
Accepted for publication in Math. Struct. in Comp. Science. Revised version.

A Typed, Algebraic, Computational
Lambda-Calculus

Benôıt Valiron

LIPN – UMR 7030 CNRS – Université Paris 13
99 av. J-B Clément,
F-93430 Villetaneuse, France

benoit.valiron@monoidal.net

Received October 2011

Lambda-calculi with vectorial structures have been studied in various ways, but their

semantics remain mostly untouched. The main contribution of this paper is to provide a

categorical framework for the semantics of such algebraic lambda-calculi. We first

develop a categorical analysis of a general simply-typed lambda-calculus endowed with a

structure of module. We study the problems arising from the addition of a fixed point

combinator and show how to modify the equational theory to solve them. The

categorical analysis carries nicely over to the modified language. We provide various

concrete models, both for the case without fixpoints and the case with fixpoints.

Keywords: algebraic lambda-calculus, module over ring and semi-ring, fixpoints,

semantics, equational theory, categorical models.

Contents

1 Introduction 2

1.1 An untyped calculus 3

1.2 Naive equational system 3

1.3 Breaking consistency 4

1.4 Plan of the paper and highlight of contributions 4

2 A simply-typed lambda-calculus 5

2.1 Equational theory 6

2.2 Categorical model 8

2.3 Concrete models 11

2.4 Denotational semantics 12

2.5 Consistency 31

3 Adding controlled divergence 32

3.1 A fixpoint operator 32

3.2 Recasting the equational theory 32

3.3 A concrete model 33

3.4 Adding a fixpoint to the algebraic lambda-calculus 36

Benôıt Valiron 2

3.5 Recasting the language 37

3.6 Examples 38

3.7 Consistency of the equational theory 39

4 Discussion 40

4.1 Call-by-name and call-by-value fragments 40

4.2 Other vectorial lambda-calculi 42

4.3 Characterization of scalars and finer convergence 43

5 Conclusion 43

6 Acknowledgments 44

1. Introduction

The term “algebraic lambda-calculus” comes from a line of work (Breazu-Tannen and

Gallier, 1991; Blanqui et al., 1999; Barbanera and Fernández, 1993) which focuses on

general algebraic rewrite systems and studies the conditions needed for obtaining prop-

erties such as confluence or strong normalization. In this paper, we are concerned with

the particular algebraic structure of module over a lambda-calculus, and we shall use the

term “algebraic” or “vectorial” to refer to this particular structure. Vectorial lambda-

calculi have at least two distinct origins. The first one is the calculus of (Vaux, 2009),

building up upon the work of (Ehrhard and Regnier, 2003). The goal here is to capture a

notion of differentiation within lambda-calculus. The notion of algebraic lambda-calculus

also arises in the work of (Arrighi and Dowek, 2008) where a lambda-calculus oriented

towards quantum computation is defined in the style of (van Tonder, 2004).

Both (Arrighi and Dowek, 2008) and (Vaux, 2009) are concerned with a lambda-

calculus endowed with a structure of vector space. They both acknowledge the fact that

for an untyped lambda-calculus, a naive rewrite system renders the language inconsistent,

as any term can be made equal to the zero of the vectorial space of terms. However, coming

from different backgrounds, they provide different solutions to the problem. In (Arrighi

and Dowek, 2008), the rewrite system is restrained in order to avoid unwanted equalities

of terms. In (Vaux, 2009), the rewrite system is untouched, but the scalars over which the

vectorial structure is built are made into a positive semiring with particular properties,

making the system consistent. Finally, (Arrighi and Dı́az-Caro, 2009) shows that a type

system enforcing strong normalization can also be a mean of solving the problem.

In this paper, we turn to the yet untouched question of the semantics of lambda-calculi

endowed with a structure of vector space (or more generally, a structure of module). We

are not concerned with the question of a rewrite system, but only with the equational

theory that is required to make the system consistent. In the following, we recall what are

the problems occurring while defining a naive equational theory for a vectorial lambda-

calculus.

A Typed, Algebraic, Computational Lambda-Calculus 3

Table 1. Naive equational system.

Algebraic rules

0 · s ≃ax 0 0+ s ≃ax s α · (β · s) ≃ax (αβ) · s
α · 0 ≃ax 0 1 · s ≃ax s α · (s+ t) ≃ax α · s+ α · t

α · s+ β · s ≃ax (α+ β) · s r + s ≃ax s+ r r + (s+ t) ≃ax (r + s) + t

Rules for call-by-value

(s+ t)r ≃ax sr + tr (α · s)r ≃ax α · (sr) 0r ≃ax 0
r(s+ t) ≃ax rs+ rt r(α · s) ≃ax α · (rs) r0 ≃ax 0

(λx.s)v ≃ax s[x← v]

Rules for call-by-name

(s+ t)r ≃ax sr + tr (α · s)r ≃ax α · (sr) 0r ≃ax 0

λx.(s+ t) ≃ax λx.s+ λx.t λx.(α · s) ≃ax α · λx.s λx.0 ≃ax 0

(λx.s)t≃ax s[x← t]

1.1. An untyped calculus

Consider a ring (A,+, 0,×, 1). Elements of A are called scalars. A lambda-calculus to-

gether with a vectorial structure over A should at least contain the terms

s, t ::= x | λx.s | st | s+ t | α · s | 0,

where α ranges over A, and where x ranges over a fixed set of term variables.

1.2. Naive equational system

In order to give some meaning to the language, we equip it with an equivalence ≃ax on

terms, called axiomatic equivalence.

The equivalence should make the set of terms into a module over a ring A with the term

0 as unit of the addition. In particular, the addition on terms should be commutative

and associative, and the terms t− t and 0 · t should equate the term 0. This is described

in the algebraic set of rules in Table 1.

Now, we need to set some distributivity laws on the term constructs and to say how

the lambda-abstraction and application interact with each other. For reasons similar to

the ones appearing in probabilistic languages, we cannot both have distributivity on the

left side of the application and a general substitution:

(λx.(fx)x)(s+ t)≃ax (f(s+ t))(s+ t)≃ax (fs)s+ (fs)t+ (ft)s+ (ft)t

cannot be equated with

(λx.(fx)x)(s+ t)≃ax (λx.(fx)x)s+ (λx.fxx)t≃ax (fs)s+ (ft)t

in general. If f stands for the boolean operation XOR and s and t respectively for the

value true and the value false, the two paths cannot be merged: the former corresponds

to the sum of true and false and the latter is equal to true.

We therefore have to decide on a strategy for substitution. The usual call-by-value and

Benôıt Valiron 4

call-by-name strategies (Arrighi and Dowek, 2008; Vaux, 2009) have been studied in the

literature for vectorial lambda-calculi.

Call-by-value. In this case, the application is distributive on both side, and the lambda-

abstraction is not distributive at all. There is a notion of value: a value is either a term

variable x or a lambda-abstraction λx.s, for s any term. The equivalence on terms for

call-by-value is defined in Table 1, together with some congruence rules. In Table 1, the

term v stands for a value, and the notation s[x← t] stands for the term substitution of

all the free instances of x by t in s.

Call-by-name. In call-by-name, an argument is substituted in the body of a function

without being evaluated. In our case, this is to say that the application is distributive on

the left but not on the right. For consistency, the lambda-abstraction is also distributive.

The rules are found in Table 1.

1.3. Breaking consistency

Although the set of requirements for call-by-name and call-by-value looks reasonable, as

was shown in (Arrighi and Dowek, 2008), the equational system is not sound. Indeed,

given any term b where x is not free, one can construct a diverging term Yb = (λx.(xx+

b))(λx.(xx+ b)) verifying the equation

Yb ≃ax Yb + b (1)

both in call-by-name and in call-by-value, rendering the system inconsistent as enlight-

ened in the following sequence of equalities:

0≃ax Yb − Yb ≃ax (Yb + b)− Yb ≃ax b+ (Yb − Yb)≃ax b. (2)

This shows that any term can be equated to 0.

Solutions in the literature. There are various solutions to this problem. The most obvious

one is to forbid diverging terms, either by modifying the rewrite system so that some

terms do not rewrite anymore (Arrighi and Dowek, 2008) or by adding a type system

to the language, as was done in (Vaux, 2009; Arrighi and Dı́az-Caro, 2009) so that the

diverging terms are not allowed at all. A third option (Vaux, 2009) is to work with

positive semirings instead of rings. In this case, the addition does not have an inverse

anymore, and it solves the inconsistency.

This is not the choice of this paper, where we want to be able to work with a ring and

nonetheless be able to have fixpoints.

1.4. Plan of the paper and highlight of contributions

In this paper, we are interested in the axiomatic semantics of the vectorial lambda-

calculus, and in the interpretation of divergence in this context. This novel analysis is

A Typed, Algebraic, Computational Lambda-Calculus 5

general enough to be able to capture distinct notions of convergence, as enlightened in

Section 3.3.

In Section 2, we present a simply-typed lambda-calculus generalizing the call-by-value

and call-by-name lambda-calculi sketched in 1.2. In Section 2.1 we give the equational

theory associated to the language. We provide a categorical model in Section 2.2 and

prove that the interpretation of the axiomatic description is sound (Theorem 2.28) and

complete (Theorem 2.37). In Section 2.3, we give various concrete models, effectively

showing that the equational description is consistent.

In Section 3, we turn to the question of how to add fixpoints to the language. We

said in Section 1.3 that adding a fixpoint combinator breaks the equational theory by

making all terms equal to the zero of the module of terms. In Sections 3.1 and 3.2 we

perform an analysis of the problem in the light of the developed semantics. We come to

the conclusion that the only problematic rule is the one stating that 0 · s = 0 and we

adjust the semantics accordingly. We devote Section 3.3 to the construction of a concrete

instance of the modified categorical structure. In Sections 3.4 and 3.5, we adjust the

algebraic computational lambda-calculus and its equational theory to support fixpoints.

We show in Section 3.6 how various terms can be interpreted in the concrete model of

Section 3.3 and we state in Section 3.7 the consistency of the resulting system.

Finally, in Section 4, we discuss various issues and the relation to other works in the

literature. We conclude the paper in Section 5.

A preliminary version of this work appeared in (Valiron, 2010).

2. A simply-typed lambda-calculus

The problem occurring in Section 1.3 is due to the possibility of constructing diverg-

ing terms. In this section we define a simply-typed, vectorial lambda-calculus with two

distinct lambda-abstractions for being able to encode the two behaviors described in Sec-

tion 1.2: one lambda-abstraction will be distributive over the vectorial structure while

the other will not be. We equip this language with an axiomatic equivalence relation,

then develop the categorical analysis of the generated equational theory.

Definition 2.1. We suppose the existence of a ring A, called the ring of scalars. In

particular, the scalars can be summed and multiplied. Any scalar α admits an inverse

−α with respect to the addition. The sum admits a unit 0 and the multiplication a

unit 1. A simply-typed, call-by-value, vectorial lambda-calculus called the computational

algebraic lambda-calculus is constructed as follows. Types are of the form

A,B ::= ι | A→ B | A⇒ B | A×B | ⊤,

where ι ranges over a set of type constants. Terms are implicitly typed and come in two

flavors:

s, t ::= x | λx.s | Λx.s | st | ⟨ s, t ⟩ | π1(s) | π2(s) | ∗ | s+ t | α · s | 0,
u, v ::= x | Λx.s | ⟨ u, v ⟩ | π1(u) | π2(u) | ∗,

Benôıt Valiron 6

Table 2. Typing rules.

∆, x : A ⊢ x : A
(id) ∆, x : A ⊢ s : B

∆ ⊢ Λx.s : A⇒ B
(Λ)

∆, x : A ⊢ s : B

∆ ⊢ λx.s : A→ B
(λ)

∆ ⊢ s : A⇒ B ∆ ⊢ t : A
∆ ⊢ st : B

(appΛ)
∆ ⊢ s : A→ B ∆ ⊢ t : A

∆ ⊢ st : B
(appλ)

∆ ⊢ ∗ : ⊤
(∗) ∆ ⊢ s : A1 ×A2

∆ ⊢ πis : Ai
(πi)

∆ ⊢ s : A ∆ ⊢ t : B

∆ ⊢ ⟨ s, t ⟩ : A×B
(×)

∆ ⊢ 0 : A
(0) ∆ ⊢ s : A

∆ ⊢ α · s : A
(α)

∆ ⊢ s : A ∆ ⊢ s : A
∆ ⊢ s+ t : A

(+)

where α ∈ A. Terms of the form s, t are called computations and terms of the form u, v are

called base terms. The terms Λx.s and λx.s are two lambda-abstractions whose difference

lies in their behavior with respect to the module structure: the latter is distributive while

the former is not. Using a standard notation, we shall use the notation λx1 . . . xn.s in

place of λx1.λx2. . . . λxn.s.

We define the notions of typing context ∆ and of typing derivation ∆ ⊢ s : A in the

usual way (see e.g. Pierce, 2002). Terms are considered up to α-equivalence, and valid

typing derivations are built using the rules of Table 2.

Lemma 2.2. Any valid typing derivation ∆ ⊢ s : A has a unique typing tree.

Proof. The proof is done by induction on the structure of s using the fact that the

term s is implicitly typed: each subterm has a fixed type, and for each possibility only

one typing rule can be applied.

Lemma 2.3. Let ∆ ⊢ s : A be a valid typing judgment and let x : B be a variable not

belonging to ∆. Then ∆, x : B ⊢ s : A is also valid.

Proof. Proof by induction on the typing derivation of ∆ ⊢ s : A.

Lemma 2.4. If u and v are any base terms, then u[x← v] is also a base term.

Proof. Proof by induction on the structure of u.

Lemma 2.5 (Substitution). Let ∆ ⊢ v : A and ∆, x : A ⊢ s : B be two valid typing

derivations, where v is a base term. Then ∆ ⊢ s[x← v] : B is a valid typing derivation.

Proof. By structural induction on the typing derivation of ∆, x : A ⊢ s : B.

2.1. Equational theory

We equip the language with an axiomatic equivalence relation similar to the one in

Table 1. The relation is augmented with the rules taking into account the new term

constructs for the product.

Definition 2.6. Given a relation R on terms, we say that it is a congruent relation if

for all pairs (s, s′), (t, t′) ∈ R, the pairs (st, st′), (st, s′t), (s + t, s + t′), (s + t, s′ + t),

A Typed, Algebraic, Computational Lambda-Calculus 7

Table 3. Axiomatic equivalence relation: Algebraic rules.

(3) 0 · s ≃ax 0 s+ 0 ≃ax s

1 · s ≃ax s α · s+ α · t ≃ax α · (s+ t)

α · s+ β · s ≃ax (α+ β) · s (r + s) + t ≃ax r + (s+ t)

α · (β · s) ≃ax (αβ) · s s+ t ≃ax t+ s

Table 4. Axiomatic equivalence relation: Distributivity rules.

