
Introduction to Quantum Algorithms
and Quantum Programming

Benoît Valiron

Course Notes v.2024.09.10

Contents

1 Mathematical Background 2
1.1 Notations . 2
1.2 Sums and series . 3
1.3 Complex Numbers . 4
1.4 Vector Space . 6
1.5 Scalar Product . 7
1.6 Kets and Bras . 9
1.7 Kronecker product . 11
1.8 Linear Maps . 12
1.9 Hermitian and Unitary Maps . 15
1.10 Exercices . 17

2 Qubit-based Computation 21
2.1 The Quantum Co-Processor Model . 21
2.2 One Quantum Bit . 22
2.3 Several Quantum Bits . 25
2.4 The Quantum Circuit Model . 28
2.5 Quantum Gates on 1 Qubit . 32
2.6 Quantum Gates on Several Qubits . 35
2.7 Creating New Quantum Registers . 37
2.8 Reading Quantum Registers . 38
2.9 Discarding Quantum Registers . 43
2.10 Cloning, Copy, Teleportation . 47
2.11 Exercices . 50

3 Hardware Constraints and Circuit Synthesis 52
3.1 A bit of Complexity Theory . 52
3.2 Low-level gate-sets . 53
3.3 Universality of CNOT and 1-qubit rotations 55
3.4 Tradeoffs: a Case-Study . 58
3.5 Quantum Computation with Magic States 60

1

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.6 Measurement-Based Quantum Computation 62
3.7 Classical Computation in the Co-Processor 63
3.8 A Word on Hardware . 64
3.9 Exercises . 66

4 Structure ofQuantum Algorithms 68
4.1 High-Level View . 68
4.2 Oracles . 69
4.3 Encoding Natural Numbers . 74
4.4 Amplitude Amplification . 78
4.5 Quantum Fourier Transform . 82
4.6 Phase Estimation . 85
4.7 Trotterization . 88
4.8 Exercises . 88

5 Algorithms for LSQ era 89
5.1 Simple Oracle-Based Algorithms . 89
5.2 Shor . 93
5.3 HHL . 97
5.4 Exercises . 102

6 Algorithms for NISQ era 103
6.1 Variational Algorithms . 103
6.2 VQE . 103
6.3 QAOA . 107
6.4 Exercises . 112

A Geometric series 113

B Exponential and Trigonometric Functions 113

C Cosine-Sine Decomposition 114
C.1 Statement . 114
C.2 Proof . 114

References 119

Index 120

1 Mathematical Background

1.1 Notations

1.1.1 The set of natural numbers is ℕ. Addition is written “+” and multiplication “⋅”.
When clear, we simply use concatenation for the multiplication. For instance, 2𝑛 is 2 ⋅ 𝑛.

1.1.2 The factorial 𝑛! is 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ … ⋅ 𝑛. By convention 0! = 1.

2

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.1.3 We assume known the notion of real number . The set of reals is denoted with ℝ.
For the record, we recall that real numbers form a field : the set ℝ is equipped with

• An addition “+” and a null element “0”, also called zero.

• A multiplication “⋅” and a neutral element “1”
• An inverse operation written (−)−1, or 1

− , defined on all non-zero real number.

1.1.4 Real intervals are written [𝑎, 𝑏] when both 𝑎 and 𝑏 are part of the interval, and
[𝑎, 𝑏), (𝑎, 𝑏] or (𝑎, 𝑏) when the right, or the left, or both ends of the interval are not in-
cluded. Following the standard notation, we use the placeholders−∞ and∞ to represent
unbounded intervals on the left or on the right.

1.1.5 We use the representation √𝑥 for the square root of 𝑥 , and 𝑥𝑎 for 𝑥 to the power
𝑎. The exponent 𝑎 can be negative: in this case, we mean the power of the inverse of 𝑥 .
For instance, 𝑥−2 = 1

𝑥2 .

