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Abstract This tutorial is the first part of a series of two articles on

quantum computation. In this first paper, we present the field of quan-

tum computation from a broad perspective. We review the mathematical

background and informally discuss physical implementations of quantum

computers. Finally, we present the main constructions specific to quan-

tum computation yielding algorithms.

Keywords Quantum Computation, Quantum Algorithms, Quantum

Computers.

§1 Introduction
Whether the notion of data is thought of concretely or abstractly, it is

usually supposed to behave classically: a piece of data is supposed to be clonable,

erasable, readable as many times as needed, and is not supposed to change when

left untouched.

Quantum computation is a paradigm where data can be encoded with

a medium governed by the law of quantum physics. Although only rudimentary
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quantum computers have been built so far, the laws of quantum physics are

mathematically well described. It is therefore possible to try to understand the

capabilities of quantum computation, and quantum information turns out to

behave substantially differently from usual (classical) information.

In Sections 2, 3 and 4 of this tutorial, we describe the mathematics

needed for quantum computation together with an overview of the theory of

quantum computation. In Section 5, we briefly present the range of physical

implementations of quantum devices. We then discuss in Section 6 three subtle

algorithmic constructions specific to quantum computation that can be used in

order to design algorithms able, in some case, to outperform classical algorithms

on particular problems.

This paper is the first part of diptych on quantum computation. The

second part20) will be concerned with programmatic perspective on quantum

computation.

§2 One quantum bit
In classical computation, the smallest unit of data is the bit, element of

the two-element set {0, 1}. In quantum computation, the smallest unit of data

is a quantum bit, or qubit, defined as a ray in a 2-dimensional Hilbert space.

2.1 Mathematical formalism
A Hilbert space is a complex vector space equipped with a notion of

length and a notion of orthogonality, both defined by a scalar product. In this

section, we develop the required notions for the 2-dimensional context.

Complex numbers. A complex number is of the form a+ b · i, where a and b

are usual real numbers, and where i is a special symbol. Complex numbers can

be added and multiplied as follows: (a+ b · i) + (c+ d · i) = (a+ c) + (b+ d) · i
and (a+ b · i)(c+ d · i) = (ac− bd) + (ad+ bc) · i. The symbol i has therefore the

property i2 = −1. Given a complex number α = a + b · i, the conjugate of α is

the complex number ᾱ = a− b · i. The norm of α is |α| = a2 + b2, also equal to

ᾱα.

A complex number a+ b · i can be seen as a point in the complex plane

with coordinates (a, b). One can therefore propose an alternative representation

for complex numbers using polar coordinates: the complex ρeφi corresponds to

ρ cos(φ)+ρ sin(φ)·i. If the polar representation of complex numbers does not play
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well with addition, it supports multiplication: (ρ1e
φ1i)(ρ2e

φ2i) = (ρ1ρ2)e(φ1+φ2)i

and conjugation: ρeφi = ρe−φi. The angle φ is called the phase and ρ the

amplitude of the complex number.

2-dimensional Hilbert space. The set of column vectors ( αβ ) where α and

β are complex numbers can be equipped with a structure of vector space. If

u = ( αβ ) and v = ( γδ ), then u + v = ( α+γ
β+δ ) and γu = (

γα
γβ ). The scalar product

of the vectors u and v is the operation 〈u|v〉 = ᾱγ + β̄δ. It can also be seen as

the multiplication of the row-vector u∗ = (ᾱ β̄) with the column vector v (u∗ is

called the conjugate transpose of u): see Figure 1(d). If 〈u|v〉 = 0, we say that u

and v are orthogonal. For example, ( 1
0 ) and ( 0

1 ) are orthogonal; so are ( 1
1 ) and

( 1
−1 ). The scalar product induces a norm: ||u||2 = 〈u|u〉. A normalized vector

is a vector of norm 1. A basis is a pair of vectors u and v that can generates

the whole space when linearly combined. The basis is orthonormal if u and v

are normalized and orthogonal. For example, ( 1
0 ) and ( 0

1 ) form an orthonormal

basis. So do 1√
2 ( 1

1 ) and 1√
2 ( 1
−1 ).

Ray. A ray is an equivalence class of vectors stable by (non-zero) scalar mul-

tiplication. So ( αβ ) is in the same ray as (−α−β ) and ( 2α
2β ). A corollary is that for

every non-zero vector ( αβ ) it is possible to find a normalized vector whose first

coordinate is a non-negative real number: if α = ρ1e
φ1i and β = ρ2e

φ2i, choose
1

ρ21+ρ22
(

ρ1
ρ2e

(φ2−φ1)i ).

Unitary map. Regarding quantum computation, a particularly interesting

operation on Hilbert space is the unitary map. It is simply a rotation, i.e. a

change of orthonormal basis, and it can be efficiently represented by a 2 × 2

matrix: if ( 1
0 ) is sent to (

α1

β1
) and ( 0

1 ) is sent to (
α2

β2
), the unitary map is

U = (
α1 α2

β1 β2
). The transformation U on a particular vector is the application

of the matrix onto that vector, and the composition of two unitaries is matrix

multiplication (see Figure 1).

2.2 The quantum bit as vector of information
A quantum bit is merely a vector u = ( αβ ) in the 2-dimensional Hilbert

space. In order to make computational sense out of it, we choose the orthonormal

basis ( 1
0 ), ( 0

1 ) that we write |0〉, |1〉. The vector u can then be seen as the

quantum superposition of the two classical boolean values true and false: α|0〉+
β|1〉. The two values |0〉 and |1〉 are orthogonal to each other.
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Fig. 1 Matrix multiplication

We will use the convention that |x〉, |y〉, |z〉 . . . refer to base states while

greek letters: |φ〉, |ψ〉, . . . refer to general quantum bits.

2.3 Operations
Since a quantum system comes equipped with a preferred basis |0〉, |1〉,

the operations are described in this basis.

The first class of operations we can perform is the creation of a quantum

bit out of nothing. Both |0〉 and |1〉 can be created at wish. The second class

of allowed operations consists in unitaries, i.e. reversible operations. Beside the

identity I, some of the usual gates are the not-gate, the Hadamard, the phase

shift and the phase-flip:

N =

(
0 1

1 0

)
, H =

1√
2

(
1 1

1 −1

)
, Vθ =

(
1 0

0 eθi

)
, Z =

(
1 0

0 −1

)
.

The gate N sends |0〉 to |1〉 and |1〉 to |0〉: it effectively acts as a negation. The

Hadamard gate creates quantum superposition: it sends |0〉 to 1√
2
(|0〉 + |1〉).

The gate Vθ does not change the vector |0〉 but sends |1〉 to eθi|1〉. Z is just Vπ.