(4) ⟨ r + s, t ⟩ ≃ax ⟨ r, t ⟩+ ⟨ s, t ⟩ π1(s+ t) ≃ax π1(s) + π1(t) (5)

(6) ⟨ r, s+ t ⟩ ≃ax ⟨ r, s ⟩+ ⟨ r, t ⟩ π2(s+ t) ≃ax π2(s) + π2(t) (7)

(8) ⟨ α · s, t ⟩ ≃ax α · ⟨ s, t ⟩ π1(α · s) ≃ax α · π1(s) (9)

(10) ⟨ s, α · t ⟩ ≃ax α · ⟨ s, t ⟩ π2(α · s) ≃ax α · π2(s) (11)

(12) ⟨ 0, t ⟩ ≃ax 0 π1(0) ≃ax 0 (13)

(14) ⟨ t,0 ⟩ ≃ax 0 π2(0) ≃ax 0 (15)

(16) (r + s)t ≃ax rt+ st (α · s)t ≃ax α · (st) (17)

(18) r(s+ t) ≃ax rs+ rt 0t ≃ax 0 (19)

(20) s(α · t) ≃ax α · (st) t0 ≃ax 0 (21)

(22) λx.(s+ t)≃ax λx.s+ λx.t (23) λx.(α · s)≃ax α · λx.s (24) λx.0≃ax 0

Table 5. Axiomatic equivalence relation: computational rules.

(25) π1⟨ u, v ⟩ ≃ax u (λx.s)u ≃ax s[x← u] (26)

(27) π2⟨ u, v ⟩ ≃ax v (Λx.s)t ≃ax (λx.s)t (28)

(29) ⟨ π1(u), π2(u) ⟩ ≃ax u λx.(sx) ≃ax s (30)

(31) ∗ ≃ax u⊤ Λx.(ux) ≃ax u (32)

(33) (λx.x)s ≃ax s (λx.(λy.s))t ≃ax λy.((λx.s)t) (34)

(35) (λxA→B .xt)s ≃ax st (λy.(λx.(λz.r)⟨ x, y ⟩)s)t ≃ax (λz.r)⟨ s, t ⟩ (36)

(37) (λx.r)((λy.s)t) ≃ax (λy.(λx.r)s)t (λx.(λy.r)s)t ≃ax (λy.(λx.r)t)s (38)

(39) (λx.π1(x))s ≃ax π1(s) (λx.π2(x))s ≃ax π2(s) (40)

Benôıt Valiron 8

(⟨ s, t ⟩, ⟨ s, t′ ⟩), (⟨ s, t ⟩, ⟨ s′, t ⟩), (π2s, π2s
′), (π1s, π1s

′), (α · s, α · s′), (λx.s, λx.s′) and

(Λx.s,Λx.s′) are in R.

Definition 2.7. We define an equivalence relation ≃ax on terms as the smallest con-

gruent equivalence relation, closed under α-equivalence and the equations of Tables 3,

4 and 5. Two valid typing judgments ∆ ⊢ s, t : A are axiomatically equivalent, written

∆ ⊢ s≃ax t : A, if s≃ax t is provable.

Lemma 2.8. If u is a base term and if u≃ax v then v is also a base term.

Proof. By structural induction on the derivation of u≃ax v.

2.2. Categorical model

We now turn to the question of the structure of this equational theory. It is composed of

various pieces: a notion of module, a distinction between base terms and computations,

and two notions of functions. For the first part, we use enriched categories. For the second

part we use a strong commutative monad, following (Moggi, 1991). For the third part,

we define the closure of the product in the base category and in the Kleisli category.

2.2.1. Module.

Definition 2.9. AnA-module (M,+, 0, ·) is an abelian group (M,+, 0) and an operation

(·) : A×M →M such that for all a, b in A and for all x, y in M ,

a · (x+ y) = a · x+ a · y, a · (b · x) = (ab) · x,
(a+ b) · x = a · x+ b · x, 1 · x = x.

Lemma 2.10. Let (M,+, 0, ·) be an A-module. If x ∈M and a ∈ A,
1 a · 0 = 0;

2 0 · x = 0;

3 −(a · x) = a · (−x).

Proof. (1) a · 0 = a · (0+0) = a · 0+ a · 0. By adding the inverse of a · 0 to both side of

the equality, we get 0 = a · 0. (2) 0 · x = 0 · (2 · x) = 0 · (1 · x+1 · x) = 0 · x+0 · x. Using

the same remark as in the previous case, we get that 0 = 0 · x. (3) a · (−x) + a · x =

a · (−x+ x) = a · 0 = 0. Thus a · (−x) is the inverse of a · x.

2.2.2. Categorical notions. These definitions are taken from (Mac Lane, 1998), (Moggi,

1991) and (Kelly, 1982).

Definition 2.11. An object ⊤ in a category C is called a terminal object if for each

object A there exists a unique map ⃝A : A→ ⊤.

Definition 2.12. Given a category C and two objects A and B, if it exists, the product

of A and B is the data consisting of an object A×B and two maps πA,B
1 : A×B → A and

A Typed, Algebraic, Computational Lambda-Calculus 9

πA,B
2 : A×B → B, such that for all maps f : C → A and g : C → B there exists a unique

map ⟨ f, g ⟩ : C → A×B with the following equations holding for all h : C → A×B:

⟨ f, g ⟩;πA,B
1 = f (41)

⟨ f, g ⟩;πA,B
2 = g (42)

⟨ h;πA,B
1 , h;πA,B

2 ⟩ = h (43)

We usually omit the subscripts A and B in πA,B
i when the context is clear.

We say that the category C has binary products if there is a product for all A and B.

It is cartesian if it has a terminal object and binary products.

Definition 2.13. A monad over a category C is a triple (M,η, µ) where M : C → C is

a functor, η : id →̇M and µ : M2 →̇M are natural transformations and the following

diagrams commute:

(44) M3A
MµA //

µMA

��

M2A

µA

��
M2A

µA // MA,

MA
ηMA //

idMA ##G
GG

GG
GG

GG
M2A

µA

��

MA.
MηAoo

idMA{{vv
vv
vv
vv
v

MA

(45)

The natural transformation µ is called the multiplication of the monad and η the unit of

the monad.

Definition 2.14. A strong monad over a cartesian category C is a monad (M,η, µ)

together with a natural transformation tA,B : A×MB →M(A×B), called the strength,

such that the diagrams

(46) ⊤×MA
≃ //

t

&&MM
MMM

MMM
MMM

MA (A×B)×MC

t

��

A× (B ×MC)

id×t

��

≃oo

A×B

id×η

��

η

&&MM
MMM

MMM
MMM

M(⊤×A),

≃

OO

M((A×B)× C) A×M(B × C)

t

��
A×MB

t // M(A×B) M(A× (B × C)),

≃

hhRRRRRRRRRRRRR

A×M2B

id×µ

OO

t // M(A×MB)
Mt // M2(A×B)

µ
hhPPPPPPPPPPPP

(47)

(48)

commute. The strength is commutative if moreover

MA×MB
t //

≃
��

M(MA×B)
≃ // M(B ×MA)

t // M2(B ×A)

≃
��

MB ×MA
t // M(MB ×A)

≃ // M(A×MB)
t // M2(A×B)

(49)

commutes. In this case, we write sA,B for the map MA×MB →M(A×B) defined by

MA×MB
t−→M(MA×B) = M(B ×MA)

t−→M2(B ×A)
µ−→M(B ×A) = M(A×B).

Benôıt Valiron 10

By abuse of notation, we refer to s as the strength of the monad.

Lemma 2.15. If M is a commutative, strong monad over a cartesian category (C,×,⊤),
the cartesian structure of C induces a monoidal structure on CM .

Notation 2.16. If f : A → MB and g : B → MC are two morphisms of C, we write

f ;M g for the map f ;Mg;µC , that is, for the composition in the Kleisli category. We

write ×M for the tensor of CM induced by the product of C, and ⟨ f, g ⟩M for the map

⟨ f, g ⟩; s.

Lemma 2.17. Using the notations of Definition 2.14, the following equations hold:

MA×MB

sA,B

��

(50) A×B

⟨ ηA,ηB ⟩ 33fffffffff

ηA×B ++WWWW
WWWWW

W

M(A×B)

MA×M⊤

s⊤,A

��
MA

⟨ η⊤,id ⟩ 33ggggggggggggg

id ++XXXX
XXXXX

XXXXX
XX (51)

MA

Proof. The proof uses extensively the equations of Definition 2.14.

Definition 2.18. Suppose that (C,⊗,(,⊤) is a symmetric monoidal closed category.

C is enriched over A-modules if

— for any objects X, Y the set C(X,Y) is equipped with a structure of A-module;

— the composition C(X,Y)× C(Y, Z)→ C(X,Z) is a bilinear map of A-modules;

— as a mapping of morphisms, the tensor ⊗ : C(X,Y)×C(X ′, Y ′)→ C(X⊗X ′, Y ⊗Y ′)

is a bilinear map of A-modules;

— the natural isomorphism C(X ⊗ Y, Z)→ C(X,Y (Z) is a linear map of A-modules.

The unit of the module C(X,Y) is written 0.

2.2.3. Enriched computational category. We are now ready to define the category that

serves as a basis for interpreting the algebraic computational lambda-calculus.

Definition 2.19. We define an A-enriched computational category to be a cartesian

category (C,×,⊤), together with a strong commutative monad (M,η, µ, t), such that

— The Kleisli category CM is enriched over A-modules.

— There exists a bifunctor ⇒: C × CM → C such that there is a natural isomorphism

Ψ⇒ : CM (X × Y, Z)→ C(X,Y ⇒ Z). That is, for all maps f : X → X ′, g : Y → Y ′,

h : Z ′ →MZ and k : X ′ × Y ′ →MZ of C, the following equation hold:

Ψ⇒(f × g; k;Mh;µ) = f ; Ψ⇒(k); (g ⇒ h).

— The Kleisli category is monoidal closed: there exists a bifunctor → on CM and a

natural module isomorphism Ψ→ : CM (X × Y,Z)
≃−→ CM (X,Y → Z). That is, for all

maps f : X → MX ′, g : Y → MY ′, h : Z ′ → MZ and k : X ′ × Y ′ → MZ of C, the
following equation hold:

Ψ→(f ×M g;M k;M h) = f ;M Ψ→(k);M (g → h).

A Typed, Algebraic, Computational Lambda-Calculus 11

Using Notation 2.16, we can rewrite it as follows:

Ψ→(f × g; s;Mk;µ;Mh;µ) = f ;MΨ→(k);µ;M(g → h);µ.

We use the notations εX,X for the map (A⇒ B)×A→MB in C defined by Ψ−1
⇒ (idA⇒B)

and εA,B for the map (A→ B)×A→MB in C defined by Ψ−1
→ (ηA→B).

Lemma 2.20. Suppose that f : A → MA′, g : B → MB′ and h : C → MC ′ are three

maps of the A-enriched computational category of Definition 2.19. Then the following

equations hold.

⟨ f + g, h ⟩M = ⟨ f, h ⟩M + ⟨ g, h ⟩M , ⟨ h, f + g ⟩M = ⟨ h, f ⟩M + ⟨ h, g ⟩M ,

⟨ α · f, h ⟩M = α · ⟨ f, h ⟩M , ⟨ h, α · f ⟩M = α · ⟨ h, f ⟩M ,

⟨ f,0 ⟩ = 0, ⟨ 0, f ⟩ = 0.

Proof. Using the fact that the composition of maps and that the tensor induced by

the product are bilinear. The first equation is proved as follows.

⟨ f + g, h ⟩M = ⟨ η, η ⟩M ;M (f + g ×M h) by simple rewriting,

= ⟨ η, η ⟩M ;M ((f ×M h) + (g ×M h) by bilinearity of ×M ,

= (⟨ η, η ⟩M ;M (f ×M h)) + (⟨ η, η ⟩M ;M (g ×M h))

by bilinearity of composition in CM ,

= ⟨ f, h ⟩M + ⟨ g, h ⟩M by simple rewriting.

The other ones are treated similarly.

Definition 2.21. Given a map f : A→MB in C, we say that f is base-like if it satisfies

the following properties:

A
f //

⃝A

��

MB

M⃝B

��
⊤

η⊤ // M⊤,

A
f //

⟨ id,id ⟩
��

MB

M⟨ id,id ⟩
��

A×A
f×f// MB ×MB

s // M(B ×B).

Lemma 2.22. If f : A→ B is a map in C, then f ; ηB is a base-like map.

2.3. Concrete models

In this section, we prove that the categorical setting we just defined describes a consistent

structure by providing several concrete models.

We give three models. First, a trivial model: any cartesian category can be made into

a model by adding a trivial monad to it. Then, a model based on vector spaces, where

both internal homomorphisms are equal. We then show that the category of sets and

functions provides a finer model, where the two internal hom are distinct.

2.3.1. Trivial model. Consider any cartesian category (C,×,⊤). The functor sending ev-

ery object to ⊤ and every map to id⊤ is a commutative, strong monad:

Benôıt Valiron 12

— It is trivially a functor.

— The unit of the monad is the unique natural transformation sending any object to ⊤.
— The monad multiplication is id⊤.

— The strength is also id⊤, remembering that ⊤×⊤ = ⊤.
— The monadic equations are trivially satisfied.

The set of morphisms C(X,MY) is a module on A since it contains only one map:

consider this map to be the zero of the one-element module.

For any object X and Y , define X ⇒ Y and X → Y to be ⊤. There are only one

possibility for the set-maps Ψ⇒ and Ψ→ since their domains and codomains contain only

one map, and these set-maps automatically satisfy the required properties.

2.3.2. Vector space-based model. A cartesian closed category that is already enriched over

A-modules is an A-enriched computational category, by choosing the identity monad, and

setting both functors ⇒ and → to be the internal hom of the category.

For example, the category of finiteness spaces on some field K (Ehrhard, 2005) forms

an K-enriched computational model: Objects are vector spaces and morphisms are linear

maps. The category is therefore enriched over K vector-spaces (that is, K-modules). The

category is a model for linear logic: it is thus cartesian closed and therefore it is a model

for the algebraic computational lambda-calculus.

2.3.3. Set-based model. The cartesian closed category Set of sets and functions provides

a model where the functors ⇒ and → are distinct.

— It is a cartesian closed category.

— Choose M to be the monad arising from the monoidal adjunction between the cat-

egory Set together with its cartesian structure and the category of A-modules and

linear maps, with its usual monoidal structure:M is the functor sending a setX to the

set of maps X → A. Since it comes from a monoidal adjunction, it is a commutative,

strong monad.

— If X and Y are any two sets, define X ⇒ Y as Set(X,MY) and X → Y as X × Y .

— The map Ψ⇒ is defined using the fact that the category is closed: it sends f ∈
Set(X × Y,MZ) to the map x 7→ (y 7→ f(x, y)), element of Set(X,Set(Y,MZ)).

— The map Ψ→ sends the map f ∈ Set(X × Y,MZ) to the map sending x to (y, z) 7→
f(x, y)(z), which is an element of the set M(Y → Z).

2.4. Denotational semantics

An A-enriched computational category has the needed structure to serve as a model for

the language. In this section, we show that it is possible to encode the language in such a

category, and prove that the encoding is sound: if two terms are axiomatically equivalent,

then their denotation is equal. We then show that it is possible to construct a syntactic

category of base terms that can be equipped with the structure of A-enriched compu-

tational category. Finally, we prove that the interpretation of a term in this syntactic

category gives back the term, effectively showing completeness.