1.1.6 The 2-elements Boolean algebra is written 𝔹. Its objects are 0 and 1, standing
respectively for “False” and “True”. The “and” operation (the conjunction) is denoted
with ∧, or simply as a product “⋅”, or by juxtaposition: 𝑥 ∧ 𝑦 = 𝑥 ⋅ 𝑦 = 𝑥𝑦 . The “or” (the
disjunction) is written ∨. The “not” (the negation) is written ¬. The exclusive or (also
known as XOR) is written with ⊕.

1.2 Sums and series
Along this document we shall be using sums over finite and infinite sets of indices. In
this section, we summarize what should be known.

1.2.1 Sum symbol. Given a function 𝑓 ∶ ℕ → ℝ, and given 𝑖 ≤ 𝑗 ∈ ℕ, we define

𝑗
∑
𝑛=𝑖

𝑓 (𝑛) ≜ 𝑓 (𝑖) + 𝑓 (𝑖 + 1) + ⋯ + 𝑓 (𝑗).

Provided that the limit is well-defined, we define

∞
∑
𝑛=𝑖

𝑓 (𝑛) ≜ 𝑓 (𝑖) + 𝑓 (𝑖 + 1) + ⋯ ≜ lim𝑗→∞

𝑗
∑
𝑛=𝑖

𝑓 (𝑛)

Such a limit is called a series. If the limit is defined, we say that the series is converging.
The series is absolutely converging if

∞
∑
𝑛=𝑖

|𝑓 (𝑛)|

is converging.

3

B. Valiron Intro to Quantum Course Notes v.2024.09.10

∞
∑
𝑛=0

1
𝑛2 = 𝜋2

6 (1)

∞
∑
𝑛=0

1
𝑛!𝑥

𝑛 = 𝑒𝑥 (2)

∞
∑
𝑛=0

(−1)𝑛
(2𝑛)! 𝑥

2𝑛 = cos(𝑥) (3)

∞
∑
𝑛=0

(−1)𝑛
(2𝑛 + 1)!𝑥

2𝑛+1 = sin(𝑥) (4)

𝑛
∑
𝑖=0

𝑎𝑖 = 1 − 𝑎𝑛+1
1 − 𝑎 (5)

∞
∑
𝑖=0

𝑎𝑖 = 1
1 − 𝑎 (6)

Table 1: Values for a few known series. Eq. (1) is called the Basel problem. In Eqs. (2), (4)
and (3), 𝑥 is any real number. In Eq. (5), 𝑎 ≠ 1, while Eq. (6) holds whenever 0 ≤ 𝑎 < 1.

1.2.2 Lists of known series. Table 1 summarizes the values of few known series.
Series of the form of Eq. (6) are called geometric series. Maybe the most important one
for this course is Eq. (2) that we recall here:

∞
∑
𝑛=0

1
𝑛!𝑥

𝑛 = 𝑒𝑥 .

1.3 Complex Numbers
Wewriteℂ for the field of complex numbers. A complex number is of the form 𝛼 = 𝑎+𝑏 ⋅𝑖
with 𝑎 and 𝑏 reals and 𝑖 the imaginary number: a number such that 𝑖2 = −1.

1.3.1 Conjugate. The conjugate of a complex number 𝛼 = 𝑎 + 𝑏 ⋅ 𝑖 is defined as
𝛼 = 𝑎 − 𝑏 ⋅ 𝑖. The absolute value, or the norm of 𝛼 is the non-negative, real number

|𝛼 | = √𝑎2 + 𝑏2.
The conjugate and the absolute value are related through the property |𝛼 |2 = 𝛼 ⋅ 𝛼 .
Indeed

𝛼 ⋅ 𝛼 = (𝑎 + 𝑏 ⋅ 𝑖)(𝑎 − 𝑏 ⋅ 𝑖)
= 𝑎2 + 𝑎𝑏 ⋅ 𝑖 − 𝑎𝑏 ⋅ 𝑖 + (𝑏 ⋅ 𝑖)(−𝑏 ⋅ 𝑖)
= 𝑎2 − 𝑖2 ⋅ 𝑏2
= 𝑎2 + 𝑏2

