other one are correct.

Definition 4.2. As in Definition 2.4, we define the reduc-
tion systems E, F, A and B of terms as the smallest con-
gruent relations consistent with'AC , satisfying the rules in
Table 1 where B is augmented with the rules

π1〈 u, v 〉 → u, iszero(0̄)→ tt ,
π2〈 u, v 〉 → v, iszero(succ(u))→ ff ,

if tt then s else t→ s, succ(pred(u))→ u,

if ff then s else t→ t, Ω→ Ω.

In all the given rules, the terms r, s, t are assumed to be
neutral and the terms u, v are assumed to be pure. We write
L′ for the relation A ∪ B ∪ E ∪ F , and as before we write
→ in place of→L′ .

Again, the rewrite system verifies subject reduction.

7

Theorem 4.3. Suppose that ∆ ` s : A is valid and that
s→ t. Then ∆ ` t : A is also valid.

However, it does not satisfy strong normalization: the
rewrite sequence

Ω→ Ω→ Ω→ · · ·

is infinite.
One can define an axiomatic relation by extending the

one described in Section 3.3 with the added relations in Def-
inition 4.2.

Definition 4.4. We define an equivalent relation 'ax on
typing judgements of linPCF as the smallest congruent re-
lation, consistent with 'AC , satisfying the rules of Table 3
minus the rule (∗), plus the added relation (made reflexive)
in Definition 4.2.

Lemma 4.5. If s→ t, then s'ax t.

Proof. Proof by induction on the reduction s→ t.

4.2. Case of the divergence

Again consider the term Yb: it is equivalent to Yb + n · b
for all b. So in a sense, it is equivalent to ↑ · b, where ↑ is a
scalar representing a diverging sequence of scalars.

In order to grasp the difference between the simply-typed
calculus without fixpoints and with fixpoints, let us look at
a few examples:

s1 ≡ Y (λx.[0̄ + α · { x }]),
s2 ≡ Y (λx.[0̄ + α · succ{ x }]),
s3 ≡ Y (λf.[λx.{if iszero(x)then[0̄]

else[x + f(pred x)]}],
s4 ≡ Y (λf.[λx.{if iszero(x)then[0̄]

else[x + f(succ x)]}],
s5 ≡ Y (λx.[0̄]),
s6 ≡ Y (λx.x).

The terms s1 and s2 reduces respectively to, for all n,

[(
n∑

i=0

αn) · 0̄], [
n∑

i=0

(αn · n̄)],

where n̄ is the nth natural number in linPCF. The terms s3

and s4 are functions taking as input a number x and out-
putting respectively

∑x
i=0 ī (in a finite rewrite sequence)

and
∑∞

i=0 ī. The term s5 outputs in [0̄] in a finite rewrite
sequence, and s6 behave like Ω: it reduces to itself.

The question is then to define what we mean by “con-
verging”. For example, if we consider that converging mean
“having a finite rewrite sequence”, then only s3 and s5 do

converge. One can however be a little more general and
also admits s2, by understanding the term as converging to
a set-map from int to A. If one also add a topology on
A, one can also make s1 converging for some values of α.
With a measure on int , one can further precise the notions
of convergences.

In brief, there are several notions of divergences. A term
can be strongly normalizing, as s3 or s5, or it can normalize
up to pointwise limit on values, as for example in the case
s2.

The small-step semantics describes the evolution of a
given term through a set of rewriting rules. As a local de-
scription of the computation, it is not enough to capture the
weak notions of convergence described above. Instead, one
can directly describe the neutral form that a given term is
supposed to reach, in what is called a big-step semantics.

In the following section, we describe a semantics for a
strongly converging linPCF.

5. Strict convergence of the algebraic PCF

In this section, we study a semantics for linPCF with
strict convergence. In particular, we want to identify all di-
verging terms of a given type, such as Ω : > and ∗+ Ω : >.
Note however that we do not want to identify [Ω] : MA
and Ω : MA. Indeed, the first one is a computation en-
capsulated into a value, and can therefore be applied as it
in a function, whereas the other one is a non-terminating
computation.