Unitaries are only rotating the state of the quantum system. In order to

get some classical information out, the only available operation is the measure-

ment. It is a probabilistic operation defined as follows: if u = ( αβ ) is a normalized

vector representing a quantum bit, the measure of u returns true with probabil-

ity |α|2 and false with probability |β|2. Moreover, the state of the quantum bit

was modified by the measure: the quantum bit is in state ( 1
0 ) if the result of the

measure was true and ( 0
1 ) is the result was false. We say that the measurement

was performed against the basis ( 1
0 ), ( 0

1 ). In general, given a basis u0, u1, a

measurement of v against u0, u1 returns true with probability |〈u1|v〉|2 and false

with probability |〈u2|v〉|2. It turned v into u1 if the measurement returned true

and into u2 if it returned false.
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Note that if we are physically restricted to measurements against the

base ( 1
0 ), ( 0

1 ), it is still possible to simulate a measurement against an arbitrary

basis u0, u1 by first applying the unitary sending u0 to ( 1
0 ) and u1 to ( 0

1 ) on the

vector under consideration, then measuring, then applying the unitary sending

( 1
0 ) and ( 0

1 ) respectively back to u0 and u1.

Together with one quantum bit, one can already build a simple experi-

ment: the coin-toss. Create a quantum bit in state |0〉, apply the Hadamard gate

to change the state of the qubit to 1√
2
(|0〉 + |1〉), the measure in the canonical

basis: we get true and false with equal probability.

Destructive measurements. A measurement can equivalently be thought of

as destroying the quantum bit we were considering. In the physical realization

with photons, this is what happen for example. It is not incompatible with the

first approach since one can always re-create a quantum bit in the canonical

basis to simulate a non-destructive measure.

2.4 The Bloch sphere
The rays of C2 are in one-to-one correspondence with the points on the

unit sphere of R3. In spherical coordinates, a point (θ, ϕ) with θ ∈ [0, π], ψ ∈
[−π, π] is in correspondence with the ray of representative

r(θ, ϕ) =

(
cos θ2

eiϕ sin θ
2

)
. (1)

The correspondence is pictured in Figure 2: index s indicates spherical coordi-

nates; index c indicates 3-dimensional coordinate; index H indicates coordinates

in C2. This unit sphere is called the Bloch sphere.

Using the Bloch sphere, one can define three canonical “orthogonal”

bases for a quantum bit, as follows.

• (|0z〉, |1z〉) = (|0〉, |1〉) is the basis along z;

• (|0x〉, |1x〉) = ( 1√
2
(|0〉+ |1〉), 1√

2
(|1〉 − |1〉)) is the basis along x;

• (|0y〉, |1y〉) = ( 1√
2
(|0〉+ i|1〉), 1√

2
(|1〉 − i|1〉)) is the basis along y.

These three bases have a peculiar property: measuring |0z〉 and |1z〉 against

both the bases along x and y returns true and false with probability 1
2 : in other

words, two quantum bits in state |0z〉 and in state |1z〉 cannot be distinguished

by measurement against the basis x and y. This property is also true for the

qubits |0x〉 and |1x〉 when measured against the bases along y and z, and for the
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Fig. 2 The Bloch sphere.

qubits |0y〉 and |1y〉 measured against the bases along x and z.

In general, two rays in C2 are orthogonal if and only if their representa-

tions on the Bloch sphere are antipodal.

2.5 The BB84 algorithm
We can use two of the bases described in Section 2.4 to securely create

secret keys for one-time pad encryption. This algorithm, called BB84 from the

seminal paper that presented it2). The algorithm reads as follows.

• Alice creates two sequences of n random bits. the first sequence specifies

which of the basis x or z to use to encode each of the bit in the second

sequence.

• Alice sends the encoded quantum bits to Bob

• Bob creates a sequence of n random bits: he measures each of the quan-

tum bits he receive using the basis specified by its sequence of bits.

• On a public classical channel (e.g. internet), Alice and Bob share the

basis for creation and measurement of quantum bits they used for each

quantum bits. They keep only the bits in the sequence where the bases

match: This is the shared secret key.

• If the quantum channel was noisy, or if an eavedropper tampered with

it, the photons Bob received might not precisely match the one Alice
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sent: This introduces errors in Bob’s measurements. Using successive

exchanges of parity information (called reconciliation phase3)), Alice and

Bob can recover the complete bit-string.

• If the error-rate is low enough (about 15%), it is then possible to produce

a shorter, but secret key using privacy amplification4). If the error-rate

is too high, they just start over.

This protocol is provably secure: on average, an evedropper cannot get more

than a certain percentage of the secret key.

While quantum cryptography is not the subject of this tutorial, it is

nonetheless interesting to note that the technology is well-developed and mature

enough for companies to sell quantum-based cryptographic devices16, 9). Com-

mercial devices that might not be as secure as their theoretical counterpart15). . .

§3 Two quantum bits
If one quantum bit is enough to build the foundation for a cryptographic

system, it is not sufficient to perform general computation. In this section, we

add a second quantum bit to our system

The state of a 2-qubit system lives in the tensor product C2 ⊗C2 of the

two original spaces C2. The space C2 was generated by the base ( 1
0 ), ( 0

1 ), the

space C2 ⊗ C2 = C4 is generated by

( 1
0 )⊗ ( 1

0 ) =

(
1
0
0
0

)
, ( 0

1 )⊗ ( 1
0 ) =

(
0
1
0
0

)
, ( 1

0 )⊗ ( 0
1 ) =

(
0
0
1
0

)
, ( 0

1 )⊗ ( 0
1 ) =

(
0
0
0
1

)
.

The vectors are respectively shorten in |00〉, |01〉, |10〉, |11〉: the space C2 ⊗ C2

can be seen as the space of “quantum superpositions” of pairs of booleans.

3.1 Operations
The operations one can perform on 2-quantum bit system are quite

similar to the one performed on only one quantum bit: One can create, measure,

and apply unitary operations.

Unitary operations. As for one-qubit system, it is possible to change a quan-

tum system through discrete, reversible operations that simply sends an orthog-

onal basis to another orthonormal basis. The simplest solution to construct a

unitary operation on a 2-qubit system is to tensor two 1-qubit operations: U⊗V
applied on |x〉 ⊗ |y〉 is (U |x〉) ⊗ (V |y〉). For example, the mixing operation is

H⊗2 = H⊗H: it sends |00〉 to (H|0〉)⊗(H|0〉) = 1
2 (|00〉+ |01〉+ |10〉+ |11〉). But



8 Benôıt Valiron

this is (thankfully) not the only possibility: when written in the canonical basis

|00〉, |01〉, |10〉, |11〉, we have in particular the swap gate X and the control-not

gate NC defined by

X =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
, NC =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
.

The NC-gate comes from a generic process: If U is a one-qubit gate, one can

construct UC = ( I 0
0 U ), called controlled U , as the 2-qubit gate:

UC (|0〉 ⊗ |φ〉) = |0〉 ⊗ |φ〉,

UC (|1〉 ⊗ |φ〉) = |1〉 ⊗ U |φ〉.

The gate U is applied on the second qubit depending on the value of the first

qubit.