4

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.3.2 Radial Representation. Consider the complex number 𝛼 = 𝑎+𝑏⋅𝑖, and assume
𝛼 ≠ 0. One can rewrite it as

𝛼 = |𝛼|
|𝛼|(𝑎 + 𝑏 ⋅ 𝑖)

= |𝛼| ⋅ (𝑎
|𝛼| +

𝑏
|𝛼| ⋅ 𝑖)

We have

(𝑎
|𝛼|)

2
+ (𝑏

|𝛼|)
2
= 𝑎2

|𝛼 |2 + 𝑏2
|𝛼 |2

= 𝑎2 + 𝑏2
|𝛼 |2

= 1
since |𝛼 |2 = 𝑎2 + 𝑏2. So there exists an angle 𝜃 ∈ [0, 2𝜋) such that cos(𝜃) = 𝑎

|𝛼| and
sin(𝜃) = 𝑏

|𝛼| , meaning that

𝛼 = |𝛼| ⋅ (cos(𝜃) + sin(𝜃) ⋅ 𝑖)
If 𝛼 ≠ 0, there is a unique such 𝜃 .

Our complex number can then be written in a canonical form

𝛼 = 𝜌 (cos(𝜃) + sin(𝜃) ⋅ 𝑖),
with 𝜌 non-negative real number:

• 𝜌 is the amplitude of 𝛼 ,
• 𝜃 is the phase of 𝛼 .

Complex numbers can then be represented in the complex plane using a radial represen-
tation as follows.

real axis = cos

imaginary axis = sin

𝜃

𝜌

𝜋
2

𝜋 ≡ −𝜋

3𝜋
2 ≡ −𝜋

2

0 ≡ 2𝜋

𝛼

5

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑒𝑖 𝜋2 = 𝑖 (7)

𝑒𝑖𝜋 = −1 (8)

𝑒2𝑖𝜋 = 1 (9)

𝑒𝑖(𝜃+2𝜋) = 𝑒𝑖𝜃 (10)

𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏 (11)

𝑒𝑎 = 𝑒𝑎 (12)

𝑒𝑖𝜃 = 𝑒−𝑖𝜃 (13)

𝑒𝑎𝑏 = (𝑒𝑎)𝑏 (14)

Table 2: Equalities regarding exponentiation. 𝜃 is real, 𝑎 and 𝑏 are complex values.

1.3.3 Exponentiation. The number cos(𝜃)+𝑖⋅sin(𝜃) can also bewritten as 𝑒𝑖𝜃 . Indeed,
remember Table 1: Replacing 𝑥 with 𝑖𝜃 in Eq. (2), the definition of 𝑒𝑥 , we get

𝑒𝑖𝜃 =
∞
∑
𝑛=0

(𝑖𝜃)𝑛
𝑛!

=
∞
∑
𝑛=0

(𝑖𝜃)2𝑛
(2𝑛)! +

∞
∑
𝑛=0

(𝑖𝜃)2𝑛+1
(2𝑛 + 1)! (splitting odd and even indices)

=
∞
∑
𝑛=0

𝑖2𝑛𝜃2𝑛
(2𝑛)! +

∞
∑
𝑛=0

𝑖2𝑛+1𝜃2𝑛+1
(2𝑛 + 1)! (developing)

=
∞
∑
𝑛=0

(𝑖2)𝑛𝜃2𝑛
(2𝑛)! +

∞
∑
𝑛=0

𝑖(𝑖2)𝑛𝜃2𝑛+1
(2𝑛 + 1)! (developing)

=
∞
∑
𝑛=0

(−1)𝑛𝜃2𝑛
(2𝑛)! +

∞
∑
𝑛=0

𝑖(−1)𝑛𝜃2𝑛+1
(2𝑛 + 1)! (since 𝑖2 = −1)

=
∞
∑
𝑛=0

(−1)𝑛𝜃2𝑛
(2𝑛)! + 𝑖 ⋅

∞
∑
𝑛=0

(−1)𝑛𝜃2𝑛+1
(2𝑛 + 1)! (factoring by 𝑖)

= cos(𝑥) + 𝑖 ⋅ sin(𝑥) (using Eqs. (3) and (4)).