A Typed, Algebraic, Computational Lambda-Calculus 13

Table 6. Interpretation of base terms.

[[∆, x : A ⊢ x : A]]vΘ = [[∆]]× [[A]]
π2−−→ [[A]]

[[∆ ⊢ ∗ : ⊤]]vΘ = [[∆]]
⃝−−→ ⊤

[[∆, x : A ⊢ s : B]]cΘ = [[∆]]× [[A]]
f−→M [[B]]

[[∆ ⊢ Λx.s : A⇒ B]]vΘ = [[∆]]
Ψ⇒(f)−−−−−→ [[A]]⇒ [[B]]

(52)

[[∆ ⊢ u : A1 ×A2]]
v
Θ = [[∆]]

f−→ [[A1]]× [[A2]]

[[∆ ⊢ πi(u) : Ai]]
v
Θ = [[∆]]

f ;πi−−−→ [[Ai]]

(53)

[[∆ ⊢ u : A]]vΘ = [[∆]]
f−→ [[A]]

[[∆ ⊢ v : B]]vΘ = [[∆]]
g−→ [[B]]

[[∆ ⊢ ⟨ u, v ⟩ : A×B]]vΘ = [[∆]]
⟨ f,g ⟩−−−−→ [[A]]× [[B]]

(54)

Definition 2.23. Consider anA-enriched computational category C. An evaluation map-

ping Φ sends base types to objects of C. Given such an evaluation mapping, we define

the denotation of a type [[A]]Φ as follows.

[[ι]]Φ = Φ(ι), [[A×B]]Φ = [[A]]Φ × [[B]]Φ,

[[⊤]]Φ = ⊤, [[A⇒ B]]Φ = [[A]]Φ ⇒ [[B]]Φ,

[[A→ B]]Φ = [[A]]Φ → [[B]]Φ.

When the context is clear, we omit the subscript Φ.

Definition 2.24. The denotation of a computation is a morphism

[[x1 : A1, . . . , xn : An ⊢ t : B]]
c
Φ : [[A1]]Φ × · · · × [[An]]Φ −→M [[B]]Φ

of C, called a c-denotation, and the denotation of a base term is a morphism

[[x1 : A1, . . . , xn : An ⊢ v : B]]
v
Φ : [[A1]]Φ × · · · × [[An]]Φ −→ [[B]]Φ

of C, called a b-denotation. They are defined inductively in Tables 6 and 7. In the definition

of b-denotations, u and v are assumed to be base terms, and the s in (52) is any term.

In the definition of c-denotations, the following conventions are assumed: in Rule (55), u

is a base term; in Rules (59) and (60), the term at the root is assumed to not be a base

term (because that case would be taken care of by Rule (55)). In particular, neither s

nor t are base terms in these rules.

Convention 2.25. When the context is clear, for legibility we use A in place of [[A]].

The b-denotations and c-denotations are uniquely defined, as proven in the following

lemma.

Lemma 2.26. C-denotations and b-denotations of terms are uniquely defined. In par-

ticular, Rules (59) and (60) are valid without any restriction on the term at the root of

the rule.

Benôıt Valiron 14

Table 7. Interpretation of computations.

[[∆ ⊢ u : A]]vΘ = [[∆]]
f−→ [[A]]

[[∆ ⊢ u : A]]cΘ = [[∆]]
f ;ηA−−−→M [[A]]

(55)

[[∆, x : A ⊢ s : B]]cΘ = [[∆]]× [[A]]
f−→M [[B]]

[[∆ ⊢ λx.s : A→ B]]cΘ = [[∆]]
Ψ→(f)−−−−−→M([[A]]→ [[B]])

(56)

[[∆ ⊢ s : A⇒ B]]cΘ = [[∆]]
f−→M([[A]]⇒ [[B]])

[[∆ ⊢ t : A]]cΘ = [[∆]]
g−→M [[A]]

[[∆ ⊢ st : B]]cΘ = [[∆]]
⟨ f,g ⟩−−−−→M([[A]]⇒ [[B]])×M [[A]]

s;Mε;µ−−−−−→M [[B]]

(57)

[[∆ ⊢ s : A→ B]]cΘ = [[∆]]
f−→M([[A]]→ [[B]])

[[∆ ⊢ t : A]]cΘ = [[∆]]
g−→M [[A]]

[[∆ ⊢ st : B]]cΘ = [[∆]]
⟨ f,g ⟩−−−−→M([[A]]→ [[B]])×M [[A]]

s;Mε̄;µ−−−−−→M [[B]]

(58)

[[∆ ⊢ s : A1 ×A2]]
c
Θ = [[∆]]

f−→M([[A1]]× [[A2]])

[[∆ ⊢ πi(s) : Ai]]
c
Θ = [[∆]]

f ;Mπi−−−−−→M [[Ai]]

(59)

[[∆ ⊢ s : A]]cΘ = [[∆]]
f−→M [[A]]

[[∆ ⊢ t : B]]cΘ = [[∆]]
g−→M [[B]]

[[∆ ⊢ ⟨ s, t ⟩ : A×B]]cΘ = [[∆]]
⟨ f,g ⟩;s−−−−−→M([[A]]× [[B]])

(60)

[[∆ ⊢ s : A]]cΘ = [[∆]]
f−→M [[A]]

[[∆ ⊢ t : A]]cΘ = [[∆]]
g−→M [[A]]

[[∆ ⊢ s+ t : A]]cΘ = [[∆]]
f+g−−−→M [[A]]

(61)

[[∆ ⊢ s : A]]cΘ = [[∆]]
f−→M [[A]]

[[∆ ⊢ α · s : A]]cΘ = [[∆]]
α·f−−→M [[A]]

(62)
[[∆ ⊢ 0 : A]]cΘ = [[∆]]

0−→M [[A]]
(63)

Proof. We prove the lemma by induction on the size of a term. We consider each rule

separately and show they are valid. The non-base-term cases being the original rules, we

only have to consider the base-terms.

Rule (59). The term s is a base term: the typing derivation is of the form ∆ ⊢ πi(u) : Ai.

The c-denotation is either defined by Rule (55) as follows:

[[∆ ⊢ u : A1 ×A2]]
v
= [[∆]]

f−→ [[A1]]× [[A2]]

[[∆ ⊢ πi(u) : Ai]]
v
= [[∆]]

f ;πi−−−→ [[Ai]]

[[∆ ⊢ πi(u) : Ai]]
c
= [[∆]]

f ;πi−−−→ [[Ai]]
ηAi−−→M [[Ai]]

or directly by Rule (59), yielding the map

[[∆ ⊢ u : A1 ×A2]]
c
= [[∆]]

f ′

−→M([[A1]]× [[A2]])

[[∆ ⊢ πi(u) : Ai]]
c
= [[∆]]

f ′;Mπi−−−−−→M [[Ai]]

A Typed, Algebraic, Computational Lambda-Calculus 15

By induction hypothesis, since u is a base term, its c-denotation comes from Rule (55)

and f ′ = f ; ηA1×A2 . We can conclude that the two denotations of πi(u) are equal by

naturality of η.

Rule (60). The terms s and t are base terms: we are in fact considering a typing derivation

of the form ∆ ⊢ ⟨ u, v ⟩ : A×B. Note that the b-denotation is uniquely defined.

The c-denotation is either defined by Rule (55) as follows

[[∆ ⊢ u : A]]
v
= [[∆]]

f−→ [[A]] [[∆ ⊢ v : B]]
v
= [[∆]]

g−→ [[B]]

[[∆ ⊢ ⟨ u, v ⟩ : A×B]]
v
= [[∆]]

⟨ f,g ⟩−−−−→ [[A]]× [[B]]

[[∆ ⊢ ⟨ u, v ⟩ : A×B]]
c
= [[∆]]

⟨ f,g ⟩;ηA×B−−−−−−−−→M([[A]]× [[B]])

or by Rule (60)

[[∆ ⊢ u : A]]
c
= [[∆]]

f ′

−→M [[A]] [[∆ ⊢ v : B]]
c
= [[∆]]

g′

−→M [[B]]

[[∆ ⊢ ⟨ u, v ⟩ : A×B]]
c
= [[∆]]

⟨ f ′,g′ ⟩−−−−−→M [[A]]×M [[B]]
s−→M([[A]]× [[B]]).

By induction hypothesis, since u and v are base terms we have f ′ = f ; ηA and

g′ = g; ηB. Using Rule (50) of Lemma 2.17, we can conclude that the two maps are

equal.

This closes the induction.

2.4.1. Soundness. We first show that if two terms are axiomatically equivalent, their

denotations are equal.

Lemma 2.27. Suppose that u is a base term, that ∆ ⊢ u : A has f for c-denotation and

that ∆, x : A ⊢ s : B has g for c-denotation. Then h = [[∆ ⊢ s[x← u] : B]]
c
is equal to

the map

[[∆]]
⟨ η,f ⟩−−−−→M [[∆]]×M [[A]]

s−→M([[∆]]× [[A]])
Mg;µ−−−→M [[B]].

Now, suppose that s and u are base terms and have respectively f ′ and g′ for b-denotation.

Then the morphism [[∆ ⊢ s[x← u] : B]]
v
is equal to

[[∆]]
⟨ id,f ′ ⟩−−−−−→ [[∆]]× [[A]]

g′

−→ [[B]].

Proof. The proof is done by structural induction on the typing derivation ∆, x : A ⊢
s : B.

∆, x : A ⊢ ∗ : ⊤. In this case, g = h =⃝; η⊤. The required equation is shown as follows:

[[∆]]
⟨ η,f ⟩ //

⃝

��

(a)

M [[∆]]×M [[A]]
s //

M⃝×M⃝
��

(c)

M([[∆]]× [[A]])
M⃝ //

M⃝

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

GG

(d)

M⊤
Mη⊤ //

id

��

(e)

MM⊤

µ⊤

ww

M⊤×M⊤
s

,,YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYY

(b)

⊤
η⊤

//

η⊤×η⊤

77ooooooooooooo
M⊤

Benôıt Valiron 16

Square (a) commutes respectively due to the naturality of η and due to f being

base-like, using Lemma 2.22. Triangle (b) commutes because of Eq. (50). Square (c)

commutes by naturality of s. Square (d) commutes trivially. Triangle (e) commutes

because of Eq. (45).

∆, x : A ⊢ x : A. In this case, g = π2; ηA and h = f . We can decompose the desired

equation as follows:

[[∆]]
⟨ η,f ⟩ //

f

��

(a)

M [[∆]]×M [[A]]
s //

M⃝×Mid

�� (c)

M([[∆]]× [[A]])

Mπ2

��<
<<

<<
<<

<<
<<

<<
<<

<<
<

Mπ2 // M [[A]]
MηA//

id

��

(d) (e)

MM [[A]]

µA

xx

M⊤×M [[A]]

s

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX

(b)

M [[A]]
id

//
η⊤×id

88ppppppppppp
M [[A]]

Square (a) commutes due to the naturality of η (and remembering that ⃝⊤ = id⊤)

Triangle (b) commutes because of Eq. (51). Square (c) commutes by naturality of s

(and by remembering that π2 =⃝× id). Square (d) commutes trivially. Triangle (e)

commutes because of Eq. (45).

∆, x : A ⊢ λy.r : C → D. By uniqueness of the typing derivation (Lemma 2.2), we have

∆, x : A, y : C ⊢ r : D. Let its c-denotation be k. By induction hypothesis (and by

Lemma 2.3), if the denotation [[∆, y : C ⊢ r[x← u] : D]]
c
is written k′ then

k′ = [[∆]]× [[C]]
⟨ η,f ⟩×η−−−−−−→M [[∆]]×M [[A]]×M [[C]]

s−→M([[∆]]× [[A]]× [[C]])
Mk;µ−−−→M [[D]].

Since s[x← u] = λy.r[x← u], the map h is equal to Ψ→(k′). On the other hand, we

have g = Ψ→(k). By naturality of Ψ→, the map Ψ→(k′) is equal to

⟨ η, f ⟩; s;MΨ→(k);µ;M(η → η);µ,

which is the requested map since ηC → ηD = ηC→D.

∆, x : A ⊢ r1r2 : B when r1 : C → D. In this case, the typing derivations ∆, x : A ⊢ r1 :

C → B and ∆, x : A ⊢ r2 : C are valid. Let their c-denotations be respectively k1
and k2. By induction hypothesis, if we write [[∆ ⊢ r1[x← u] : C → B]]

c
as k′1 and

[[∆ ⊢ r1[x← u] : C]]
c
as k′2, then

k′1 = [[∆]]
⟨ η,f ⟩−−−−→M [[∆]]×M [[A]]

s−→M([[∆]]× [[A]])
Mk1;µ−−−−→M([[C]]→ [[B]]),

k′2 = [[∆]]
⟨ η,f ⟩−−−−→M [[∆]]×M [[A]]

s−→M([[∆]]× [[A]])
Mk2;µ−−−−→M [[C]],

and we have h = ⟨ k′1, k′2 ⟩; s;Mε̄;µ. To prove the desired equality, we use the fact

that f is base-like and Definition 2.21.

The remaining cases are similar.

Theorem 2.28 (Soundness). Suppose that ∆ ⊢ s≃ax t : A. Then [[s]]
c
= [[t]]

c
. Suppose

that ∆ ⊢ u≃ax v : A. Then [[u]]
v
= [[v]]

v
.

A Typed, Algebraic, Computational Lambda-Calculus 17

Proof. The proof is done by structural induction on the proof of s≃ax t.

Algebraic rules of Table 3. Note that these rules do not relate base terms, just computa-

tions. The denotation is therefore in the Kleisli category: morphisms in this category

forms a module, and the rules of Table 3 precisely states the module equations of

Definition 2.9.

Distributive rules of Table 4. Again, note that the rules only related computations, not

base terms. The interpretations of the terms in relations live in the Kleisli category.

The desired result for these rules comes from the fact that the Kleisli category is

enriched as a symmetric monoidal closed category.

Rules (4), (6), (8), (10), (12) and (14). From the fact that the set-application × :

CM (X,Y) × CM (X ′, Y ′) → CM (X × X ′, Y × Y ′) is a bilinear module homomor-

phism.

Rules (16), (18), (17), (20), (19) and (21). Using Lemma 2.20. We show how to deal

with Rule (16). If f = [[∆ ⊢ r : A]]
c
, g = [[∆ ⊢ s : A]]

c
and h = [[∆ ⊢ t : B]]

c
, then

[[∆ ⊢ ⟨ r + s, t ⟩ : A×B]]
c
= ⟨ f + g, h ⟩M by definition,

= ⟨ f, h ⟩M + ⟨ g, h ⟩M by Lemma 2.20.

The other cases are similar.

Rules (5), (7), (9), (11), (13) and (15). Using the fact that the composition in the

Kleisli category is bilinear. Example with Rule (5): provided that f is the deno-

tation [[∆ ⊢ s : A×B]]
c
and g = [[∆ ⊢ t : A×B]]

c
,

[[∆ ⊢ π1(s+ t) : A]]
c
= (f + g);M M(π1) by definition,

= f ;M M(π1) + g;M M(π1) by bilinearity.