Measurements. Measuring a 2-qubit system is similar as doing so in a 1-qubit

system. And despite the probabilistic nature of the operation, measuring first

the first qubit and then the second qubit is equivalent to doing it the other way

around. If the system is in state |φ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, measuring

the first qubit then the second yields (modulo renormalization):

α|00〉+ β|01〉+ γ|10〉+ δ|11〉

|0〉 ⊗ (α|0〉+ β|1〉)
uu

|1〉 ⊗ (γ|0〉+ δ|1〉)
))

α|0〉 ⊗ |0〉
||

β|0〉 ⊗ |1〉
""

γ|1〉 ⊗ |0〉
||

δ|1〉 ⊗ |1〉
""

The norm of each of these vectors is the overall probability of getting to this

state: from |φ〉, in two steps we get (true,true) and the state |00〉 with probability

|α|2; in one step, we get false and the state |1〉 ⊗ (γ|0〉 + δ|1〉) with probability

|γ|2 + |δ|2.

3.2 Particular properties
In this section, we discuss various specific properties of quantum com-

putation when more than one quantum bit are available.

No Cloning. Consider a quantum bit in some unknown state |φ〉 = α|0〉+β|1〉;
it is not possible to “clone” the state and get the two-qubit state |φ〉 ⊗ |φ〉. The

reason is simple: the only operations we are allowed to perform are unitaries and
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measurements, which are essentially linear maps. The cloning operation being

non-linear, it is therefore not implementable.

It is however possible to build a “copying” map G

α|0〉+ β|1〉 7−→ α|00〉+ β|11〉.

But it does not satisfy the usual commutativity rule for duplication: if f is any

linear map C2 → C2, then G ◦ f 6= (f ⊗ f) ◦G.

Entanglement. Another special property of quantum information is superpo-

sition: the 2-qubit state 1√
2
(|00〉 + |11〉) is a valid state, but cannot be written

as |φ〉 ⊗ |ψ〉. We say the two quantum bits are entangled.

The interesting aspect of entanglement is that the measurements of

the qubits are correlated. For example, measuring the first qubit in the state
1√
2
(|00〉 + |11〉) with respect to the standard basis yields 0 with probability 1

2

and 1 with probability 1
2 . In the former case, the state of the 2-qubit system is

|00〉, thus measuring the second qubit yields 0 with probability 1. In the latter,

the state of the system is |11〉, and measuring the second quantum bit yields 1

with probability 1.

One can form a basis for C2 ⊗C2 out of entangled states. For example,

an often used basis is the following set of orthogonal, entangled states:

1√
2
(|00〉+ |11〉), 1√

2
(|00〉 − |11〉), 1√

2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉).

Probabilistic and quantum computation. From a classical perspective, a

measurement is a special form of coin-toss: Quantum computation can therefore

simulate probabilistic computation. Is quantum computation conservative over

probabilistic computation? It turns out not to be. In the following, we propose

a proof can be found using the protocol described by Bell in 19641), yielding

what is known as Bell’s inequalities.

The argument goes as follows. Consider a quantum machine that max-

imally entangles two quantum bits A and B

|φAB〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

and sends qubit A to Alice and qubit B to Bob. Suppose that they can inde-

pendently choose one of the following axes in the Bloch sphere (see Figure 2) to

measure:

a = (0, 0, 1), b =
(√

3
2 , 0,−

1
2

)
, c =

(
−
√

3
2 , 0,−

1
2

)
.
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They live in the xz-plane of the Bloch sphere and correspond respectively to the

bases in C2:

|0a〉 = |0〉, |0b〉 = 1
2 |0〉+

√
3

2 |1〉, |0c〉 = 1
2 |0〉 −

√
3

2 |1〉,

|1a〉 = |1〉 |1b〉 =
√

3
2 |0〉 −

1
2 |1〉, |1c〉 =

√
3

2 |0〉+ 1
2 |1〉.

What is the probability of obtaining the same output when measuring A and B

with respect to two different bases?

If we forget about the quantum aspect of the protocol, we essentially

build two isolated probabilistic computations inputting an element from the set

{a, b, c} and outputting a probabilistic boolean.

If we stay purely probabilistic, the result of measuring A and B along

each of the possible axis is predetermined. Let Px,y be the probability of obtain-

ing the same output while measuring A along x and B along y. We have

Pa,b + Pb,c + Pc,a > 1, (2)

since for any possible distribution of measurement values, there will always be

two values that will be equal. However, using the definition of measure against

arbitrary basis given in Section 2.3,

Px,y = |〈φAB |0x0y〉|2 + |〈φAB |1x1y〉|2.

The computation shows that Px,y = 1
4 for x 6= y, x, y = a, b, c. In particular,

Pa,b + Pb,c + Pc,a = 3
4 < 1,

which violates Equation (2): Quantum computation is not conservative over

probabilistic computation.

§4 Many quantum bits
If the state of a 2-qubit system lives in C2 ⊗C2, not so surprisingly the

state of a 3-qubit system lives in C2 ⊗ C2 ⊗ C2, that is, C8, and its canonical

basis in lexicographic order is |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉.
Working with a n-quantum bit system means manipulating vectors in C2n , with

a basis made of strings of n booleans.

Measurements and unitaries extend fluently to the case of n quantum

bits. However, since the size of matrices becomes prohibitive, and since most

unitary operations are built out of smaller one, we prefer to write operations

on quantum bits using quantum circuits. At first sight, quantum circuit is to
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quantum computation what classical boolean circuit are to classical computa-

tion: the description of an algorithm. However, it should be noted that unlike

classical circuit, for most physical implementation one cannot just “get from a

shelf” a component of a quantum circuit: the circuit is really a description of

logical operations to be performed on the system, and should more be seen as

the description of a procedure.

4.1 Universal set of gates
An interesting result coming from the theory of Lie algebras is that there

exist sets of unitary operations from which one can construct (using composition

and tensor) any given unitary gate up to a given error. These sets are called

universal sets of gates. Some examples are

• the set of all the unitary gates on C4;

• the set of all the unitary gates on C2 together with NC ;

• the set consisting of H, NC and Vπ
4

.

In particular, this means that for every unitary map on n qubits one can find a

quantum circuit using H, NC and Vπ
4

that approximates it.

4.2 Quantum circuits
A quantum circuit is a graphical representation of a sequence of unitary

operations to be performed on quantum bits. Graphically, a quantum bit is a

wire, and a unitary is a (named) box. Several quantum bits are represented by

several parallel wires, read from top to bottom. For example, the circuit

H

represents a one-quantum-bit system on which one applies the Hadamard gate.

Two 1-qubit operations have special representation: the not-gate N and the

identity function are respectively denoted with

⊕ and .