1.4 Vector Space

1.4.1 In this course, we only consider vector spaces in finite dimension over complex
numbers.

1.4.2 Let 𝑋 be a finite set {𝑒0 … 𝑒𝑛−1}. Each 𝑒𝑖 is called a canonical basis element . A
(complex) vector space ℰ with basis 𝑋 consists of vectors. The dimension of the vector
space is the number of canonical basis elements in 𝑋 . A vector 𝑣 can be regarded as a

6

B. Valiron Intro to Quantum Course Notes v.2024.09.10

mapping from the canonical basis elements in 𝑋 to complex values. From a computer
science point of view, one can regard this vector as an association table, or as a “Python
dictionnary”:

𝑣 = {e0∶ 𝛼0, … , en−1 ∶ 𝛼n−1}.
We say that 𝛼𝑖 is the coefficient of 𝑣 at coordinate 𝑒𝑖, and we write 𝑣𝑒𝑖 = 𝛼𝑖.

1.4.3 A vector can be represented as an array . This however requires an ordering of the
canonical basis vectors. Array-like notation are discussed later, in Sec. 1.6.8.

1.4.4 The vector space ℰ is equipped with a sum and a multiplication by a scalar:

(+) ∶ ℰ × ℰ ⟶ ℰ
(⋅) ∶ ℂ × ℰ ⟶ ℰ

Their action is pointwise: if 𝑏 is a canonical basis element of ℰ , (𝑣 + 𝑤)𝑏 = 𝑣𝑏 + 𝑤𝑏 and
(𝛼 ⋅ 𝑣)𝑏 = 𝛼 ⋅ (𝑣𝑏).

1.4.5 Ket-notation. A canonical basis element 𝑒𝑖 yields a particular vector written |𝑒𝑖⟩
and called “ket-𝑒𝑖”: it is the vector of coefficient 1 at 𝑒𝑖 and 0 everywhere else:

|𝑒𝑖⟩ ≜ 𝑒𝑗 ↦ { 1 when 𝑗 = 𝑖
0 else .

Using this convention, a vector 𝑣 ∈ ℰ can be written as the linear combination

𝑛−1
∑
𝑖=0

𝑣𝑒𝑖 ⋅ |𝑒𝑖⟩ ,

or, equivalently:
∑
𝑥∈𝑋

𝑣𝑥 ⋅ |𝑥⟩ .

Such combinations behave well with sum and scalar multiplication:

(∑
𝑥∈𝑋

𝑣𝑥 ⋅ |𝑥⟩) + (∑
𝑥∈𝑋

𝑤𝑥 ⋅ |𝑥⟩) = ∑
𝑥∈𝑋

(𝑣𝑥 + 𝑤𝑥) ⋅ |𝑥⟩ ,

𝛼 ⋅ (∑
𝑥∈𝑋

𝑣𝑥 ⋅ |𝑥⟩) = ∑
𝑥∈𝑋

(𝛼 ⋅ 𝑣𝑥) ⋅ |𝑥⟩ .

1.5 Scalar Product

1.5.1 Let ℰ be a complex vector space as above. We define an operation acting on two
vectors

⟨− | −⟩ ∶ ℰ × ℰ ⟼ ℂ

7

B. Valiron Intro to Quantum Course Notes v.2024.09.10

called a scalar product , defined as

⟨ 𝑢 | 𝑣 ⟩ ≜ ∑
𝑥

𝑢𝑥𝑣𝑥 .

The operation is linear on the right:

⟨ 𝑢 | 𝛼 ⋅ 𝑣 + 𝑤 ⟩ = 𝛼 ⋅ ⟨ 𝑢 | 𝑣 ⟩ + ⟨ 𝑢 | 𝑤 ⟩
but anti-linear on the left:

⟨ 𝛼 ⋅ 𝑢 + 𝑣 | 𝑤 ⟩ = 𝛼 ⋅ ⟨ 𝑢 | 𝑣 ⟩ + ⟨ 𝑣 | 𝑤 ⟩ .
In particular, it is anti-symmetric as follows:

⟨ 𝑢 | 𝑣 ⟩ = ⟨ 𝑣 | 𝑢 ⟩.