Rules (22), (23) and (24). From the bilinearity of Ψ→. For example, Rule (22) is

proven as follows. Provided that f = [[∆, x : A ⊢ s : B]]
c
and that g is the map

[[∆, x : A ⊢ t : B]]
c
,

[[∆ ⊢ λx.(s+ t) : A→ B]]
c
= Ψ→(f + g) by definition,

= Ψ→(f) + Ψ→(g) by bilinearity.

Computational rules of Table 5. Rules (25), (27) and (29). Correct from the cartesian

structure of C.
Rule (31). If ∆ ⊢ u : ⊤ is a base term, its b-denotation is a map [[∆]]→ ⊤ in C. Since
⊤ is a terminal object in C, there is only one such map: It is therefore equal to the

b-denotation of ∆ ⊢ ∗ : ⊤. For the c-denotation, we fall back to the b-denotation

because of Rule (55).

Rule (33). If ∆ ⊢ s : A has f for c-denotation, ∆ ⊢ (λx.x)s : A has (Ψ→(ηA) ×M

f);M εA,A, where Ψ→(ηA) : ⊤ → M(A → A). This can be rewritten as the

composition of f with the map

(Ψ→(ηA)×M ηA);M Ψ−1
→ (ηA).

By naturality of Ψ→, the latter map is the identity and the composition is therefore

f .

Benôıt Valiron 18

Rule (35). Since we deal with applications, only c-denotations are defined in this

case. Then ∆ ⊢ t : A and ∆ ⊢ s : A→ B. If the former has f for c-denotation and

the latter g, then the c-denotation of the left-hand-side of the equation is

⟨ Ψ→((f ×M ηA→B);M εA,B), g ⟩M ;M εA→B,B (64)

Since εA,B = Ψ−1
→ (ηA→B), by naturality of Ψ→ we have (ηA→B ×M f);M εA,B =

Ψ−1
→ (f → B). Therefore (64) can be rewritten as

⟨ (f → B), g ⟩M ;M ε.

Again by naturality of Ψ→, this can be reformulated as g; (f → B). But this is

exactly ⟨ f, g ⟩M ;M ε, that is, the c-denotation of ∆ ⊢ st : B.

Rule (26). A judgment ∆ ⊢ (λx.s)v : B is always a computation. Provided that

the variable x is of type A, write f = [[∆, x : A ⊢ s : B]]
c
and g = [[∆ ⊢ v : A]]

c
.

From Rule (55), g is of the form h; ηA, where h = [[∆ ⊢ v : A]]
v
. The morphism

[[∆ ⊢ (λx.s)v : B]]
c
is equal to ⟨ Ψ→(f), g ⟩; s;MεA,B ;µ. Since εA,B is the map

Ψ−1
→ (idA→B), by naturality it is equal to ⟨ η, h ⟩; s;M(f);µ. Using Lemma 2.27,

this is equal to [[∆ ⊢ s[x← v] : B]].

Rule (28). The denotations of the two sides of the equivalence relation are equal

because of the natural isomorphism between C(X,M(Y → Z)) and C(X,Y ⇒ Z).

Rule (30). For the two sides of the equation to be well-typed, smust be of typeA→ B

and x of type A must not be free variable of s. Let f = [[∆ ⊢ s : A→ B]]
c
. The

map [[∆ ⊢ λx.sx : A→ B]]
c
is equal to Ψ→((f×ηA); s; εA,B). Again, by naturality

this is equal to f .

Rule (32). Similar to (30) using the fact that Ψ⇒ is a natural mapping.

Rule (34). Because of the naturality of Ψ→. If y is of type C, g is the denotation of

t and f the denotation of s, the left-hand-side has for c-denotation the morphism

⟨ η∆, g ⟩M ;M Ψ→(f). This is equal to the map Ψ→(⟨ η∆, g ⟩M ×M ηC ;M f), which

is the c-denotation of the right-hand-side.

Rule (36). This amounts to say that (f ×M g);M ;h = (f ×M η);M (η ×M g);M ;h. It

is correct since the Kleisli category is symmetric monoidal.

Rule (37). Again, this is true since the category is monoidal closed.

Rule (38). Because the monad is strongly commutative.

Rule (39) and (40). By naturality of Ψ→.

Finally, for the congruence rules, it is sufficient to use the compositionality of the deno-

tation.

2.4.2. Completeness. We want to show that if for any model the denotations of two terms

are equal, then they are axiomatically equivalent. As in (Lambek and Scott, 1989), we

use the notion of internal language: We define a syntactic category of base terms where

the equality on morphisms is the axiomatic equivalence. Then we show that if a term is

interpreted in this category, its denotation is axiomatically equivalent to itself.

A Typed, Algebraic, Computational Lambda-Calculus 19

Notation 2.29. We shall use the following notations.

let x = s in t ≡ t[x← s],

let ⟨ x, y ⟩ = s in t ≡ t[y ← (π1s), y ← (π2s)],

let◦ x = s in t ≡ (λx.t)s,

Λ∗.s ≡ Λx.s where x is a fresh variable of type ⊤,
[s] ≡ Λ∗.s,
{ s } ≡ s∗,
MA ≡ (⊤ ⇒ A).

The notations [−] and { − } follow the conventions used in (Filinski, 1996) for dealing

with monads.

Lemma 2.30. Provided that both sides are well-typed, the following rules are valid.

(Λx.s)u ≃ax s[x← u] (65)

[{ u }] ≃ax u (66)

{ [s] } ≃ax s (67)

(λx.{ s })t ≃ax { (λx.s)t } (68)

(λy.(r(π1y))(π2y))⟨ s, t ⟩ ≃ax (rs)t (69)

(λx.⟨ r, s ⟩)t ≃ax ⟨ r, (λx.s)t ⟩ (70)

(λx.⟨ r, s ⟩)t ≃ax ⟨ (λx.r)t, s ⟩ (71)

{ s+ t } ≃ax { s }+ { t } (72)

{ α · s } ≃ax α · { s } (73)

Proof. (65): Using (28) and (26). (66): Using (31) and (32). (67): Using (65). (68): By

the following equivalences:

(λx.{ s })t = (λx.s∗)t
≃ax (λy.((λx.s∗)t)) ∗ for y fresh, by Eq. (26),

≃ax ((λx.λy.s∗)t) ∗ by Eq. (34),

= { (λx.λy.s∗)t }
≃ax { (λx.λy.sy)t } by Eq. (31),

≃ax { (λx.s)t } by Eq. (30).

(69): By the following equivalences:

(λz.(r(π1z))(π2z))⟨ s, t ⟩ ≃ax (λy.(λx.(λz.(r(π1z))(π2z))⟨ x, y ⟩)s)t by Eq. (36),

≃ax (λy.(λx.(rx)y)s)t by Eq. (26),(25) and (27),

≃ax (λx.(λy.(rx)y)t)s by Eq. (38),

≃ax (λx.(rx)t)s by Eq. (30),

≃ax (λx.(λz.zt)(rx))s by Eq. (35),

≃ax (λz.zt)((λx.rx)s) by Eq. (37),

≃ax (λz.zt)(rs) by Eq. (30),

Benôıt Valiron 20

(rs)t by Eq. (35).

(70): By the following sequence of equivalences:

(λx.⟨ r, s ⟩)t≃ax (λx.(λz.z)⟨ r, s ⟩)t by Eq. (33),

≃ax (λx.(λy.(λz.(λz.z)⟨ z, y ⟩)r)s)t by Eq. (36),

≃ax (λy.(λz.(λz.z)⟨ z, y ⟩)r)((λx.s)t) by Eq. (37),

≃ax (λz.z)⟨ r, (λx.s)t ⟩ by Eq. (36),

≃ax ⟨ r, (λx.s)t ⟩ by Eq. (33).

(71): By the same sequence of equalities, plus two uses of (38). (72): Using (16). (73):

Using (17).

Lemma 2.31. One can define a cartesian category whose objects are types and whose

morphisms A → B are typing judgments x : A ⊢ v : B when v is a base term. Equality

on morphisms is given by the axiomatic equivalence.

— The identity morphism on A is the typing judgment x : A ⊢ x : A, and the composition

of x : A ⊢ u : B and y : B ⊢ v : C is x : A ⊢ let y = u in v : C.

— The product of A and B is A × B; the product of x : A ⊢ u : B and y : C ⊢ v : D

is z : A× C ⊢ let ⟨ x, y ⟩ = z in ⟨ u, v ⟩ : B ×D; the first and second projections are

x : A×B ⊢ π1(x) : A and x : A×B ⊢ π2(x) : B. If f is the map x : C ⊢ u : A and g

is the map x : C ⊢ v : B, then ⟨ f, g ⟩ is x : C ⊢ ⟨ u, v ⟩ : A×B.

— The terminal object is ⊤, and the unique map from any object A to ⊤ is the judgment

x : A ⊢ ∗ : ⊤.

Proof. The composition is well defined by Lemma 2.4. It is associative because the

term construct let stands for the substitution (Notation 2.29), and the unit is indeed the

unit of the composition for the same reasons.

To show that × is a product, it is enough to show that the three equations of Defini-

tion 2.12 hold.

Equation (41). The left hand side is x : C ⊢ let y = ⟨ u, v ⟩ in π1(y) : A. It is immediate

to see that this is axiomatically equivalent to u using Rule (25).

Equation (42). Similarly, the left-hand-side is x : C ⊢ let y = ⟨ u, v ⟩ in π2(y) : B. Using

Rule (27), this is immediately axiomatically equivalent to v,

Equation (43). Let h : C → A×B be the base term x : C ⊢ u : A×B. The left-hand-side

of the equation is the typing judgment

x : C ⊢ ⟨ π1(u), π2(u) ⟩.

We get the right-hand-side by applying Rule (29).

Finally, ⊤ is a terminal object since any typing judgment x : A ⊢ u : ⊤ is axiomatically

equivalent to ∗ by Rule (31).

Definition 2.32. The category described in Lemma 2.31 is called the category of base

terms, and is denoted with Cl.

A Typed, Algebraic, Computational Lambda-Calculus 21

Theorem 2.33. The category Cl admits a commutative, strong monad. The monad M

sends A to MA and x : A ⊢ u : B to y : MA ⊢ [let◦ x = { y } in u] : MB, and the three

required morphisms are

ηA = x : A ⊢ [x] : MA,

µA = x : MMA ⊢ [{ { x } }] : MA,

tA,B = x : A×MB ⊢ let ⟨ y, z ⟩ = x in [⟨ y, { z } ⟩] : M(A×B).

The Kleisli category ClM is enriched over A-modules. The module structure of Cl(A,MB)

is given by the module structure of the term algebra. Consider the two maps f = (x :

A ⊢ u : MB) and g = (x : A ⊢ v : MB). We define

0 = x : A ⊢ [0] : MB,

f + g = x : A ⊢ [{ u }+ { v }] : MB,

α · f = x : A ⊢ [α · { u }] : MB.

Proof. We first show that M is a functor:

— If idA is the identity on A, the map M idA is by definition

y : MA ⊢ [let◦ x = { y } in x] : MA

which is equal to y using Rule (33) and (66) (Lemma 2.30).

— If f : A→ B and g : B → C are the morphisms x : A ⊢ u : B and y : B ⊢ v : C,

Mf = z1 : MA ⊢ [let◦ x = { z1 } in u] : MB,

Mg = z2 : MB ⊢ [let◦ y = { z2 } in v] : MC,

M(f ; g) = z1 : MA ⊢ [let◦ x = { z1 } in let◦ y = u in y] : MC. (74)

The map Mf ;Mg is

z1 : MA ⊢ let z2 = [let◦ x = { z1 } in u] in [let◦ y = { z2 } in v],

≃ax [let◦ y = { [let◦ x = { z1 } in u] } in v] by (26),

≃ax [let◦ y = (let◦ x = { z1 } in u) in v] by (67),

≃ax [let◦ x = { z1 } in let◦ y = u in v] : MC, by (37)

which is equal to Eq. (74).

The maps η, µ and t are natural transformations. Indeed, if f : A → B and g : C → D

are the morphisms x : A ⊢ u : B and y : C ⊢ v : D then

Mf = z1 : MA ⊢ [let◦ x = { z1 } in u] : MB,

M2f = t1 : M2A ⊢ [let◦ z1 = { t1 } in [let◦ x = { z1 } in u]] : M2A,

Mg = z2 : MC ⊢ [let◦ y = { z2 } in v] : MD,

f × g = z3 : A× C ⊢ let ⟨ x, y ⟩ = z3 in ⟨ u, v ⟩ : B ×D,

f ×Mg = z4 : A×MC ⊢ let ⟨ x, z2 ⟩ = z4 in ⟨ u, [let◦ y = { z2 } in v] ⟩ : B×MD,

M(f × g) = z5 : M(A× C) ⊢
[

let◦ z3 = { z5 } in
let ⟨ x, y ⟩ = z3 in ⟨ u, v ⟩

]
: M(B ×D).

Benôıt Valiron 22

In this case, the equations are proven as follows.

— The map f ; ηB is equal to

x : A ⊢ let z = u in [z]

= [u] : MB

The map ηA;Mf is equal to

x : A ⊢ let z1 = [x] in [let◦ x = { z1 } in u]

= [let◦ x = { [x] } in u]

≃ax [let
◦ x = x in u] by Eq. (67),

≃ax [u] : MB by Eq. (26).

The two maps are equal: η is a natural transformation.

— The map M2f ;µB is equal to

t1 : M2A ⊢ let t2 = [let◦ z1 = { t1 } in [let◦ x = { z1 } in u]] in [{ { t2 } }]
= [{ { [let◦ z1 = { t1 } in [let◦ x = { z1 } in u]] } }]
≃ax [{ let◦ z1 = { t1 } in [let◦ x = { z1 } in u] }] by Eq. (67),

≃ax [let◦ z1 = { t1 } in { [let◦ x = { z1 } in u] }] by Eq. (68),

≃ax [let◦ z1 = { t1 } in let◦ x = { z1 } in u] by Eq. (67),

≃ax [let◦ x = (let◦ z1 = { t1 } in { z1 }) in u] by Eq. (37),

≃ax [let◦ x = { let◦ z1 = { t1 } in z1 } in u] by Eq. (68),

≃ax [let◦ x = { { t1 } } in u] : MB by Eq. (33).

The map µA;Mf is equal to

t1 : M2A ⊢ let t1 = [{ { t1 } }] in [let◦ x = { t1 } in u]

= [let◦ x = { [{ { t1 } }] } in u]

≃ax [let◦ x = { { t1 } } in u] : MB by Eq. (67).

The two maps are equal: µ is a natural transformation.