The notation for the gate N is due to its resemblance with the classical XOR

operation. The circuit

U
H
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is a two-quantum-bit system on which one first apply the two-quantum-bit uni-

tary U , followed by the Hadamard gate on the second quantum bit. The unitary

map represented by this circuit is the map |φ〉 7−→ (I ⊗H)(U |φ〉).
Two classes of gates have a particular representation and deserve spe-

cial attention. The first one is the class of swap gates. As we already saw in

Section 3.1, the swap X on 2 qubits, refers to a “physical” swap. One therefore

represents swaps as follows:

,
.

The former is X and sends |x〉⊗|y〉 to |y〉⊗|x〉, while the latter sends |x〉⊗|y〉⊗|z〉
to |z〉 ⊗ |x〉 ⊗ |y〉.

The second kind of gates to have a special representation in quantum

circuits is the controlled gate. Since this gate acts conditionally on a quantum

bit, we write respectively

•

U ,

◦

U

for the gate UC sending |0〉 ⊗ |y〉 to |0〉 ⊗ |y〉 and |1〉 ⊗ |y〉 to |1〉 ⊗ (U |y〉) and

for the gate (N⊗I)UC(N⊗I) sending |0〉 ⊗ |y〉 to |0〉 ⊗ (U |y〉) and |1〉 ⊗ |y〉 to

|1〉 ⊗ |y〉.
The notation is flexible. For example, the circuits

•
◦

U

•

U

◦

U

•
◦

are all describing the map sending the basis element |1〉 ⊗ |0〉 ⊗ |z〉 to the state

|1〉 ⊗ |0〉 ⊗ (U |z〉) and every other basis element to itself.

Creation and measurement. It is often useful to express creation of quan-

tum bits and measurements. The creation of a quantum bit in state |φ〉 and

the measurement, making a classical bit out of a quantum bit, are respectively

represented with the notations

|φ〉 and M
b
--

.
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qubit 1: |φ〉 • H

(1) (2) M
x,y

		

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕
location B

location A

Uxy

(3)

|φ〉

Fig. 3 Quantum teleportation protocol.

So for example, the coin-toss is represented by the quantum circuit

|0〉 H M

--

4.3 A simple algorithm: quantum teleportation
A standard example of algorithm that mix unitaries and measurements

operations is the so-called quantum teleportation algorithm. It allows one to

send the state of an unknown quantum bit from a location A to a location B

without having to look at it (i.e. without having to measure it). The trick is to

use an entangled pair of quantum bits between both locations. See Figure 3; we

explain the 3 steps:

1. At location A, create the initial entangled state 1√
2
(|00〉 + |11〉) with

the two last qubits. Alice keeps qubit 2 and stays at location A, while

Bob takes qubit 3 and goes to location B.

2. Alice, to send qubit 1 in state |φ〉 to Bob, applies a rotation on her two

qubits 1 and 2. She then measures the 2-qubit resulting state, gets two

classical bits (x, y) and sends them to Bob.

3. Provided that M outputs the bits x, y, to transform qubit 3 to state

|φ〉, Bob applies on it the transformation Uxy, where U00, U01, U10 and

U11 are respectively ( 1 0
0 1 ), ( 0 1

1 0 ), ( 1 0
0 -1 ) and ( 0 1

-1 0 ).

Note that the entanglement of qubits 2 and 3 can be done ahead of time (so long

as they stay entangled).
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Proof of the correctness of the protocol. If we apply the computation of

Step (2) to the two first qubits of

(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉) = 1√

2
(α|000〉+ α|011〉+ β|100〉+ β|111〉)

we get

1
2

(
α(|000〉+ |100〉) + α(|011〉+ |111〉) + β(|010〉 − |110〉) + β(|001〉 − |101〉)

)
=

1

2

(
|00〉 ⊗ (α|0〉+ β|1〉) + |01〉 ⊗ (β|0〉+ α|1〉)

+ |10〉 ⊗ (α|0〉 − β|1〉) + |11〉 ⊗ (α|1〉 − β|0〉)

)
Measuring the two first qubits, the third qubit becomes

α|0〉+ β|1〉 if 00 was measured,

β|0〉+ α|1〉 if 01 was measured,

α|0〉 − β|1〉 if 10 was measured,

α|1〉 − β|0〉 if 11 was measured.

Finally, if Uxy is applied in the case where x, y was the result of the measurement,

then the state of the last qubit is α|0〉+ β|1〉, as desired. �

§5 Physical realization of quantum devices
Nowadays, more or less every physical realization of a computer uses

silicon and transistors. In the realm of quantum computers, several competing

physical implementations co-exist, both with their strengths and weaknesses. In

this section, we briefly review the (wide) range of existing physical implementa-

tions of quantum devices.

5.1 Decoherence and errors
To encode a quantum bit, one needs to find a physical object with two

modes that are both distinguishable by a physical operation and whose state

can be regarded as being governed by the law of quantum physics. For example,

a book can be either opened or closed, but one can hardly argue that these two

modes can be placed into “quantum superposition”.

However, for various physical objects, one can find such modes. Some

simple examples are photons: polarization, or location; trapped ions: electronic

state; electrons: spin nuclei: spin; in general: energy level, if discrete.

The main problem with an object governed by the law of quantum

physics is that it tends to interact with its environment. The state of the particle
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will therefore change along time, a phenomenon known as decoherence. Depend-

ing on the technology, the typical decoherence time for an quantum bit ranges

from 1ms to several tens of seconds14).

Together with imperfect gates, decoherence makes quantum information

extremely unstable. It renders the task of building a device hosting quantum

information very challenging.

5.2 Requirements
Requirements for a successful physical implementation are well summa-

rized by DiVincenzo8) and Ladd and al14).

Scalability. Regardless of the physical apparatus, to be able to take advantage

of the efficiency of a given quantum algorithm, it has to be applied on a large

enough input size. This implies that the number of quantum bits is large enough.

It also implies that one needs to be able to apply probably very many operations

on the quantum bits in a single run: we need the implementation to scale both

in space and in time, and to be highly parallel.

Set of universal gates. Any physical implementation will come with a set of

allowed operations on the device. Sure enough, we need to be able to allocate

and initialize quantum bits in a fixed state, and we need to be able to measure

the quantum bits with respect to a particular basis. But also, we need to be

able to construct an arbitrary unitary gate on a potentially arbitrary number

of quantum bits: a universal set of elementary gates is required for a successful

quantum device.

Timing issue: low error rate, fast gates and quantum bit stability. The algo-

rithms require many gates to be applied on many quantum bits. In order to

keep the probability of error low enough, the various gates need to be precise

enough. Since the run-time of interesting algorithms will probably be non-trivial,

the state of the quantum bits need to be stable enough in time and gates to be

applied fast both to allow many gates to be applied and to allow quantum error-

correction to succeed.

Ability to move quantum bits around. Finally, the quantum bits are represented

by the state of physical objects: 2-qubit operations (such as a control-gate, for

example) on non-adjacent quantum bits will generally require either moving the

physical objects near each other, or moving the quantum state themselves to

adjacent physical objects (e.g. by teleportation, or a series of swap operations).