1.5.2 A (complex) Hilbert space is then a complex vector space equipped with such a
scalar product. From this scalar product one can define two notions: a notion of norm,
and a notion of orthogonality.

1.5.3 Norm. Given a Hilbert space ℰ with basis 𝑋 and a vector 𝑣 ∈ ℰ , we define

||𝑣 || as √⟨𝑣|𝑣⟩. Since this is √∑𝑥 𝑣𝑥𝑣𝑥 = √∑𝑥 |𝑣𝑥 |2, this is always a non-negative real
number. The following properties hold.

||𝛼 ⋅ 𝑣 || = |𝛼| ⋅ ||𝑣 ||,
||𝑣 + 𝑤|| ≤ ||𝑣 || + ||𝑤 ||,

||𝑥|| = 1 when 𝑥 ∈ 𝑋 .

1.5.4 Orthogonality. Given aHilbert spaceℰ with basis𝑋 and two vectors 𝑣 , 𝑤 ∈ ℰ ,
we say that 𝑣 is orthogonal to 𝑤 , written 𝑣⊥𝑤 , if ⟨𝑣 |𝑤⟩ = 0. By definition of the scalar
product, distinct canonical basis elements are pairwise orthogonal.

1.5.5 Orthonormal basis. In general, a basis for a vector space is a set of vectors
spanning the whole space. The elements of a basis are called basis elements. A basis is
an orthonormal basis if basis elements are each of norm 1, and pairwise orthogonal.

1.5.6 For the Hilbert space ℋ , an example of non-canonical, orthonormal basis is the
set { |+⟩ , |−⟩ }, where

|+⟩ ≜ 1
√2

(|0⟩ + |1⟩),

|−⟩ ≜ 1
√2

(|0⟩ − |1⟩).

8

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.6 Kets and Bras

1.6.1 In quantum computation, the canonical basis elements are representing classical
values: a linear combination can then be seen as a “superposition” of classical values. As
we discussed in Sec. 1.4.5, a standard notation for making canonical basis elements out
of arbitrary classical values is the ket-notation

| ⟩ .

1.6.2 The two-dimensional Hilbert spaceℋ that we shall be considering in these notes
is built from the canonical basis set {0, 1}. A typical vector of ℋ is then

𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩ .
The chosen “0” and “1” stands for two classical, distinguished values, such as “False”
and “True” respectively. Their name is only a convention: one could have chosen any
other pair of names such as |T⟩ and |F⟩, |foo⟩ and |bar⟩… They should in particular not
be confused with the complex scalars 0 and 1. Similarly, |0⟩ is NOT the null element of
the vector space, so

|0⟩ ≠ 0.

1.6.3 You might have noticed the clash of notation between

⟨ 𝑢 | 𝑣 ⟩
and for instance

𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩ .
This is on purpose, and yields a pun: if the notation |−⟩ is called a “ket”, we call ⟨−|
a “bra”, which yield the standard name “braket” for ⟨−|−⟩ (yes, this notation is called
“braket” in English), so that

⟨ 𝑥 | 𝑦 ⟩ = ⟨𝑥| ⋅ |𝑦⟩ ,
the “multiplication”, or the application of the function ⟨𝑥| to the argument |𝑦⟩. If 𝑥 ∈ 𝑋
is a basis element for ℰ , the notation ⟨𝑥| stands for the linear operation

⟨𝑥| ∶ 𝑦 ⟼ ⟨ 𝑥 | 𝑦 ⟩ = { 1 if 𝑥 = 𝑦
0 else .

By linearity, we then have ⟨𝑥 | 𝑢⟩ = ⟨𝑥| ⋅ |𝑢⟩ for a general vector 𝑢 in ℰ .