— The map (f ×Mg); tB,D is equal to

z4 : A×MC ⊢
(

let t = (let ⟨ x, z2 ⟩ = z4 in ⟨ u , [let◦ y = { z2 } in v] ⟩) in
let ⟨ y, z ⟩ = t in [⟨ y, { z } ⟩]

)

=

 let ⟨ x, z2 ⟩ = z4 in

let ⟨ y, z ⟩ = ⟨ u , [let◦ y = { z2 } in v] ⟩ in
[⟨ y, { z } ⟩]


≃ax let ⟨ x, z2 ⟩ = z4 in [⟨ u , { [let◦ y = { z2 } in v] } ⟩]

by Eq. (26), (25) and (27),

≃ax let ⟨ x, z2 ⟩ = z4 in [⟨ u , let◦ y = { z2 } in v ⟩] : M(B ×D)

A Typed, Algebraic, Computational Lambda-Calculus 23

by Eq. (67). The map tA,C ;M(f × g) is equal to

z4 : A×MC ⊢
(

let z5 = (let ⟨ x, z2 ⟩ = z4 in [⟨ x, { z2 } ⟩]) in
[let◦ z3 = { z5 } in let ⟨ x, y ⟩ = z3 in ⟨ u, v ⟩]

)
≃ax let ⟨ x, z2 ⟩ = z4 in

[
let◦ z3 = ⟨ x, { z2 } ⟩ in
let ⟨ x, y ⟩ = z3 in ⟨ u, v ⟩

]
by Eq. (67),

≃ax let ⟨ x, z2 ⟩ = z4 in [let◦ y = { z2 } in ⟨ u, v ⟩]

by Eq. (36) and (26),

≃ax let ⟨ x, z2 ⟩ = z4 in [⟨ u, let◦ y = { z2 } in v ⟩] : M(B ×D)

by Eq. (70), which is equal to the previous map. Therefore t is a natural transforma-

tion.

The monadic equations of Definition 2.13 hold.

Equation (44) is treated as follows. The map MµA is equal to

y : M3A ⊢ [let◦ x = { y } in [{ { x } }]] : M2A.

Then MµA;µA is equal to

y : M3A ⊢ let z = [let◦ x = { y } in [{ { x } }]] in [{ { z } }]
≃ax [{ { [let◦ x = { y } in [{ { x } }]] } }] by definition,

≃ax [{ let◦ x = { y } in [{ { x } }] }] by (67),

≃ax [let◦ x = { y } in { [{ { x } }] }] by (68),

≃ax [let◦ x = { y } in { { x } }] by (67),

≃ax [{ { let◦ x = { y } in x } }] by (68) twice,

≃ax [{ { { y } } }] : MA by (33),

and the map µMA;µA is equal to

y : M3A ⊢ let z = [{ { y } }] in [{ { z } }]
= [{ { [{ { y } }] } }]
≃ax [{ { { y } } }] : MA by (67).

They are equal. Equation (45) is treated in a similar manner.

To show that the monad M is commutative and strong, we have to examine the

equations of Definition 2.14. We prove the commutativity of the monad. The upper path

of Equation (49) is the judgment

x : MA×MB ⊢
(

let x1 = (let ⟨ y, z ⟩ = x in [⟨ y, { z } ⟩]) in
[let◦ x2 = { x1 } in let ⟨ y, z ⟩ = x2 in [⟨ { y }, z ⟩]]

)
≃ax

[
let◦ x2 = ⟨ π1x, { π2x } ⟩ in
let ⟨ y, z ⟩ = x2 in [⟨ { y }, z ⟩]

]
by (67),

≃ax

[
let◦ y = π1x in

let◦ z = { π2x } in [⟨ { y }, z ⟩]

]
by (69),

Benôıt Valiron 24

≃ax [[⟨ { π1x }, { π2x } ⟩]] : M2(A×B) by (26) and (71).

The lower path of Equation (49) is symmetric:

x : MA×MB ⊢
(

let x1 = (let ⟨ y, z ⟩ = x in [⟨ { y }, z ⟩]) in
[let◦ x2 = { x1 } in let ⟨ y, z ⟩ = x2 in [⟨ y, { z } ⟩]]

)
≃ax

[
let◦ x2 = ⟨ { π1x }, π2x ⟩ in
let ⟨ y, z ⟩ = x2 in [⟨ y, { z } ⟩]

]
by (67),

≃ax

[
let◦ y = { π1x } in
let◦ z = π2x in [⟨ y, { z } ⟩]

]
by (69),

≃ax [[⟨ { π1x }, { π2x } ⟩]] : M2(A×B) by (26) and (70).

So both paths are equal. Equations (46), (48) and (47) are treated similarly.

Cl(A,MB) is a module over A. As an example of how this is shown, we give the case

α · (f + g) = α · f + α · g, for maps f, g : A→MB in Cl. If f is x : A ⊢ u : MB and g is

x : A ⊢ v : MB, then α · (f + g) is the judgment

x : A ⊢ [α · { [{ u }+ { v }] }] : MB.

The map α · f + α · g is the judgment

x : A ⊢ [{ [α · { u }] }+ { [α · { v }] }] : MB.

These two judgments are equivalent, using Eq. (67), (72), (73) and the algebraic rules of

Table 3.

Finally, the fact that the bifunctor × and the composition of maps in ClM are module

homomorphisms is a direct consequence of the rules in Table 4.

This closes the proof of Theorem 2.33.

Theorem 2.34. The category Cl is an A-enriched computational category.

— The bifunctor ⇒ is the type operator ⇒, and it is defined on maps as follows:

(x : A ⊢ u : B)⇒ (y : C ⊢ v : D) = z : B ⇒ C ⊢ Λx. let◦ y = zu in v : A⇒ D.

The bijection Ψ⇒ is defined as follows:

Ψ⇒(x : A×B ⊢ u : MC) = y : A ⊢ Λz. let x = ⟨ y, z ⟩ in { u } : B ⇒ C,

Ψ−1
⇒ (x : A ⊢ u : B ⇒ C) = y : A×B ⊢ [let ⟨ x, z ⟩ = y in uz] : MC.

— The bifunctor → is the type operator →, and it is defined on maps as follows:

(x : A ⊢ u : MB)→ (y : C ⊢ v : MD) =

z : B → C ⊢ [λx. let y = z{ u } in { v }] : M(A→ D).

The bijection Ψ→ is defined as follows:

Ψ→(x : A×B ⊢ u : MC) = y : A ⊢ [λz. let x = ⟨ y, z ⟩ in { u }] : M(B → C),

Ψ−1
→ (x : A ⊢ u : M(B → C)) = y : A×B ⊢ [let ⟨ x, z ⟩ = y in { u }z] : MC.

A Typed, Algebraic, Computational Lambda-Calculus 25

Proof. Note: given the naturality of Ψ⇒ and Ψ→, the functoriality of⇒ and→ comes

for free. We first consider the map Ψ⇒.

Bijectivity. Consider the map f = x : A×B ⊢ u : MB. Then Ψ−1
⇒ Ψ⇒(f) is equal to

x : A×B ⊢ [let ⟨ y, z ⟩ = x in (Λz. let x = ⟨ y, z ⟩ in { u })z]

≃ax [let ⟨ y, z ⟩ = x in let x = ⟨ y, z ⟩ in { u }]
≃ax [{ u }]
≃ax u : MB,

which is precisely f . Now, consider the map g = x : A ⊢ u : B ⇒ C. Then Ψ⇒Ψ−1
⇒ (g)

is equal to

y : A ⊢ Λz. let x = ⟨ y, z ⟩ in { [let ⟨ y, z ⟩ = x in uz] }
≃ax Λz. let x = ⟨ y, z ⟩ in let ⟨ y, z ⟩ = x in uz

≃ax Λz.uz

≃ax u : B ⇒ B by (32).

This is equal to g: the map Ψ⇒ is a bijection.

Naturality. Consider the base term f = x : A′ × B′ ⊢ u : MC ′ and the three morphisms

gA = zA : A ⊢ wA : A′, gB = zB : B ⊢ wB : B′ and gC = zC : C ′ ⊢ wC : C. Then

gA × gB = zAB : A×B ⊢ let ⟨ zA, zB ⟩ = zAB in ⟨ wA, wB ⟩ : A′ ×B′,

gB ⇒ gC = zBC : B′ ⇒ C ′ ⊢ ΛzB . let
◦ zC = zBCwB in wC : B ⇒ C,

MgC = zMC : MC ′ ⊢ [let◦ zC = { zMC } in wC] : MC.

Now, Ψ⇒((gA × gB); f ;MgC) is equal to

zA : A ⊢ ΛzB. let zAB = ⟨ zA, zB ⟩ in


let ⟨ zA, zB ⟩ = zAB in

let x = ⟨ wA, wB ⟩ in
let zMC = u in

[let◦ zC = { zMC } in wC]


≃ax ΛzB .


let ⟨ zA, zB ⟩ = ⟨ zA, zB ⟩ in
let x = ⟨ wA, wB ⟩ in
let zMC = u in [let◦ zC = { zMC } in wC]


≃ax ΛzB .

{
let x = ⟨ wA, wB ⟩ in
let zMC = u in [let◦ zC = { zMC } in wC]

}
≃ax ΛzB .

{
let x = ⟨ wA, wB ⟩ in [let◦ zC = { u } in wC]

}
≃ax ΛzB .{ [let x = ⟨ wA, wB ⟩ in let◦ zC = { u } in wC] }
≃ax ΛzB . let x = ⟨ wA, wB ⟩ in let◦ zC = { u } in wC

≃ax ΛzB . let
◦ zC = (let x = ⟨ wA, wB ⟩ in { u }) in wC : B ⇒ C.

Benôıt Valiron 26

On the other hand, gA; (Ψ⇒f); (gB ⇒ gC) is equal to

zA : A ⊢

 let zA = wA in

let zBC = (Λy. let x = ⟨ zA, y ⟩ in { u }) in
ΛzB . let

◦ zC = zBCwB in wC


≃ax

(
let zBC = (Λy. let x = ⟨ wA, y ⟩ in { u }) in
ΛzB . let

◦ zC = zBCwB in wC

)
≃ax ΛzB . let

◦ zC = (Λy. let x = ⟨ wA, y ⟩ in { u })wB in wC

≃ax ΛzB . let
◦ zC = (let x = ⟨ wA, wB ⟩ in { u }) in wC : B ⇒ C.

Therefore, Ψ⇒((gA × gB); f ;MgC) = gA; (Ψ⇒f); (gB ⇒ gC): the bijection Ψ⇒ is

natural.

We now consider the map Ψ→.

Bijectivity. Consider the map f = x : A×B ⊢ u : MB. Then Ψ−1
→ Ψ→(f) is equal to

x : A×B ⊢ [let ⟨ y, z ⟩ = x in { [λz. let x = ⟨ y, z ⟩ in { u }] }z]

≃ax [let ⟨ y, z ⟩ = x in (λz. let x = ⟨ y, z ⟩ in { u })z]

≃ax [let ⟨ y, z ⟩ = x in let x = ⟨ y, z ⟩ in { u }]
≃ax [{ u }]
≃ax u : MB,

which is precisely f . Now, consider the map g = x : A ⊢ u : M(B → C). Then

Ψ→Ψ−1
→ (g) is equal to

y : A ⊢ [λz. let x = ⟨ y, z ⟩ in { [let ⟨ y, z ⟩ = x in { u }z] }]
≃ax [λz. let x = ⟨ y, z ⟩ in let ⟨ y, z ⟩ = x in { u }z]

≃ax [λz.{ u }z]

≃ax [{ u }]
≃ax u : M(B → C).

This is equal to g: the map Ψ→ is a bijection.

Linearity. We show that Ψ→ is anA-module homomorphism. Let f = x : A×B ⊢ u : MC

and g = x : A × B ⊢ v : MC be two morphisms of Cl. Then Ψ→(f + α · g) is the by

definition the map

y : A ⊢ [λz. let x = ⟨ y, z ⟩ in { [{ u }+ α · { v }] }] : M(B → C).

Applying Equation (67) and the linearity of the term constructs, this is axiomatically

equivalent to

y : A ⊢
[

(λz. let x = ⟨ y, z ⟩ in { u })
+α · (λz. let x = ⟨ y, z ⟩ in { v })

]
: M(B → C),

that is, Ψ→(f) + α ·Ψ→(g). Finally, since 0 · f = 0, the map Ψ→ preserves the zero

of the module.

A Typed, Algebraic, Computational Lambda-Calculus 27

Naturality. Consider the base term f = x : A′ × B′ ⊢ u : MC ′ and the three morphisms

gA = zA : A ⊢ wA : MA′, gB = zB : B ⊢ wB : MB′ and gC = zC : C ′ ⊢ wC : MC.

Then the maps gA ×M gB and gB → gC are respectively

zAB : A×B ⊢ let ⟨ zA, zB ⟩ = zAB in [⟨ { wA }, { wB } ⟩] : M(A′ ×B′),

zBC : B′ → C ′ ⊢ [λzB. let
◦ zC = zBC{ wB } in { wC }] : M(B → C).

Now, Ψ→((gA ×M gB);M f ;M gC) is equal to

zA : A ⊢

λzB. let zAB = ⟨ zA, zB ⟩ in


 let ⟨ zA, zB ⟩ = zAB in

let◦ x = ⟨ { wA }, { wB } ⟩ in
let◦ zC = { u } in { wC }




≃ax

[
λzB .

(
let◦ x = ⟨ { wA }, { wB } ⟩ in
let◦ zC = { u } in { wC }

)]
: M(B → C)

On the other hand, gA;M (Ψ→f);M (gB → gC) is equal to

zA : A ⊢

 let◦ zA = { wA } in
let◦ zBC = { [λy. let x = ⟨ zA, y ⟩ in { u }] } in
{ [λzB. let◦ zC = zBC{ wB } in { wC }] }


≃ax

 let◦ zA = { wA } in
let◦ zBC = (λy. let◦ x = ⟨ zA, y ⟩ in { u }) in
λzB . let

◦ zC = zBC{ wB } in { wC }


≃ax

λzB .
 let◦ zA = { wA } in

let◦ zBC = (λy. let◦ x = ⟨ zA, y ⟩ in { u }) in
let◦ zC = zBC{ wB } in { wC }


from Eq. (34),

≃ax

λzB .
 let◦ zA = { wA } in

let◦ zC =

(
let◦ y = { wB } in
let◦ x = ⟨ zA, y ⟩ in { u }

)
in { wC }


from Eqs. (37) and (35),

≃ax

λzB .


let◦ zA = { wA } in
let◦ y = { wB } in
let◦ x = ⟨ zA, y ⟩ in let◦ zC = { u } in
{ wC }


 from Eq. (37),

≃ax

[
λzB.

(
let◦ x = ⟨ { wA }, { wB } ⟩ in
let◦ zC = { u } in { wC }

)]
: M(B → C) from Eq. (36).

This proves that Ψ→ is a natural map.

Notation 2.35. We use the following conventions.

— If ∆ = (x1 : A1, . . . , xn : An) is a typing context, we write ∆⃗ or x⃗ in place of the list

of typed variables. Note that the list can be empty.

Benôıt Valiron 28

— The product of terms is extended to any finite product ⟨ x⃗ ⟩. It is defined by induction:

⟨ ⟩ := ∗, ⟨ x ⟩ := x, ⟨ y, x⃗ ⟩ := ⟨ y, ⟨ x⃗ ⟩ ⟩.

— The term construct πi stands for the i-th projection of type A1 × · · · × An (i ≤ n).

Provided that n ≥ 2, it is defined by induction:

π1(s) := let ⟨ x, y ⟩ = s in x, πn+2s := let ⟨ x, y ⟩ = s in πn+1(y).