The bottom line is that to realize a quantum computer one has to con-
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ciliate two rather opposite properties. On one hand, quantum bits have to be

isolated from the outer world; on the other hand, they have to interact with each

other, and with the devices actually performing the computation.

5.3 Review of techniques
In the following, we list a few of the physical realizations of quantum

devices, and discuss their relative advantages and drawbacks. For an in-depth,

technical description, see Chapter 7 of Nielsen and Chuang’s classic textbook19),

or the more recent book from Chen and al.6). For an rapid overview of the

current state of the field, refer to Ladd and al14).

Photons. Photons are reliable supports for quantum bits: they are relatively

free from decoherence, and they are easy to move around. There are several

ways to encode a quantum bit on a photon. The first one is simply by using

polarization to hold the state of the quantum bit: vertical polarization means

|0〉, horizontal means |1〉. But one can do other ways, for example by the location

of the photon. Depending on how the paths are designed and how the photon

is injected, the photon could experience one path or the other, or both at the

same time, creating a superposition of the state |0〉 and the state |1〉.
Some experimental devices used to interact with photons are known

tools from linear optics:

• Lasers. At very low intensity, they can produce photons one at a time.

• Polarizing beamsplitters. Separate incoming photons into separate paths,

depending on their polarization state. Combined with a pair of single-

photon detectors, the polarization state of a qubit can be measured.

• Mirrors. They are used to change the direction of a photon in space.

• Polarization rotators. It can be realized by a piece of birefringent mate-

rial: the deeper the piece is, the bigger the phase shift is.

• (Regular) beamsplitter: A thin layer of semi-refracting material. It can

be used for either coupling two polarization modes, or for separating a

photon on two distinct paths.

Photons are therefore good candidates for moving as well as holding

quantum information: they are relatively resilient to decoherence, they are eas-

ily routed, and many easy-to-deploy devices exist for performing one-qubit op-

erations on them. Although the main caveat remains the interaction between

two photons, recent progress13, 14) tends to indicate how to overcome the prob-
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lem. This makes quantum optics a potentially promising setting for a quantum

computer.

Trapped ions. Ions can be trapped in free space using suitable electric fields.

Provided that the ions are cooled enough, they are relatively resistant to decoher-

ence, and their decoherence time is several orders of magnitude longer than the

time needed for the basic operation of initialization, unitary maps and measure-

ment. This makes them good candidates as support for quantum computation.

Various research groups5) have experimented with using this technique to build

quantum memories with a number of quantum bits ranging from 4 (in 2000)5)

to 14 (in 201117)).

Ions are arranged spatially as an array. Initialization to base state is

realized by laser cooling. Interaction on single ion is performed using lasers

pulses, and entanglement can be done either by local interaction between ions,

or through photonic interaction. This has the advantage of allowing quantum

entanglement between potentially far-away quantum bits, and hints at how to

scale a quantum computation realized in this way. However, although at small

scale one can keep a high-fidelity control, it remains to show how to scale this

fidelity to many qubits.

Quantum dots. Instead of confining quantum particles in free space, it is

possible to store them on a solid host, such as a semiconductor, a piece of silicon

or a crystal. The binding onto the host can typically be done electrostatically.

The advantage is that the quantum “dot”, for example an electron, or a single

impurity such as an atom, does not need to be “trapped” in free space, but is

instead integrated once and for all into the structure and is arguably more stable.

It is also potentially able to support room-temperature without hampering the

coherence time.

The vast variety of supporting hosts and dots makes this technique very

versatile and subject to extremely active research. Due to its wide range of

application, it is also able to bring insight to other techniques.

Nuclei of atoms. A naturally well-isolated system is the nucleus of an atom:

shielded behind many electronic layers, the nuclear spin of an atom is extremely

stable. It can then be reached and acted upon using an electromagnetic field,

a technique called nuclear magnetic resonance (NMR). The technique is the

following: a liquid at room temperature containing a particular molecule at
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Fig. 4 Molecules as quantum memory

some concentration is designed. The molecule is chosen so that some of its

atoms can be either independently addressed or entangled with other using a

specific electromagnetic pulse. The molecule can be thought of as a quantum

memory of a certain (usually small) size, the last record being 12 quantum bits18)

in 2006: see Figure4(b) for the molecule. The atoms used as memory registers

are circled. Since the liquid contains many of these molecules, the computation is

run in parallel on all of them; this partially solves the problem of the probabilistic

nature of quantum computation: only one run is necessary.

A previous record21) was a famous experiment where Shor’s factoring

algorithm has been successfully applied to factor. . . the number 15. The reason

for the small input has to do with the small size of the quantum memory: the

“computer” had only 7 quantum bits available, and Shor’s algorithm requires

quite a few auxiliary qubits (see Figure 4(a) for the molecule, the circled atoms

forming the memory). However, the fact that a complete algorithm was imple-

mented is a noteworthy milestone: albeit small, the apparatus can reasonably

be called a quantum computer.

One of the problem in this liquid-state NMR technique is the problem

of the initialization of the memory. The other problem lies in the fact that a

particular molecule has to be chosen for holding the memory: the method is not

really scalable.

Superconductor. As photons, electrons are good support for quantum infor-

mation. The näıve hardware where they are found, that is, electrical circuit,

does not form a good support for holding them, though: because of resistive

power, decoherence is extremely high.

There is however a state of the matter where resistivity is minimized: su-

perconductors. And indeed, quantum computing have been experimented using



Quantum Computation: a Tutorial 19

this technology14).

To date, the commercially most successful paradigm of computation

using superconducting quantum computation is called adiabatic quantum com-

putation. Although this is out of the scope of this review, it is worth noting that

the company D-Wave7) sells a quantum device with 128 quantum bits, encoded

using superconducting techniques. Unfortunately, their device is not universal.

But it is working, and computationally expressive enough to perform discrete

optimization. Plus, it is no longer a lab experiment: it is a product that you

can actually purchase (for a whopping 10 millions dollars).

§6 A tour of quantum algorithms
What can we do with quantum information, and what makes an algo-

rithm manipulating quantum information really quantum?

As we’ll see in Section 6.1, classical circuits can be efficiently simulated

by quantum circuits: in particular, there is no particular “gain” in choosing

quantum computation in this situation. The real gain is when the algorithm

makes use of either entanglement, or more generally the interference brought by

complex coefficients.

Most of the existing “really” quantum algorithms are based on a few

quantum constructs described in Sections 6.2 to 6.4: quantum Fourier transform,

quantum walk and amplitude amplification. The rest if made of classical pre and

post-analysis, and possibly of an oracle: a quantum circuit corresponding to a

classical reversible operation (Section 6.1).

Despite the fact that only three main constructions are available, the

richness of their possibilities makes the search for quantum algorithms and op-

timizations over classical algorithms a vibrant area: the quantum algorithm zoo

of S. Jordan10) refers 45 algorithms and 160 papers with no less than 14 written

between 2011 and 2012.