5.1. Big-step semantics

The first method for describing the behavior of a term
is to give the neutral term to which this term converges to.
Called the big-step reduction, this relation is well-known in
the literature (see e.g. [1]).

Definition 5.1. We call state an 'AC-equivalence class of
neutral terms. We write xtyAC the 'AC-equivalence class
of a term t. We write a state as a formal linear combination
of factors, and we identify xtyAC with t when the context is
clear. A state xtyAC is a result if t is a neutral term.

Let s be a term of linPCF. We say that s down-reduces
to a result xtyAC , denoted s ⇓ xtyAC , if it is derived from
the rules of Table 4, with the following modifications. In
Formula (N1), for all i, if ti is of the form pred(t′i), one
replaces ti with t′i; in Formula (N3), for all i, if ti is of
the form succ(t′i), one replaces it with t′i, and if it is 0̄, one
replaces it with 0̄; in Formula (N4), for all i, if ti is of the
form 〈 t′i, t

′′
i 〉, one replaces it with t′i; in Formula (N5), for

all i, if ti is of the form 〈 t′i, t
′′
i 〉, one replaces it with t′′i .

If there is no such result, one says that the term strongly
diverges.

8

x ⇓ xxyAC ∗ ⇓ x∗yAC tt ⇓ xttyAC ff ⇓ xffyAC 0̄ ⇓ x̄0yAC 0 ⇓ x0yAC

s ⇓ x
∑

i αi · tiyAC =⇒

succ(s) ⇓ x
∑

i αi · succ(ti)yAC (N1) λx.s ⇓ x
∑

i αi · λx.tiyAC

pred(s) ⇓ x
∑

i αi · pred(ti)yAC (N3) π2s ⇓ x
∑

i αi · π2tiyAC (N4)

iszero(s) ⇓ x
∑

i αi · iszero(ti)yAC (N5) π1s ⇓ x
∑

i αi · π1tiyAC (N6)

α · s ⇓ x
∑

i αiα · tiyAC (N7) [s] ⇓ x[
∑

i αi · ti]yAC

s ⇓ x
∑

i αi · siyAC

t ⇓ x
∑

j βj · tjyAC

}
=⇒

{
〈 s, t 〉 ⇓ x

∑
i,j αiβj · 〈 si, tj 〉yAC

s + t ⇓ x
∑

i αi · si +
∑

j βj · tjyAC

s ⇓ x
∑

i αi · siyAC

t ⇓ x
∑

j βj · tjyAC

sitj ⇓ x
∑

k γi,j,k · ri,j,kyAC

=⇒
{

st ⇓ x
∑

i,j,k αiβjγi,j,k · ri,j,kyAC

s ⇓ x
∑

i αi · siyAC

if for i ∈ I , si = [
∑

j βi,j · ti,j]

}
=⇒ { s } ⇓ x

∑
i 6∈I αi · si +

∑
i∈I

∑
j βi,j · ti,jyAC

s(Y (s)) ⇓ x
∑

i αi · siyAC =⇒ Y (s) ⇓ x
∑

i αi · siyAC

Table 4. Big step semantics

Lemma 5.2. If s ⇓ t, then t is neutral and s →∗ t. Con-
versely, if s→∗ t where t is neutral, then s ⇓ t.

Definition 5.3. We define a relation on valid terms as fol-
lows: ∆ ` s vop t : A if and only if for all contexts
C[∆ ` − : A] : bit , for all neutral term r : bit , C[s] ⇓ r
implies C[t] ⇓ r. We define the relation ∆ ` s'op t : A by

∆ ` svop t : A and ∆ ` tvop s : A.

Lemma 5.4. The relationvop is a partial ordering on valid
typing judgements. The relation 'op is an equivalence re-
lation.

5.2. Set-model for the algebraic PCF

The language linPCF is a language of the form described
in Section 3.3. In order to find a model, we need to find a
correct weak A-enriched computational category matching
the operational semantics.