If n = 1, we define the only projection to be π1(u) = u and if n = 0, π1(u) = ∗. In
particular, we have πi⟨ x1, . . . , xn ⟩ ≃ax xi, provided that i ≤ n.

— We extend the notation let ⟨ x, y ⟩ = s in t of Notation 2.29 to tuples: Provided that

n ≥ 1,

let ⟨ x1, . . . , xn ⟩ = s in t := t[x1 ← (π1x), . . . , xn ← (πnx)].

Lemma 2.36. If we interpret the computational algebraic lambda-calculus in Cl then
the equations

[[x1 : A1, . . . , xn : An ⊢ v : B]]
v ≃ax (y : A1 × · · · ×An ⊢ let ⟨ x1, . . . , xn ⟩ = y in v : B)

and

[[x1 : A1, . . . , xn : An ⊢ s : B]]
c

≃ax (y : A1 × · · · ×An ⊢ [let ⟨ x1, . . . , xn ⟩ = y in s] : MB)

hold.

Proof. Proof by induction on the derivation of the denotation. In the following we

assume that ∆ = (z1 : D1, . . . , zn : Dn).

Case v = x and v = ∗. By definition of let ⟨ − ⟩ = − in −.
Rule (52). By induction hypothesis, f = [[∆, x : A ⊢ s : B]]

c
is axiomatically equivalent

to

y : D⃗ ×A ⊢ [let ⟨ z⃗, x ⟩ = y in s] : MB.

The map Ψ⇒(f) is by definition equal to

z′ : D⃗ ⊢ Λx. let y = ⟨ z′, x ⟩ in { [let ⟨ z⃗, x ⟩ = y in s] }
≃ax Λx. let y = ⟨ z′, x ⟩ in let ⟨ z⃗, x ⟩ = y in s

≃ax Λx. let ⟨ z⃗, x ⟩ = ⟨ z′, x ⟩ in s

= Λx. let ⟨ z⃗ ⟩ = z′ in let x = x in s

= let ⟨ z⃗ ⟩ = z′ in Λx. let x = x in s

= let ⟨ z⃗ ⟩ = z′ in Λx.s : A⇒ B.

Rule (53). By induction hypothesis, f = [[∆ ⊢ u : A1 ×A2]]
v
is axiomatically equivalent

to

y : D⃗ ⊢ let ⟨ z⃗ ⟩ = y in u : A1 ×A2.

The map f ;πi is

y : D⃗ ⊢ let x = (let ⟨ z⃗ ⟩ = y in u) in πi(x)

A Typed, Algebraic, Computational Lambda-Calculus 29

= let ⟨ z⃗ ⟩ = y in πi(u) : Ai.

Rule (54). By induction hypothesis, f = [[∆ ⊢ u : A]]
v
and g = [[∆ ⊢ v : B]]

v
are respec-

tively axiomatically equivalent to

y : D⃗ ⊢ let ⟨ z⃗ ⟩ = y in u : A,

y : D⃗ ⊢ let ⟨ z⃗ ⟩ = y in v : B.

The map ⟨ f, g ⟩ is

y : D⃗ ⊢ ⟨ let ⟨ z⃗ ⟩ = y in u, let ⟨ z⃗ ⟩ = y in v ⟩
= let ⟨ z⃗ ⟩ = y in ⟨ u, v ⟩ : A×B.

Rule (55). By induction hypothesis, f = [[∆ ⊢ u : A]]
v
is axiomatically equivalent to

y : D⃗ ⊢ let ⟨ z⃗ ⟩ = y in u : A.

The map f ; ηA is

y : D⃗ ⊢ let x = (let ⟨ z⃗ ⟩ = y in u) in [x]

= [let ⟨ z⃗ ⟩ = y in u] : MA.

Rule (56). By induction hypothesis, f = [[∆, x : A ⊢ s : B]]
c
is axiomatically equivalent

to

y : D⃗ ×A ⊢ [let ⟨ z⃗, x ⟩ = y in s] : MB.

The map Ψ→(f) is by definition equal to

z′ : D⃗ ⊢ [λx. let y = ⟨ z′, x ⟩ in { [let ⟨ z⃗, x ⟩ = y in s] }]
≃ax [λx. let y = ⟨ z′, x ⟩ in let ⟨ z⃗, x ⟩ = y in s]

≃ax [λx. let ⟨ z⃗, x ⟩ = ⟨ z′, x ⟩ in s]

= [λx. let ⟨ z⃗ ⟩ = z′ in let x = x in s]

= [let ⟨ z⃗ ⟩ = z′ in λx. let x = x in s]

= [let ⟨ z⃗ ⟩ = z′ in λx.s] : M(A→ B).

Rule (57). By induction hypothesis, f = [[∆ ⊢ s : A⇒ B]]
c
and g = [[∆ ⊢ t : A]]

c
are

respectively axiomatically equivalent to

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in s] : M(A⇒ B),

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in t] : MA.

The map εA,B = Ψ−1
⇒ (idA⇒B) corresponds to

y : (A⇒ B)×A ⊢ [let ⟨ x, z ⟩ = y in xz] : MB.

The map ⟨ f, g ⟩; sA⇒B,A;M(εA,B);µB is

y : D⃗ ⊢

 let x1 = ⟨ [let ⟨ z⃗ ⟩ = y in s], [let ⟨ z⃗ ⟩ = y in t] ⟩ in
let x2 = (let ⟨ y1, y2 ⟩ = x1 in [⟨ { y1 }, { y2 } ⟩]) in
let x3 = [let◦ y = { x2 } in [let ⟨ x, z ⟩ = y in xz]] in [{ { x3 } }]



Benôıt Valiron 30

≃ax

(
let x2 = [⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩] in
let x3 = [let◦ y = { x2 } in [let ⟨ x, z ⟩ = y in xz]] in [{ { x3 } }]

)

≃ax

 let x3 =

[
let◦ y = ⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩ in
[let ⟨ x, z ⟩ = y in xz]

]
in

[{ { x3 } }]


=

[{{[
let◦ y = ⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩ in
[let ⟨ x, z ⟩ = y in xz]

]}}]
≃ax

[{
let◦ y = ⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩ in
[let ⟨ x, z ⟩ = y in xz]

}]
≃ax

[
let◦ y = ⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩ in
{ [let ⟨ x, z ⟩ = y in xz] }

]
≃ax

[
let◦ y = ⟨ (let ⟨ z⃗ ⟩ = y in s), (let ⟨ z⃗ ⟩ = y in t) ⟩ in
let ⟨ x, z ⟩ = y in xz

]
= [let ⟨ z⃗ ⟩ = y in let◦ y = ⟨ s, t ⟩ in (π1y)(π2y)]

≃ax [let ⟨ z⃗ ⟩ = y in st] : MB by Eq. (69).

Rule (58). By induction hypothesis, f = [[∆ ⊢ s : A→ B]]
c
and g = [[∆ ⊢ t : A]]

c
are

respectively axiomatically equivalent to

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in s] : M(A→ B),

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in t] : MA.

The map εA,B = Ψ−1
→ (ηA→B) corresponds to

y : (A→ B)×A ⊢ [let ⟨ x, z ⟩ = y in { [x] }z] : MB,

that is,

y : (A→ B)×A ⊢ [let ⟨ x, z ⟩ = y in xz] : MB.

The map ⟨ f, g ⟩; sA→B,A;M(εA,B);µB is

y : D⃗ ⊢


let x1 = ⟨ [let ⟨ z⃗ ⟩ = y in s], [let ⟨ z⃗ ⟩ = y in t] ⟩ in
let x2 = (let ⟨ y1, y2 ⟩ = x1 in [⟨ { y1 }, { y2 } ⟩]) in
let x3 = [let◦ y = { x2 } in [let ⟨ x, z ⟩ = y in xz]] in

[{ { x3 } }]

 : MB,

which is precisely the same term as in the previous case. It is therefore axiomati-

cally equivalent to y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in st] : MB, using the same sequence of

arguments.

Rule (59). By induction hypothesis, f = [[∆ ⊢ s : A1 ×A2]]
c
is axiomatically equivalent

to

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in s] : M(A1 ×A2).

The map f ; (Mπi) is

y : D⃗ ⊢ let x1 = [let ⟨ z⃗ ⟩ = y in s] in [let◦ x = { x1 } in πi(x)]

≃ax let x1 = [let ⟨ z⃗ ⟩ = y in s] in [πi({ x1 })] by Eq. (39) or (40),

A Typed, Algebraic, Computational Lambda-Calculus 31

= [πi({ [let ⟨ z⃗ ⟩ = y in s] })]
≃ax [πi(let ⟨ z⃗ ⟩ = y in s)]

= [let ⟨ z⃗ ⟩ = y in πi(s)] : MAi.

Rule (60). By induction hypothesis, f = [[∆ ⊢ s : A]]
c
and g = [[∆ ⊢ t : B]]

c
are respec-

tively axiomatically equivalent to

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in s] : MA,

y : D⃗ ⊢ [let ⟨ z⃗ ⟩ = y in t] : MB.

The map ⟨ f, g ⟩; sA,B is

y : D⃗ ⊢
(

let x1 = ⟨ [let ⟨ z⃗ ⟩ = y in s], [let ⟨ z⃗ ⟩ = y in t] ⟩ in
let ⟨ z1, z2 ⟩ = x in [⟨ { z1 }, { z2 } ⟩]

)
≃ax [⟨ let ⟨ z⃗ ⟩ = y in s, let ⟨ z⃗ ⟩ = y in t ⟩]
= [let ⟨ z⃗ ⟩ = y in ⟨ s, t ⟩] : M(A×B).

This closes the list of cases and the proof of Lemma 2.36.

Theorem 2.37 (Completeness). If we interpret the computational algebraic lambda-

calculus in Cl then the equations

[[x : A ⊢ v : B]]
v ≃ax (x : A ⊢ v : B) and [[x : A ⊢ t : B]]

c ≃ax (x : A ⊢ [t] : MB)

hold.

Proof. The theorem is an easy corollary of Lemma 2.36. Indeed, the typing context

consists of a single variable: [[x : A ⊢ v : B]]
v ≃ax (x : A ⊢ let ⟨ x ⟩ = x in v : B). By

Rule (26), this is also v. Now, [[x : A ⊢ t : B]]
c ≃ax (x : A ⊢ let ⟨ x ⟩ = x in [t] : MB).

Again by Rule (26), this is axiomatically equivalent to [t].

Corollary 2.38. Two base terms are axiomatically equivalent if and only if for any

A-enriched computational category their denotations are equal.

Proof. If two typing judgments are axiomatically equivalent, by Theorem 2.28 they

have equal denotations in any A-enriched computational category. Now, suppose they do

have equal denotations in any A-enriched computational category. In particular, this is

verified in Cl. Therefore, they are axiomatically equivalent by Theorem 2.37.

2.5. Consistency

We are now in position to state the consistency of the equational description of Sec-

tion 2.1.

Theorem 2.39. The typing judgments ∆ ⊢ 0 : A and ∆ ⊢ u : A (where u is a base

term) are not axiomatically equivalent.

Proof. In Set, the denotation of the former is the zero map 0 : [[∆]]→M [[A]], whereas

the denotation of the latter a non-zero function.

Benôıt Valiron 32

3. Adding controlled divergence

Because of Theorem 2.39, the term Yb of Equation (1) is not constructable in the com-

putational algebraic lambda-calculus. In this section, we add to the semantics and to the

language a notion of fixpoint in order to understand what goes wrong in the untyped

system.

3.1. A fixpoint operator

We first describe what is a fixpoint in the categorical model. A fixpoint is a computation,

so we define it in the Kleisli category.

Definition 3.1. With the notations of Definition 2.19, a fixpoint combinator in an A-
enriched computational category C is a mapping YX,Y : C(X ×MY,MY)→ C(X,MY)

such that for every morphism f : X ×MY →MY , the diagram

X
YX,Y f //

⟨ idX ,idX ⟩
��

MY

X ×X
X×YX,Y f

// X ×MY

f

OO (75)

is commutative. When the context is clear, we write Y in place of YX,Y . We also trans-

parently use the curried version of the operator Y sending C(X,MY ⇒ Y) to C(X,MY).

Example 3.2. The set-based model of Section 2.3.1 can be equipped with a fixpoint

combinator, by taking Y to be the trivial mapping. Remember that in this setting,

C(X,MY) is a singleton.

In Example 3.2, the monad is the trivial one. This turns out to be a general fact and

we can show that if an A-enriched computational category has a fixpoint combinator,

then the monad is trivial.

Theorem 3.3. An A-enriched computational category C has a fixpoint combinator if

and only if all the maps in CM are identified.

Proof. It is enough to show that between any two objects A and B of CM there is

exactly one map. First, there is always the map 0 : A→C MB. Then, consider any other

map f : A→MB and build the map g : A×MB →MB as the sum of π2 : A×MB →
MB and g2 = π1; f : A ×MB → MB. The commutative diagram satisfied by Yg can

be rewritten as the equality Yg = Yg+ f , that is, 0 ·Yg = f . Since 0 ·Yg = 0, the map

f is equal to 0.

3.2. Recasting the equational theory

In the proof of Theorem 3.3, the part that makes all the maps in CM collapse is the fact

that 0 · f = 0, for all f . In order to retain consistency, a natural solution is therefore to

remove the property 0 ·f = 0. Instead of a module, we only require the homset CM (X,Y)

to be a weak module.

A Typed, Algebraic, Computational Lambda-Calculus 33

Definition 3.4. Given a ring A, a weak A-module (M,+, 0, ·) is the data consisting of a

commutative monoid (M,+, 0) and an operation (·) : A×M →M such that for all a, b

in A and for all x, y in M ,

a · (x+ y) = a · x+ a · y, r · (s · x) = (rs) · x,
(a+ b) · x = a · x+ b · x, 1 · x = x.

Remark 3.5. Note that the equations are the same as the ones in Definition 3.4. This

time however, since M is only a monoid, i.e. v + ((−1) · v) = 0 · v ̸= 0.

Definition 3.6. A weak A-enriched computational category is the same structure as in

Definition 2.19, apart from the fact that the Kleisli category CM is not enriched anymore

over A-modules but over weak A-modules.

A weak A-enriched computational category has a fixpoint combinator if there is a

mapping YX,Y satisfying the same properties as in Definition 3.1.

Lemma 3.7. Any A-enriched computational category is a weak A-enriched computa-

tional category.

Proof. Any A-module is also a weak A-module.

3.3. A concrete model

We modified the semantics, implicitly claiming that a weak A-enriched category with

fixpoints does not necessarily have a trivial monad. In this section, we provide a concrete

example of such a category. We will discuss in Section 3.6 the notion of convergence it

provides.

3.3.1. A lattice-based framework. Consider a lattice (X,≤). A subset S of X is called

directed if for every two elements x, y in S there is an element z in S such that x ≤ z

and y ≤ z. The lattice (X,≤) is called directed complete if every directed subset admits

a least upper bound.

A partial monoid is a family of directed-complete lattices X = {(Xi,≤i)}i∈I . We

identify X with ⊎i∈IXi, the disjoint union of all the Xi’s, and we write ≤X (or ≤ when

the context is clear) for the induced ordering on this union.