6.1 Reversible classical computation
A restricted subset of unitaries (i.e. N , NC , NCC , X, . . . ) sends ba-

sis elements to basis elements: quantum circuits built from these components

are effectively classical, boolean computation. What is the power of quantum

computation with respect to classical computation?

Although quantum circuit are reversible operations, it turns out that

one can simulate classical, boolean computation with quantum computation,
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only using NC and NCC . If B is the set of booleans values, and if the map

f : Bm → Bn is a boolean function taking m arguments and outputting a n-

tuple of booleans, the map f̂ : Bm×Bn → Bm×Bn sending (x, y) to (x, y⊕(f x))

is reversible. It is possible to build a quantum circuit

Uf
|x〉 |x〉

|y〉 |y⊕fx〉

that is effectively computing the operation f̂ , sending∑
i αi|xi〉 ⊗ |yi〉 7−→

∑
i αi|x1〉 ⊗ |yi ⊕ f(xi)〉.

A dumb implementation. The simplest implementation one could think of

uses a series of multi-controlled operations implementing the truth table. For

example, for a function f : B3 → B2, a possible truth table and its circuit

implementation is as follows.

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 1

1 0 1 0 0 0 1 1

◦ ◦ ◦ • • •
◦ ◦ • ◦ • •
◦ • ◦ • ◦ •
⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

The circuit has one controlled-gate per non-zero output.

A compositional implementation. Although this encoding soundly encodes

the operation f̂ , it is not really efficient: the number of gates is exponential on

the number of inputs. It is possible to do a better, efficient implementation of

f̂ , compositionally on the definition of f .

If f is the “and” map B2 → B, the operation f̂ , with 3 inputs and 3

outputs is simply the gate NCC sending |xyz〉 to |xy〉 ⊗ |z ⊕ xy〉. If f is the

“not” map, the operation f̂ , with 2 inputs and 2 outputs is simply the gate

(N⊗I)NC(N⊗I) sending |xy〉 to |x〉 ⊗ |(not x)⊕ y〉.
If the map f is f(x, y) = not ((not x) and (not y)), the operation f̂ can

be constructed in term of the elementary circuits ˆnot and ˆand . A first draft of

circuit is as in Figure 5(a).

The problem with this circuit is that it has 3 input wires (x, y and

z) and 7 output wires. One has to “close” the wires starting with |0〉. The
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x ◦
y ◦
|0〉 ⊕ •
|0〉 ⊕ •
|0〉 ⊕ ◦
|0〉 ⊕ •
z ⊕

(a) First draft

x ◦ ◦ x
y ◦ ◦ y

|0〉 ⊕ • • ⊕ M

|0〉 ⊕ • • ⊕ M

|0〉 ⊕ ◦ ◦ ⊕ M

|0〉 ⊕ • ⊕ M

z ⊕ z ⊕ (x ∨ y)

(b) Final draft

Fig. 5 Implementation of the “or” operation

obvious candidates for this is the measurement operation: it makes sure that

the quantum bits that are measured are not anymore in superposition with the

rest of the system. However, before actually performing the measure, one has

to “undo” the operation we did on these wires. Indeed, we are working with

quantum bits and not mere classical booleans. Suppose that the state of the

system x, y, z are 1√
2
(|00〉+ |11〉)⊗|0〉. By linearity, since |0000000〉 7→ |0011100〉

and |1100000〉 7→ |1100011〉, then

1√
2
(|00〉+ |11〉)⊗ |0000〉 ⊗ |0〉 7→ 1√

2
(|0011100〉+ |1100011〉).

The quantum bits 3 to 6 in the output are not in a base state: measuring them

will send the whole system to |0011100〉 with probability 1
2 and to |1100011〉

with probability 1
2 . This is not what we were looking for: the overall circuit

would send 1√
2
(|000〉 + |110〉) to a probabilistic distribution of states |000〉 and

|111〉.
Thanks to the unitarity of the elementary operations, it is possible to

“undo” the intermediate computations performed on the inner quantum bits.

The actual f̂ we want is the circuit of Figure 5(b). Now, if x, y, z were in state
1√
2
(|00〉+ |11〉)⊗ |0〉, right before the measurement the system is in the state

1√
2
(|000000〉+ |1100001〉).

Measuring (and forgetting) the inner quantum bits (number 3, 4, 5 and 6), we

get the state 1√
2
(|000〉+ |111〉), which is precisely the expected result.

Of course, in the case of the implementation of the “or” function, it is

easy to come up with a more resource-caring circuit. For example, the imple-

mentation in term of truth table is probably more efficient. But if you consider

more sophisticated computation such as an adder, even this simplistic compo-

sitional implementation quickly becomes more interesting than the truth-table
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one.

Control structures and size of circuits. Unlike usual, classical computa-

tion, classical simulation using quantum circuit has some drawbacks.

The first one is that all classical loops have to be completely unwinded:

there is no “jump” operation, as the circuit only goes from left to right. This

makes quantum circuits similar to classical boolean circuits.

However, quantum circuits are even more constrained than classical,

boolean circuits: there is no true branching on test. Since tests are implemented

with controlled gates, both branches of the circuit will have to be computed.

Technically, this means that every single gates in a quantum circuit will

be run, making a relatively large overhead to the transformation classical-to-

quantum.

6.2 Quantum phase estimation
Certain interesting algorithms in algebra and number theory reduce to

the problem of order finding. For example, factorization is such a problem and

the acclaimed Shor’s factorization algorithm is using order finding as its core

component. Some other examples are the search for a discrete log and the

general hidden subgroup problem.

In classical mathematics, the order finding problem is not known to have

an efficient algorithm. Thus, in general we do not associates the aforementioned

problems with it. However, in quantum computation there exists such an algo-

rithm: this is why we focus on it.

Order finding. The problem reads as follows: choose two coprime integers

a and N . A theorem states that there exists a number p > 0 such that ap =

1 mod N . What is p?

Interestingly enough, this problem relates to quantum computation be-

cause the property that unitaries, as matrices, can be decomposed into

U =
∑
j

λjuju
∗
j .

where λj ’s are complex numbers and uj ’s are normalized, orthogonal column

vectors. As we saw in Section 2.1 and in Figure 1, Uuj = λjuj : we call uj an

eigenvector of U and λj a eigenvalue.
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To see how one can relate this notion to order finding, assume for sim-

plicity that N = 2n and consider the operation Ua on n qubits sending |j〉 to

|j · a mod N〉. This operator is unitary since a and N are coprime: the image

of {0 . . . N − 1} under j 7→ j · a is the whole set. In particular, since Uka sends

|j〉 to |j · ak mod N〉, if ap = 1 mod N then the map Upa is the identity map.

Therefore, the eigenvalues of Ua are pth roots of the unity. A pth root of unity

is of the form e2π ik/p.