1.6.4 Duality bra-ket. for the vector space ℰ of basis elements 𝑥 ∈ 𝑋 , the bras ⟨𝑥|
are functionals: functions ℰ → ℂ. As such, they can be equipped with a sum and a
(complex) scalar multiplication. The functional 𝛼 ⟨𝑥| + ⟨𝑦 | is the map

𝛼 ⟨𝑥| + ⟨𝑦 | ∶ 𝑢 ↦ 𝛼 ⟨ 𝑥 | 𝑢 ⟩ + ⟨ 𝑦 | 𝑢 ⟩ ,
There is a strong duality: if 𝑢 = ∑𝑥 𝛼𝑥 |𝑥⟩ and 𝑣 = ∑𝑥 𝛽𝑥 ⋅ |𝑥⟩, then one can check that

⟨ 𝑢 | 𝑣 ⟩ = (∑
𝑥

𝛼𝑥 ⋅ ⟨𝑥|) (∑
𝑥

𝛽𝑥 ⋅ |𝑥⟩) = 𝑢∗ ⋅ 𝑣

where 𝑢∗ = ∑𝑥 𝛼𝑥 ⋅ ⟨𝑥| is the dual, or conjugate transpose of 𝑢.

9

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.6.5 Notation. Vectors of the form ∑𝑥∈𝑋 𝛼𝑥 ⋅ |𝑥⟩ will be written with greek letters
inside kets, such as |𝜙⟩, |𝜓 ⟩, etc. When using lower-case latin letters |𝑥⟩, |𝑦⟩, |𝑏⟩, |𝑐⟩, we
shall be referring to canonical basis elements. Functionals of the form∑𝑥∈𝑋 𝛼𝑥 ⋅ ⟨𝑥| will
dually be written as ⟨𝜙|, ⟨𝜓 |, etc. We then have the property that

|𝜙⟩∗ = ⟨𝜙| and ⟨𝜙|∗ = |𝜙⟩ .
The application of a functional (i.e. a bra) to a vector (i.e. a ket) is always written as a
multiplication.

1.6.6 Remark Bras and kets can contain more than letters and numbers: we use for
instance

|+⟩ ≜ 1
√2

(|0⟩ + |1⟩), |−⟩ ≜ 1
√2

(|0⟩ − |1⟩)
in 1.5.6 and

|+𝑖⟩ ≜ 1
√2

(|0⟩ + 𝑖 |1⟩), |−𝑖⟩ ≜ 1
√2

(|0⟩ − 𝑖 |1⟩)
in 2.2.10.

1.6.7 Beware! Do not forget to conjugate the complex coefficient when moving from
kets to bras and bras to kets.

1.6.8 Matrix-style representation. Bras, kets, and linear operations in general can
be represented in a matrix-style notation. For this to make sense, we need to order the
canonical basis elements of the vector spaces. For the Hilbert space ℋ , the basis |0⟩,|1⟩
is ordered in the lexicographic order . A ket is in this convention a column-vector as follow

|0⟩ = (10) , |1⟩ = (01) ,
so that

𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩ = (𝛼𝛽) .
A bra becomes a row-vector :

⟨0| = (1 0), ⟨1| = (0 1).
If |𝜙⟩ = 𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩ and |𝜓 ⟩ = 𝛾 ⋅ |0⟩ + 𝛿 ⋅ |1⟩, we can check that

⟨ 𝜙 | 𝜓 ⟩ = (𝛼 𝛽) ⋅ (𝛾𝛿) = 𝛼𝛾 + 𝛽𝛿.
The conjugate transpose of a column vector is a row vector and vis versa, as follows.

(𝛼𝛽)∗ = (𝛼 𝛽) , (𝛼 𝛽)∗ = (𝛼
𝛽) .

10

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.6.9 With the matrix-style representation of 1.6.8, kets and bras can be combined in
arbitrary ways, as long as dimensions match. For instance,

(𝑎 𝑏
𝑐 𝑑) = 𝑎 |0⟩ ⟨0| + 𝑐 |1⟩ ⟨0| + 𝑏 |0⟩ ⟨1| + 𝑑 |1⟩ ⟨1| .