Let X = {(Xi,≤i)}i∈I and Y = {(Yj ,≤j)}j∈J be two partial monoids. A partial-

monoid homomorphism f : X → Y is a function ⊎Xi → ⊎Yj , monotone on the induced

ordering and preserving limits of directed sets. Note that, due to its monotonicity f

induces a set-map f̃ : I → J such that if x ∈ Xi, then f(x) ∈ Yf̃(i).

We call PMon the category of partial monoids and partial-monoid homomorphisms.

Theorem 3.8. The category PMon can be made into a weak A-enriched computational

category with fixpoints.

3.3.2. Cartesian structure. The categoryPMon is cartesian with the following structure.

— The terminal object is the family {({⋆},≤)} where {⋆} is a singleton and ≤ is the

trivial relation.

Benôıt Valiron 34

— The product of X = {(Xi,≤i)}i∈I and Y = {(Yj ,≤j)}j∈J is the partial monoid

X ×Y = {(Xi × Yj ,≤i,j)}(i,j)∈I×J where (x, y) ≤i,j (x
′, y′) if and only if x ≤i x

′ and

y ≤j y
′.

— Let f : X → Y and g : X → Z be two morphisms of PMon. We define ⟨ f, g ⟩ as the
set-function x 7→ ⟨ f(x), g(x) ⟩. This map is trivially a morphism of PMon.

— The projections π1 : X × Y → X and π2 : X × Y → Y are the set-functions

π1 : ⊎(i,j)∈I×J (Xi × Yj) −→ ⊎i∈IXi

(xi, yj) 7−→ xi

π2 : ⊎(i,j)∈I×J (Xi × Yj) −→ ⊎j∈JYj

(xi, yj) 7−→ yj

where we assume that xi ∈ Xi and yj ∈ Yj , for i ∈ I and j ∈ J .

— Equations (41), (42) and (43) are satisfied since the structure is inherited from the

cartesian structure of Set. Similarly, the uniqueness of ⟨ f, g ⟩ is inherited from the

one of Set.

3.3.3. A powerset construction. We adapt Hoare powerdomains (Winskell, 1983), also

called lower powerdomains (Heckmann, 1990, Ch.18) to partial monoids. Because of its

operational meaning in the language, we shall write
∑

X for the powerset of X instead

of the more standard P(X).

Let {(Xi,≤i)}i∈I be a partial monoid. If x ∈ Xi we write ↓ x for the set of all the

elements in Xi smaller or equal to x. If S ⊆ X, we write ↓ S for the directed closure of

the union of all the sets ↓ x, when x ranges over S. We define
∑

X to be the set

{↓ S | S ⊆ X} .

The ordering relation ≤∑
X on

∑
X is the subset-ordering relation. The join operation

is the union, and the meet operation is the intersection. Note that (
∑

X,≤) is directed
complete.

3.3.4. A commutative, strong monad. We now define an operator M on partial monoids

sending X to the partial monoid consisting of only one lattice MX = {(
∑

X,≤∑
X)}.

We extend this operator to a functor on PMon by defining the image of a morphism

f : X → Y to Mf , defined as follows:

Mf(S) = ↓ {f(x) | x ∈ S} (76)

Together with the three maps

ηX : X →MX µX : MMX →MX tX,Y : X ×MY →M(X × Y)

x 7→ ↓ x, S 7→ ↓
∪
T∈S

T, (x, S) 7→ ↓ {(x, y) | y ∈ S}

it defines a commutative, strong monad on PMon: These three maps are natural trans-

formations in PMon, and it is possible to show that they satisfy the required equations.

A Typed, Algebraic, Computational Lambda-Calculus 35

3.3.5. Homset. The set of morphisms PMon(X,MY) can be endowed with a structure

of lattice: (f ∨ g)(x) = f(x) ∨ g(x) and (f ∧ g)(x) = f(x) ∧ g(x). The lattice is di-

rected complete since MY is directed complete: given an directed set S of morphisms in

PMon(X,MY), the least upper bound of S is the morphism sending x to ↓ ∪f∈Sf(x).

The set of morphisms PMon(X,MY) is therefore a partial monoid (as the union of only

one directed complete lattice). It is an object of PMon, and we can define a map

Ψ⇒ : PMon(X × Y,MZ) → PMon(X,PMon(Y,MZ))

f 7→ (x 7→ (y 7→ f(x, y))).

We claim that this map is well defined. The map Ψ⇒ is a bijection: Given any morphism

g in PMon(X,PMon(Y,MZ)), the map f = Ψ−1
⇒ (g) : X × Y → MZ is defined by

f(x, y) = g(x)(y), and one can show that this map is a morphism of PMon. Finally, the

naturality of Ψ⇒ is inherited from the one of Set.

3.3.6. Closure of the Kleisli category. Let X and Y be any two partial monoids of the

form {(Xi,≤i)}i∈I and {(Yj ,≤j)}j∈J . Define the new partial monoid X → Y as the

family of lattices

{PMon(Xi, Yj)}(i,j)∈I×J .

If f : X →MY is a morphism of PMon, let σf ∈M(X → Y) be

↓
∪
i,j

{ g : Xi → Yj | ∀x ∈ Xi, g(x) ∈ f(x) },

and if S ∈ M(X → Y), let τS ∈ PMon(X,MY) be the map sending some x ∈ Xi to

the element of MY defined by

↓ { g(x) | g ∈ S and g has domain Xi }.

We claim that

Ψ→ : PMon(X × Y,MZ) → PMon(X,M(Y → Z))

f 7→ (x 7→ σ(y 7→ f(x, y)))

is a natural bijection. Its inverse sends g ∈ PMon(X,M(Y → Z)) to the morphism

mapping (x, y) to τ(y 7→ g(x, y)).

3.3.7. A structure of weak A-module. We can define a structure of weak A-module on

the lattice PMon(X,MY) by setting f + g = f ∨ g and α · f = f . The zero element is

the function sending all x’s to ⊥, the bottom element. We get a weak A-module since

one does not require 0 · f to be equal to the zero element. The resulting structure is a

weak A-enriched computational category.

To keep up with the weak module interpretation, in the rest of the paper, an object

MX in PMon will be considered as a set of (formal) sums rather than as a set of subsets.

3.3.8. Fixpoint. We complete the sketch of the proof of Theorem 3.8 by exhibiting a

fixpoint combinator. Given the partial monoid X = {(Xi,≤i)}i∈I , the partial monoid

MX is simply a directed complete lattice. If ⊥ is its bottom element, the usual technique

Benôıt Valiron 36

works for showing that the operator Y defined as sending f : MX → MX to the least

upper bound of the directed subset {fn(⊥) | n ∈ N} is a fixpoint operator and a morphism

PMon(MX,MX)→MX of PMon. We refer the reader to e.g. (Plotkin, 1983) for the

proof.

3.4. Adding a fixpoint to the algebraic lambda-calculus

3.4.1. A fixpoint operator. We now turn to the question of modifying the interpretation

of Section 2.1 to account for a fixpoint. We add to the language a unary term operator

Y satisfying the typing rule

∆ ⊢ s : MA⇒ A implies ∆ ⊢ Y (s) : A, (77)

verifying the axiomatic relation

Y (v)≃ax v[Y (v)] (78)

where v is a base term (the rule is a translation of Equation (75)), and linear with respect

to the module structure.

3.4.2. Inconsistency. It is possible to build a term Yb with the behavior of Equation (1):

Yb := Y Λx.(b+ { x }). (79)

Indeed, Y Λx.(b + { x }) is equivalent to the term (Λx.(b + { x }))[Y Λx.(b+ { x })],
which is in turn equivalent to b + Y Λx.(b+ { x }). Provided that ∆ ⊢ b : B, the typing

judgment ∆ ⊢ Yb : B is valid. Of course, if we keep the equational theory of Section 2.1,

the system becomes as inconsistent as with the untyped calculus.

3.4.3. The zero in the algebra of terms In the light of the analysis of Section 3.1, we

have the required tools to understand what goes wrong. Consider the typing judgment

x : MA ⊢ x− x : MA. With the equational system of Section 2.1, this typing judgment

is equivalent to x : MA ⊢ 0 : MA. We claim that this interpretation is correct as long as

the term x “does not contain any potential infinity”. With the additional construct Y ,

we can replace x with [Ya] (where Ya is constructed as in Equation (79)) for some term

a of type A. Consider the two terms

(λy.∗)((λx.(x− x))[Ya]) (80) (λy.{ y })((λx.(x− x))[Ya]) (81).

Term (80) is equivalent to (λy.∗)(0 · [Ya]) and then to 0 · ∗. It is reasonable to think

that this is equivalent to 0, thus making 0 · [Ya] also equivalent to 0. Term (81), on the

contrary, is equivalent to Ya − Ya, the flawed term of Equation (2).

As discussed in Section 3.2, the problem does not show up when writing the equation

[Ya] − [Ya] = 0 · [Ya] but when one equates it with 0. The term 0 · [Ya] is a “weak

zero”. It makes a computation “null” as long as it does not diverge (but there is always a

diverging term of any inhabited type by using the construction (79)). Therefore, despite

the fact that A is a ring, the set of terms of the form α · s for a fixed term s is only a

commutative monoid: addition does not admit an inverse, it only has an identity element

0 · s. This is consistent with previous studies (Vaux, 2009; Selinger, 2003).

A Typed, Algebraic, Computational Lambda-Calculus 37

3.5. Recasting the language

We can recast the computational algebraic lambda-calculus to match the solution pro-

vided in Section 3.2 as follows.

Definition 3.9. Consider the typed language of Definition 2.1 augmented with a fixpoint

combinator Y . The definition of base terms in unchanged: Y (s) is always considered as

a computation. The typing rules of Table 2 are augmented with Rule (77).

The axiomatic equivalence is still coming from the Tables 3, 4 and 5, with the following

modifications:

— Rule (3) (stating 0 · u≃ax 0) is removed;

— Rule (78) (stating Y (v)≃ax v[Y (v)] when v is a base term) is added.

— A rule relating λ-abstractions and the term construct Y is added:

(λx.Y (x))s ≃ax Y (s). (82)

Let us call this language the weak algebraic computational lambda-calculus and the cor-

responding category of base terms Cwl .
A term in the weak algebraic lambda-calculus can be encoded in any weak A-enriched

computational category C with fixpoints using the same rules as for the regular algebraic

lambda-calculus, augmented with the rule

[[∆ ⊢ s : MA⇒ A]]
c

= [[∆]]
f−→M(M [[A]]⇒ [[A]])

[[∆ ⊢ Y (s) : A]]
c

= [[∆]]
f ;MY(idMA⇒A)−−−−−−−−−−−→M [[A]]

(83)

It is possible to transpose the soundness and completeness results of Section 2.4 to this

new situation.

Theorem 3.10. The following results are correct.

1 The denotation of the weak computational algebraic lambda-calculus in weak A-
enriched computational categories with fixpoints is sound.

2 Cwl is a weak A-enriched computational category with fixpoints. The required struc-

ture is the same as the one in Cl, plus the Y operator, defined by

Y(x : A×MB ⊢ u : MB) = y : A ⊢ [Y Λz. let x = ⟨ y, z ⟩ in { u }] : MB.

3 The weak computational algebraic lambda-calculus is an internal language for weak

A-enriched computational categories with fixpoints.

Proof. We can almost take the exact same proofs of the corresponding theorems of

Section 2; the only differences are:

— in Rule (3), and this rule is only used in the proof of the fact that CM is enriched over

A-module. If we remove the rule, we can only show that is enriched over the category

of A-weak-modules, which is the only thing required.

— with respect to the addition of the fixpoint combinator Y .

1 In the proof of soundness we have to check that [[∆ ⊢ v[Y (v)] : A]]
c
is equal to

Benôıt Valiron 38

the map [[∆ ⊢ Y (v) : A]]
c
, for a base term ∆ ⊢ v : MA ⇒ A. Provided that the

b-denotation of v is f , its c-denotation is f ; η and therefore

[[∆ ⊢ v[Y (v)] : A]]
c
= ⟨ f ; η , f ;Y(id); η ⟩M ;M ε.

By naturality of Ψ⇒, this is equal to f ;M Y(id), that is, [[∆ ⊢ Y (v) : A]]
c
.

We also have to check that Rule (82) is valid. But this is clear by naturality of

Ψ→.

2 We have to check that Cl indeed has fixpoints. Provided that f is the map x :

A×MB ⊢ v : MB, the morphism ⟨ id , id ⟩; (X × (Yf)); f is equal to

y : A ⊢ let x = ⟨ y, [Y Λz. let x = ⟨ y, z ⟩ in { v }] ⟩ in v

≃ax let x = ⟨ y, [Y Λz. let x = ⟨ y, z ⟩ in { v }] ⟩ in [{ v }]
= [let x = ⟨ y, [Y Λz. let x = ⟨ y, z ⟩ in { v }] ⟩ in { v }]
≃ax [(Λz. let x = ⟨ y, z ⟩ in { v })[Y Λz. let x = ⟨ y, z ⟩ in { v }]]
≃ax [Y Λz. let x = ⟨ y, z ⟩ in { v }] by Eq. (78),

which is the morphism Yf .

3 To prove that the weak computational algebraic lambda-calculus is an internal

language for weak A-enriched computational categories, it is enough to show

that in Cwl , the denotation [[z⃗ : D⃗ ⊢ Y (s) : A]]
c
is equal to the map x : D⃗ ⊢

[let ⟨ z⃗ ⟩ = x in Y (s)] : MA.

First note that Y(idMA⇒A) : (MA⇒ A)→MA, the map sending a function to

its fixpoint is in Cwl the morphism

x : MA⇒ A ⊢ [Y (x)] : MA.

Now, suppose that z⃗ : D⃗ ⊢ s : MA⇒ A. By induction hypothesis its c-denotation

in Cwl is the map x : D⃗ ⊢ [let ⟨ z⃗ ⟩ = x in s] : M(MA ⇒ A). The denotation of

Y (s) is the map f ;M Y(id), which is equal to

x : D⃗ ⊢ [let y = [let ⟨ z⃗ ⟩ = x in s] in [Y (y)]]

≃ax [let ⟨ z⃗ ⟩ = x in (λy.Y (y))s]

≃ax [let ⟨ z⃗ ⟩ = x in Y (s)] : MA by Eq. (82).

Therefore, the interpretation of any term of the weak computational lambda-

calculus in Cwl is axiomatically equivalent to itself.

This concludes the proof of Theorem 3.10.

3.6. Examples

Consider the category PMon defined in Section 3.3. Being a weak A-enriched computa-

tional category, it defines a model in which one can interpret the computational algebraic

lambda-calculus. In the following examples, we shall use the types bit and int . Term con-

stants tt and ff , accounting for the boolean values true and false, and a term constant 0̄,

A Typed, Algebraic, Computational Lambda-Calculus 39

accounting for the zero of the natural numbers, are added to the language. We also add

a unary term operator succ to account for the successor function.

The denotation of bit is the trivial partial monoid {tt} ∪ {ff }, the denotation of int

is the enumerable union of the trivial partial monoids {n} when n spans the natural

numbers. The images of the corresponding term constructs are the ones coming from

their interpretation in Set.