Thus, an algorithm for eigenvalue estimation should be enough to re-

trieve p (with some classical post-processing): we left the world of number theory

and we are back with operators: This is the realm of quantum computation.

Quantum phase estimation. Before solving the problem of estimating an

eigenvalue, we first discuss a similar problem: quantum phase estimation. the

question is to estimate the parameter ω in the state |φ〉 = 1√
2n

∑2n−1
y=0 e2πiωy|y〉.

The trick consists in decomposing ω as a floating point number in binary

notation. Note that without loss of generality, one can assume that 0 6 ω < 1

since e2π i = 1. Then write ω as ω =
∑∞
i=1

xi
2i where the xi’s are 0 or 1. We

write ω = 0.x1x2x3 . . ., assuming a binary representation.

First, suppose that ω is equal to 0.x1. In this case, n = 1 and

|φ〉 = 1√
2

∑1
y=0 e

πi(x1y)|y〉,

that is, |φ〉 = 1√
2
(|0〉+ (−1)x1 |1〉). To retrieve the value x1, it is enough to use

the Hadamard gate, since H|φ〉 = |x1〉.
If now we are interested in ω = 0.x1x2, then ω = x1

2 + x2

22 and y = 2.

The state |φ〉 is

|φ〉 =
1√
22

3∑
y=0

e2π i(
x1

2 +
x2

22 )y|y〉 =
1

2

3∑
y=0

e
2
22 π i(2x1y)e

2
22 π i(x2y)|y〉.

Remembering that e2π i = 1, we can rewrite this sum as

|φ〉 =
1

2
(|00〉+ e

1
2π i(2x1)e

1
2π ix2 |01〉+ e

1
2π i(2x2)|10〉+ e

1
2π i(2x1)e

1
2π i(3x2)|11〉)

This factors as

|φ〉 =
1

2
(|0〉+ e

1
2π i(2x2)|1〉)⊗ (|0〉+ e

1
2π i(2x1)e

1
2π ix2 |1〉)
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and it rewrites to

|φ〉 =
1

2
(|0〉+ e2π i (0.x2)|1〉)⊗ (|0〉+ e2π i (0.x1x2)|1〉) (3)

Remember that H 2√
2
(|0〉+ e2π i (0.x2)|1〉) = |x2〉. If we write R2 for ( 1 0

0 e2πi(0.01)
),

from |φ〉 we can retrieve the values x1 and x2 with the circuit

|0〉+e2π i (0.x2)|1〉√
2

H • |x2〉

|0〉+e2π i (0.x1x2)|1〉√
2

R−1
2 H |x1〉

This scheme generalizes, and if Rn is ( 1 0
0 e2πi(0.0...01)

) and ω = 0.x1 . . . xn,

then the circuit

H • • · · ·

R−1
2 H • · · ·

R−1
3 R−1

2 H · · ·

computes |xn . . . x1〉 out of |φ〉.

Quantum Fourier transform. The above general circuit computes the phase

estimation, denoted QFT−1: 1√
2n

∑2n−1
y=0 e2πi x2n y|y〉 7→ |x〉. The reverse opera-

tion is written QFT:

|x〉 7−→ 1√
2n

2n−1∑
y=0

e2πi x2n y|y〉

and is called quantum Fourier transform because of its resemblance to the dis-

crete Fourier transform. It is realized by inverting the circuit for the phase

estimation.

Estimation of eigenvalues. Suppose that the eigenvalue of an eigenvector

for a specific unitary maps is of the form e2πiω. We are now ready to estimate

the value ω.

Suppose again that ω = 0.x1x2. Note that 2 · 0.x1x2 = x1.x2 and that

e2π ix1.x2 = e2π i0.x2 . We have

(UC)k
(

1√
2
(|0〉+ |1〉)⊗ |φ〉

)
= 1√

2
(|0〉+ e2πi(kω)|1〉)⊗ |φ〉.
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In particular,

UC

(
1√
2
(|0〉+ |1〉)⊗ |φ〉

)
= 1√

2
(|0〉+ e2πi(0.x1x2)|1〉)⊗ |φ〉.

(UC)2
(

1√
2
(|0〉+ |1〉)⊗ |φ〉

)
= 1√

2
(|0〉+ e2πi(0.x2)|1〉)⊗ |φ〉.

Using Equation (3) and the map QFT−1, we solve the problem:

|0〉 H • |x2〉

|0〉 H • |x1〉

|φ〉 U2 U |φ〉

QFT−1

This circuit generalizes for arbitrary ω (albeit probabilistically). Adding more

(UC)k to the circuit allows the estimation of more digits of ω.

6.3 Quantum walk
Another useful construction is the notion of quantum walk. It is similar

to the random walk: instead of flipping a classical coin that creates a probabilistic

superposition, we flip a “quantum coin” creating quantum superposition instead.

To illustrate the difference, let us define a random walk, and then its quantum

counterpart.

Consider a ring of 16 connected nodes as follows:

0000 // 0001 // 0010 // 0011 // 0100 // 0101 // 0110 // 0111
��

1000

OO

1001oo 1010oo 1011oo 1100oo 1101oo 1110oo 1111oo

Random walk. Start from the node 0000. At each step, toss a fair coin: if

tail, do not move, else move to the next node. The probability distributions over

the 5 first steps shows a wave of probabilistic values moving right and getting

diluted along the way:

0000 0001 0010 0011 0100 0101 0110 . . .

1 0 0 0 0 0 0 . . .

0.5 0.5 0 0 0 0 0 . . .

0.25 0.5 0.25 0 0 0 0 . . .

0.125 0.375 0.375 0.125 0 0 0 . . .

0.0625 0.25 0.375 0.25 0.0625 0 0 . . .

0.03125 0.15625 0.311 0.311 0.15625 0.03125 0 . . .
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Quantum walk. A quantum walk12) is performed similarly, except that ev-

erything is in superposition, including the coin. The state of the computation

consists then of 4 quantum bits for the spacial location and one quantum bit for

the coin. The evolution is unitary: the coin-toss is a one-qubit unitary matrix

C and the spacial step-forward O is the map sending |i〉 to |i + 1〉 is i 6= 1111

and |1111〉 to |0000〉. This operation is unitary: it sends a base to a base, and

it is obviously reversible. Also note that is is a purely classical operation: it

is an oracle (which is the reason why we choose O for its name), and one can

therefore implements it using the technique of Section 6.1. A sequence of 5 steps

is represented by the circuit

|1〉 C • C • C • C • C •

|0000〉 O O O O O

To retrieve a classical information, as usual one simply measures the output.

What is a “fair” coin in this situation? If in the “quantum coin” com-

putation we were measuring the quantum bit right after C

C M |x〉.......
. .

x (4)

then we would recover a classical, random walk: a reasonable notion of quantum

fair coin is a unitary matrix C such that the quantum coin (4) is a usual fair

coin. An example of such a fair coin is the Hadamard gate 1√
2
( 1 1

1 −1 ). After 5

steps the probability distribution over the space is described by

0000 0001 0010 0011 0100 0101 0110 . . .