A naive denotational model can be constructed with the
cartesian category of Set and functions. We need two no-
tions of monad to capture the operational behavior of the
language: the diverging monad

D : Set → Set
X 7→ X ∪ {⊥},

and the weak-module monad

W : Set → Set
X 7→ 〈 X 〉,

where 〈 X 〉 is the free weak A-monad generated from X .
These two monads are computational monads, and one can
compose them. The correct monad capturing the strong
convergence is M = D ◦W . Indeed, a map in the Kleisli
category takes a value and either diverges or return a finite
linear combination of terms.

Theorem 5.5. The category Set together with the monad
M is a weak A-enriched computational category.

Consider a function f : M [[A]] → M [[A]]. For every n
and for every x ∈MA, fn(x) is an element of M [[A]], that
is, a function [[A]]→ A.

Lemma 5.6. Given a set X and a function f : MX →
MX , the sequence (fn(⊥))n pointwise converges to an el-
ement of MX .

Definition 5.7. We call the set-model for linPCF weak A-
enriched computational category of Theorem 5.5, where we
set [[int]] = N, [[bit]] = {tt ,ff } and where we give to the
corresponding term constructs their obvious meanings. The
fixpoint is interpreted using Lemma 5.6.

9

Theorem 5.8 (Soundness). If ∆ ` s'ax t : A then [[s]] =
[[t]].

5.3. Limits of the model

The category of sets and functions does not provides a
fully abstract with respect to the operational semantics. In-
deed, consider the terms

(λx.if x then [∗] else [Ω]) +
(λx.if x then [Ω] else [?])

and 2 ·λx.[Ω], of type bit → >. Intuitively, they are oper-
ationally equivalent: they are both functions, and applying
tt or ff to them will produce in both cases a diverging term.

6. Conclusion

In this paper, we sketched the required structures for a
semantics for a typed algebraic lambda-calculus. We shown
that the notion of divergence is not easy to capture and pos-
sesses many facets. We then sketch a model for astrongly
converging, algebraic PCF language with fixpoints.

The question is now to describe a fully abstract model
for this algebraic PCF language and explore the structure of
weakly converging languages.

7. Acknowledgements

I would like to thank Gilles Dowek for introducing me
to algebraic calculi. I would also like to thank Pablo Ar-
righi and the research group QCG in Grenoble for helpful
discussions.

References

[1] Roberto M. Amadio and Pierre-Louis Curien. Domains and
Lambda-Calculi, volume 45 of Cambridge Tracts In The-
oretical Computer Science. Cambridge University Press,
1998.

[2] Pablo Arrighi and Gilles Dowek. Linear-algebraic lambda-
calculus: higher-order, encodings, and confluence. In Pro-
ceedings of the 19th international conference on Rewriting
Techniques and Applications (RTA’08), volume 5117 of Lec-
ture Notes in Computer Science, pages 17–31, 2008.

[3] Henk P. Barendregt. The Lambda-Calculus, its Syntax and
Semantics. North Holland, 1984.

[4] Thomas Ehrhard and Laurent Regnier. The differential
lambda-calculus. Theoretical Computer Science, 309(1–2):
1–41, 2003.

[5] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and
Types. Cambridge University Press, 1990.

[6] Gregory M. Kelly. Basic Concepts of Enriched Category
Theory, volume 64 of London Mathematical Society Lecture
Notes Series. Cambridge University Press, 1982. Avalaible
in Reprint in Theory and Application of Categories, No 10,
1982.

[7] Joachim Lambek and Philip Scott. Introduction to Higher
Order Categorical Logic. Cambridge University Press, 1989.

[8] Eugenio Moggi. Notions of computation and monads. Infor-
mation and Computation, 93:55–92, 1991.

[9] André van Tonder. A lambda calculus for quantum compu-
tation. SIAM Journal of Computing, 33:1109–1135, 2004.

[10] Lionel Vaux. Algebraic lambda-calculus. Mathematical
Structures in Computer Science, 2008. To appear.

10