Example 3.11. The denotation of M(int) is the lattice based on the set of (possibly

infinite) sums
∑

i∈I i (using the symbol
∑

to describe the subset {i | i ∈ I}). Its bottom
element is 0 and its top element the sum of all integers.

Example 3.12. Consider the term

Y Λx.(0̄ + succ{ x }). (84)

of type int . With n uses of Rule (78) we can show that it is equivalent to(
n−1∑
i=0

i

)
+ succn(Y Λx.(0̄ + succ{ x })).

We describe the denotation of the term (84) in PMon. The denotation of Λx.(0̄ +

succ{ x }) being the morphism f : MN→MN defined by

f(
∑
i∈U

i) = 0 +
∑
i∈U

i,

the element fn(0) is equal to

n−1∑
i=0

i.

The least upper bound of the sequence {fn(0) | n ∈ N} is therefore
∑∞

i=0 i, that is, the

sum of all numbers.

Example 3.13. In PMon, the denotation of the judgment x : M(int) ⊢ { x } : int is

the identity function. The term Y Λx.{ x } : int has therefore the denotation 0 ∈M(N).
It has the same denotation as the term x : M(int) ⊢ 0 : int .

The judgment x : M(int) ⊢ { x } + 0̄ : int has for denotation the map sending a

linear combination of integers x to x + 0̄. Therefore, Y0̄ = Y Λx.({ x } + 0̄) : int has for

denotation 0̄.

Remark 3.14. From Examples 3.12 and 3.13, we see that PMon does not distinguish

between a “truly” looping term and the term 0. It can however distinguish various non-

normalizing terms.

3.7. Consistency of the equational theory

Since we have at least one concrete instance of weak A-enriched computational category

with fixpoints, we are able to state the consistency of the equational description.

Benôıt Valiron 40

Theorem 3.15. The typing derivations ∆ ⊢ 0 : bit , ∆ ⊢ ff : bit , ∆ ⊢ 0 · Ytt : bit and

∆ ⊢ ff + Ytt : bit are not axiomatically equivalent.

Proof. In PMon, the denotations of the four judgments are constant functions: the

first maps to ⊥, the second maps to ff , the third to tt and the last one to tt + ff .

Remark 3.16. One can however note that ∆ ⊢ 0 · Ytt : bit and ∆ ⊢ tt + 0 · Ytt : bit

have the same denotation tt in PMon. This is consistent with the fact that they are

axiomatically equivalent.

4. Discussion

4.1. Call-by-name and call-by-value fragments

We started the discussion in Section 1.2 by analyzing two vectorial lambda-calculi, one

dubbed call-by-value and the other one call-by-name. In this section, we give simply

typed version of these two languages and relate them to the computational algebraic

lambda-calculus and its categorical semantics.

4.1.1. Call-by-value fragment. The language is built on the sets of terms and values

s, t ::= x | λx.s | st | s+ t | α · s | 0,
u, v ::= x | λx.s.

A simple type system is

A,B ::= ι | A→ B.

The equivalence ≃cbv
ax on terms consists of the algebraic and call-by-value rules of Table 1.

Let (−)# be the mapping of terms of the vectorial call-by-value lambda-calculus into

the computational algebraic lambda-calculus, defined as follows.

x# = x, (λx.s)# = Λx.s#, (st)# = s#t#,

(s+ t)# = s# + t#, (α · s)# = α · s#, 0# = 0.

Types are mapped as follows.

ι# = ι, (A→ B)# = (A# ⇒ B#).

Lemma 4.1. If ∆ ⊢ s : A is a valid vectorial call-by-value typing judgment, then

∆# ⊢ s# : A# is a valid typing judgment in the computational algebraic lambda-calculus.

Proof. Proof by induction on the derivation of ∆ ⊢ s : A.

Lemma 4.2. If ∆ ⊢ s≃cbv
ax t : A, then ∆# ⊢ s# ≃ax t# : A#.

Using Lemma 4.2, we have a sound denotation of a typing judgment of the vectorial

call-by-value calculus in anyA-enriched computational category, by interpreting its image

under (−)#. In particular, the denotation of a value x : A ⊢ v : B in the vectorial call-

by-value lambda-calculus is a morphism [[A]]→ [[B]] in C, and the denotation of a term

A Typed, Algebraic, Computational Lambda-Calculus 41

x : A ⊢ s : B a map [[A#]] → [[B#]] in the Kleisli category. The language lives in the

sub-structure consisting of

— the cartesian category (C,×,⊤),
— the strong, commutative monad M whose Kleisli category is Kleisli-closed and en-

riched over A-modules.

This is the structure of regular Moggi’s computational lambda-calculus, together with

an enrichment over A-modules.

4.1.2. Call-by-name fragment. The language is built on the set of terms

s, t ::= x | λx.s | st | s+ t | α · s | 0,

A simple type system is

A,B ::= ι | A→ B.

The equivalence ≃cbn
ax on terms consists of the algebraic and call-by-name rules of Table 1.

Let (−)% be the mapping of terms of the vectorial call-by-name lambda-calculus into

the computational algebraic lambda-calculus, defined as follows.

x% = { x }, (λx.s)% = λx.s%, (st)% = s%[t%],

(s+ t)% = s% + t%, (α · s)% = α · s%, 0% = 0.

Types are mapped as follows.

ι% = ι, (A→ B)% = (M(A%)→ B%).

As for the call-by-value case, we can formulate two lemmas relating the vectorial call-by-

name lambda-calculus and the computational algebraic lambda-calculus.

Lemma 4.3. If x1 : B1, . . . , xn : Bn ⊢ s : A is a valid vectorial call-by-name typing

judgment, then x1 : MB%
1 , . . . , xn : MB%

n ⊢ s# : MA# is a valid typing judgment in the

computational algebraic lambda-calculus.

Proof. Proof by induction on the derivation of ∆ ⊢ s : A. The proof is slightly less

easy than Lemma 4.1 since the translation is a bit more involved.

Lemma 4.4. If x1 : B1, . . . , xn : Bn ⊢ s ≃cbn
ax t : A, then x1 : MB%

1 , . . . , xn : MB%
n ⊢

s% ≃ax t% : M(A%).

Using Lemma 4.4, as for the call-by-value case, we can derive a sound denotation

of a typing judgment of the vectorial call-by-name lambda-calculus in any A-enriched
computational category by interpreting its image under (−)%. A term x : A ⊢ s : B of the

vectorial call-by-name calculus is a morphism M [[A%]]→M [[B%]] in C. In this case, the

only structure required for interpreting the language is the Kleisli category (CM ,×,→,⊤)
with its enriched structure. Note that the bifunctor ⇒ is not used.

Benôıt Valiron 42

4.2. Other vectorial lambda-calculi

A few existing works discuss the question of vectorial lambda-calculi. In this section we

list them and compare them with our approach.

4.2.1. The quantum lambda-calculus of van Tonder (2004). In this line of work, the ques-

tion is to encode an untyped lambda-calculus directly onto quantum bits and to find a

unitary maps that acts as a call-by-value reduction on terms. In other words, the lambda-

terms are thought of as base elements of some Hilbert space where the reduction would

be some unitary map. In order to be able to do regular quantum computation, and to

be able to create linear combinations of terms, the lambda-calculus is equipped with

constants tt and ff to stand for booleans and other constants to stand for unitary maps.

For example, if H is the constant standing for the Hadamard gate, the term Htt should

reduce to the linear combination 1√
2
(tt + ff).

Forcing the reduction to be unitary turns out to be too strong to get non-trivial linear

combinations of terms: All terms in superposition need to be equal as strings of symbols

up to tt and ff , therefore making the language fall back on a classical lambda-calculus

with pointers.

This line of work does neither consider the question of the denotation nor discuss the

eventuality of fixpoints. The former is supposed to be understood through the quantum

interpretation and the latter treated by the unitarity of the reduction.

4.2.2. The language Lineal of Arrighi and Dowek (2008). This algebraic lambda-calculus

also has a quantum flavor. The idea behind this work is to forget about the unitarity of

the reduction: unlike the language in (van Tonder, 2004), in Lineal are considered general

superpositions of terms. The goal is to get some insights on the computational power of

a generalized vectorial call-by-value language that can have any terms in superposition.

The language keeps a bit of quantumness in the way it deals with distributivity of the

vectorial structure over terms constructs. The lambda-abstraction is not distributive: a

lambda-abstraction is thought of as being the description of an operator, and should

therefore be duplicated “as it”. It behaves as the Λ-abstraction in the computational

algebraic lambda-calculus. The application is distributive on the left and on the right,

keeping the same spirit as (van Tonder, 2004).

The main question that is addressed by this work is to find a confluent rewrite system

of the untyped calculus that forbid the behavior of Equation 1. Interestingly enough, it

is possible to modify the rewrite system in order to keep all the rewrite rules concerned

with the module structure.

In summary, this work is careful to forbid any diverging term to reduce, for keeping

the equational theory consistent.

4.2.3. The algebraic lambda-calculus of (Vaux, 2009). Derived from the differential lamb-

da-calculus developed in (Ehrhard and Regnier, 2003), this calculus is very close to the

call-by-name lambda-calculi described in Sections 1.2 and 4.1. However, the fact that a

rewrite system is considered raises problems when dealing with normalization of terms.

A Typed, Algebraic, Computational Lambda-Calculus 43

In this work, the problem described in Equation (2) is solved by taking the ring of

scalar to be a semi-ring, but Rule (3) is not forbidden. Instead, the semiring is asked to

be positive, that is, a+ b = 0 if and only if a = b = 0. We do not enforce this condition

for the computational algebraic lambda-calculus, even in the presence of fixpoints.

Finally, although fixpoints are allowed in the untyped version of the calculus, (Vaux,

2009) is not concerned with the question of the semantics of the calculus.

4.2.4. Probabilistic and non-deterministic calculi. Many lambda-calculi such as (Jones

and Plotkin, 1989; Bucciarelli et al., 2009) are concerned with semantical issues and

possess probabilistic or non-deterministic properties. These calculi can be seen as having

vectorial constructs based on a module over the semi-ring of positive reals for probabilistic

effects, and the semi-ring {0, 1} for non-deterministic effects.

However, the semi-rings R+ and {0, 1} share the very peculiar property of being posi-

tive, simplifying the problem arising in Equation (2) and making the languages closer to

the language of (Vaux, 2009) than to a language with a full ring of scalars.

Also, in many cases (e.g. Jones and Plotkin, 1989), being based on the computational

meta-language of (Moggi, 1991) the calculi do not consider the lambda-abstraction as

being distributive over the vectorial structure, making the models slightly unsuitable for

the computational algebraic calculus, even if we were restricting the ring of scalars to a

suitable semi-ring.

4.3. Characterization of scalars and finer convergence

The categorical analysis we developed is fine enough to allow the model PMon to dis-

tinguish between between various infinitary behaviors.

However, this model does not consider the scalars at all. It would be nice to be able to

distinguish between 2 · ∗ and 3 · ∗. It would also be nice to take into account a possible

topology on the ring of scalars. For example, consider the term

Y Λx.(∗+ 1

2
{ x }) : ⊤.

If we were working in the field of reals or the field of complexes, it would be nice to be

able to equate this term with 2 · ∗. The category PMon is far from being able to account

for such a notion of limits on the ring of scalars.

5. Conclusion

In this paper, we describe an algebraic, simply-typed computational lambda-calculus

and we derive a categorical semantics. We provide various concrete models, effectively

showing the consistency of the equational description. We then focus on the addition of

a fixpoint for this language, and we generalize the categorical description for this setting.

We give a non-trivial concrete model with the interpretations of various terms. This

shows that the categorical semantics is consistent and that there exist models in which

one can distinguish between several divergent terms.

Benôıt Valiron 44

This raises the question of the complete description for the possible operational be-

haviors of the computational algebraic lambda-calculus.

6. Acknowledgments

I would like to thank Gilles Dowek for introducing me to algebraic calculi. I would also like

to thank Pablo Arrighi and the research group CAPP in Grenoble for helpful discussions.

References

Pablo Arrighi and Alejandro Dı́az-Caro. Scalar system F for linear-algebraic λ-calculus:

Towards a quantum physical logic. In Proceedings of QPL’09, volume 270 number 2

of Electronic Notes in Theoretical Computer Science, pages 219–229, 2011.

Pablo Arrighi and Gilles Dowek. Linear-algebraic lambda-calculus: higher-order, encod-

ings, and confluence. In Proceedings of the 19th International Conference on Rewriting

Techniques and Applications, volume 5117 of Lecture Notes in Computer Science, pages

17–31, 2008.

Franco Barbanera and Maribel Fernández. Combining first and higher-order rewrite

systems with type assignment systems. In Proceedings of the International Conference

on Typed Lambda Calculi and Applications, TLCA’93, volume 664 of Lecture Notes in

Computer Science, pages 60–74, 1993.

Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. The calculus of alge-

braic constructions. In Proceedings of the 10th International Conference on Rewriting

Techniques and Applications, pages 301–316, London, UK, 1999. Springer-Verlag.

Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic strong

normalization. Theoretical Computer Science, 83(1):3–28, 1991.

Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. A relational model of a

parallel and non-deterministic lambda-calculus. In Sergei Artemov and Anil Nerode,

editors, Logical Foundations of Computer Science, volume 5407 of Lecture Notes in

Computer Science, pages 107–121. Springer Berlin / Heidelberg, 2009.

Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15

(4):615–646, 2005.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical

Computer Science, 309(1–2):1–41, 2003.

Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 446–457, 1996.

Reinhold Heckmann. Power Domain Constructions. PhD thesis, Universität der Saar-

landes, Saabrücken, Germany, 1990.

Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In

Proceedings of the 4th Symposium on Logic in Computer Science, pages 186–195, 1989.

Gregory M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of London

Mathematical Society Lecture Notes Series. Cambridge University Press, 1982. Avail-

able in Reprint in Theory and Application of Categories, No 10, 1982.

A Typed, Algebraic, Computational Lambda-Calculus 45

Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic. Cam-

bridge University Press, 1989.

Saunders Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1998.

Eugenio Moggi. Notions of computation and monads. Information and Computation,

93:55–92, 1991.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

Gordon D. Plotkin. Pisa notes (on domain theory). Unpublished set of notes, 1983.

Peter Selinger. Order-incompleteness and finite lambda-reduction models. Theoretical

Computer Science, 309:43–63, 2003.

Benôıt Valiron. Semantics of a typed algebraic lambda-calculus. In S. Barry Cooper,

Prakash Panangaden, and Elham Kashefi, editors, Proceedings of the 6th Workshop

on Developments in Computational Models, volume 26 of Electronic Proceedings in

Theoretical Computer Science, pages 147–158, 2010.

André van Tonder. A lambda calculus for quantum computation. SIAM Journal of

Computing, 33:1109–1135, 2004.

Lionel Vaux. The algebraic lambda-calculus. Mathematical Structures in Computer

Science, 19:1029–1059, 2009.

Glynn Winskell. A note on powerdomains and modality In Marek Karpinski, editor,

Foundations of Computation Theory, volume 158 of Lecture Notes in Computer Sci-

ence, pages 505–514, 1983.