0.03125 0.15625 0.125 0.125 0.53125 0.03125 0 . . .

This time the wave keeps its cohesion and the tip of the wave goes faster than

its probabilistic counterpart.

It has to do with the choice of the quantum coin and its initial value.

Intuitively, the idea is that the Hadamard gate tends to “mix”, or “annihilate”

the tail of the wave but strengthen the step-forward part of the computation.

If instead we had chosen the initial value |0〉 for the coin, the tail of the

wave would have been preserved instead. An indeed, the computation of the

probability distribution after 5 steps gives

0000 0001 0010 0011 0100 0101 0110 . . .

0.03125 0.53125 0.125 0.125 0.15625 0.03125 0 . . .
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Use in algorithms. The quantum walk is a tool that can be used to explore

a graph. A made-up example where a quantum walk is more efficient than

a classical algorithm is the binary welded tree: two binary trees of the same

height are joined by a random welding. Starting at the root of one tree and not

knowing the welding, can you find an algorithm that will find the root of the

other tree? A random walk can of course be used, but as for the simple example

we saw, the probability gets diluted very fast. It is possible to do better with

a quantum walk, using the fact that interference can “cancel-out” some nodes

and concentrates the wave function on the exit node.

Of course, the algorithm is not off-the-shelf: the step function (the ora-

cle), the coin and the number of steps need to be fine-tuned. However, various

algorithms successfully make use of the quantum walk10).

6.4 Amplitude amplification
A technique related to quantum walks is called amplitude amplification.

As for quantum walks, interference plays a central role in increasing the ampli-

tudes of the states we are interested in and lowering the amplitudes of the other

ones.

Grover’s algorithm. The older and most known algorithm based on this

technique is due to Grover, and aim at answering the search problem: given a

boolean function of n inputs and one output, find an input to the function whose

image is 1. We assume that there are not so many such inputs. This problem

can be applied to a wide variety of problem. In this paragraph, we follow the

very clear explanation given by Kaye and al.11).

The tools for the algorithm are 3 unitary maps operating on n qubits:

an oracle O, computing O(|x〉) = (−1)f(x)|x〉; a n-shift operator U0⊥ sending

|00 . . . 0〉 to itself and all other base states |x〉 to −|x〉; the mixing operator H⊗n,

applying the Hadamard gate on all n qubits.

Note that O is not of the canonical form Uf (|x〉⊗ |y〉) = |x〉⊗ |y⊕f(x)〉.
But from Uf we can construct O easily: since

Uf (|x〉 ⊗ 1√
2
(|0〉 − |1〉)) = (−1)f(x)|x〉 ⊗ 1√

2
(|0〉 − |1〉)

we can omit the last register and consider O as the map acting on the n first

qubits. The algorithm is a succession of the Grover iterates G

|00 . . . 0〉 H⊗n G G · · · G
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where G is

O H⊗n U0⊥ H⊗n .

We know the action of O. What is the action of H⊗nU0⊥H
⊗n? Consider the

maximally entangled state |φ〉 = H⊗n|00 . . . 0〉 =
∑2n−1
i=0 |i〉, and let V|φ〉 be the

one-dimensional space generated by |φ〉 and V|φ〉⊥ its orthogonal subspace. Since

HH is the identity,

H⊗nU0⊥H
⊗n|φ〉 = H⊗nU0⊥ |00 . . . 0〉 = H⊗n|00 . . . 0〉 = |φ〉.

Now, sure enough for any element |ψ〉 in V|φ〉⊥ , H⊗n|ψ〉 is a superposition of base

states which does not contain |00 . . . 0〉. Therefore U0⊥(H⊗n|ψ〉) = −H⊗n|ψ〉,
and H⊗nU0⊥H

⊗n|ψ〉 = −|ψ〉. So really, H⊗nU0⊥H
⊗n could be written as Uφ⊥ ,

to keep the same intuition as the notation for U0⊥ .

We are now ready to see the intuition behind the algorithm. Let us de-

compose it up to the first iteration. The very first step is to create the maximally

entangled state |φ〉. This state can be decomposed into a “good” subspace, the

subspace of all the |i〉 such as f(i) = 1 and a “bad” subspace, the subspace of

all the |i〉 such as f(i) = 0. We can then write

|φ〉 = |φgood〉+ |φbad〉.

The term |φgood〉 can be decomposed into ε|φ〉+δ|φ⊥〉, with |φ⊥〉 in V|φ〉⊥ . Since

there are not so many solutions to f , the amplitude of |φgood〉 is small, and so

is ε.

Applying G to |φ〉 means first applying O: this sends |φ〉 to |φbad〉 −
|φgood〉, that can be re-written as (1− 2ε)|φ〉 − 2δ|φ⊥〉. Applying the operation

Uφ⊥ , the state Uφ⊥(G|φ〉) becomes

Uφ⊥((1− 2ε)|φ〉 − 2δ|φ⊥〉) = (1− 2ε)|φ〉+ 2δ|φ⊥〉

= (3− 4ε)|φgood〉+ (1− 4ε)|φbad〉.

If ε is small enough (i.e. there are not so many i’s such that f(i) = 1), we

effectively increased the amplitude of the “good” states and decreased the am-

plitude of the “bad” states. Each iteration will emphasize the difference up to

an optimal number of iterations.

In simple cases, this optimal can be computed exactly; in general, it can

only be approximated: again, the classical information we can retrieve from this

technique is probabilistic.
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Use in algorithms. For many algorithms such as the NP-complete ones, the

only available classical algorithm is a brute-force search. With amplitude am-

plification, one can gain quadratic speedup on a (classical) brute-force search

algorithm.

6.5 Size of circuits
It should be noted that for non-trivial size of inputs, the number of gates

in the circuits can quickly becomes daunting. If one take into account that each

oracle is devised as shown in Section 6.1, the number of auxiliary quantum bit

also grow very fast, yielding complex data-structures.

The fact that the complexity of the quantum algorithm is more manage-

able than the one of a corresponding classical algorithm is only saying that there

exists an input size for which the quantum algorithm outperform the classical

algorithm. In the event of an actual quantum computer with a finite memory, a

thorough resource estimation needs to be performed, and heavy code optimiza-

tion needs to be performed.

Quantum programming language may bring a benefit to this problem.

§7 Conclusion
We are nowhere close to real, complete, scalable quantum computers.

However, many experimentations are realized in a very wide spectrum of ap-

proaches, letting us dream for the possibility of a programmable device at the

edge between the classical and the quantum world.

Despite the strange nature of quantum information and its probabilistic

interaction with the classical world, various quantum algorithms make it possi-

ble to compute differently and, in some case, theoretically faster than classical

algorithms.

This is where we close this first part of the tutorial. The second and

last part will present quantum computation from a programmer’s perspective:

why we need quantum programming languages in the first place, what are the

challenged and what is the state of the art.
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