Multiplication by a ket-vector is then transparent. For instance:

(0 1
1 0) (𝛼 |0⟩ + 𝛽 |1⟩) = (|0⟩ ⟨1| + |1⟩ ⟨0|)(𝛼 |0⟩ + 𝛽 |1⟩)

= 𝛼 |0⟩ ⟨1| |0⟩ + 𝛼 |1⟩ ⟨0| |0⟩ + 𝛽 |0⟩ ⟨1| |1⟩ + 𝛽 |1⟩ ⟨0| |1⟩
= 𝛼 |0⟩ ⟨1 | 0⟩ + 𝛼 |1⟩ ⟨0 | 0⟩ + 𝛽 |0⟩ ⟨1 | 1⟩ + 𝛽 |1⟩ ⟨0 | 1⟩
= 𝛼 ⟨1 | 0⟩ |0⟩ + 𝛼 ⟨0 | 0⟩ |1⟩ + 𝛽 ⟨1 | 1⟩ |0⟩ + 𝛽 ⟨0 | 1⟩ |1⟩
= 𝛼 ⋅ 0 ⋅ |0⟩ + 𝛼 ⋅ 1 ⋅ |1⟩ + 𝛽 ⋅ 1 ⋅ |0⟩ + 𝛽 ⋅ 0 ⋅ |1⟩
= 𝛼 |1⟩ + 𝛽 |0⟩

1.7 Kronecker product

1.7.1 Consider two vector spaces ℰ of canonical basis 𝐵 = {𝑒𝑖}𝑖 and ℱ of canonical
basis 𝐶 = {𝑓𝑗}𝑗 . We define a new vector spaceℰ ⊗ℱ using the canonical basis set 𝐵×𝐶 ,
the cartesian product of 𝐵 and 𝐶 . The space ℰ ⊗ ℱ is called the Kronecker product of
ℰ and ℱ , or tensor of ℰ and ℱ . We could write the pair of 𝑒𝑖 and 𝑓𝑗 in various manner
such as (𝑒𝑖, 𝑓𝑗), 𝑒𝑖, 𝑓𝑗 , 𝑒𝑖𝑓𝑗etc. We shall be usig simple concatenation when clear. A typical
vector of ℰ ⊗ ℱ is then of the form

∑
𝑖,𝑗

𝛼𝑖,𝑗 |𝑒𝑖𝑓𝑗⟩ .

1.7.2 The tensor notation is overloaded to vectors: it is used to represent the bilinear
map ℰ × ℱ → ℰ ⊗ℱ defined as

(∑
𝑖
𝛼𝑖 ⋅ |𝑒𝑖⟩) ⊗ (∑

𝑗
𝛽𝑗 ⋅ |𝑓𝑗⟩) = ∑

𝑖,𝑗
𝛼𝑖𝛽𝑗 ⋅ |𝑒𝑖𝑓𝑗⟩ .

It is bilinear in the sense that the following properties hold.

(𝛼 ⋅ |𝜙⟩ + |𝜓 ⟩) ⊗ 𝑤 = 𝛼 ⋅ (|𝜙⟩ ⊗ 𝑤) + |𝜓 ⟩ ⊗ 𝑤, (15)

𝑤 ⊗ (𝛼 ⋅ |𝜙⟩ + |𝜓 ⟩) = 𝛼 ⋅ (𝑤 ⊗ |𝜙⟩) + 𝑤 ⊗ |𝜓⟩ , (16)

(𝛼 ⋅ |𝜙⟩) ⊗ |𝜓 ⟩ = 𝛼 ⋅ (|𝜙⟩ ⊗ |𝜓 ⟩), (17)

|𝜙⟩ ⊗ (𝛼 ⋅ |𝜓 ⟩) = 𝛼 ⋅ (|𝜙⟩ ⊗ |𝜓 ⟩), (18)

0 ⊗ |𝜙⟩ = 0. (19)

|𝜙⟩ ⊗ 0 = 0. (20)

11

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.7.3 As the vector spaceℰ⊗ℱ is “just” a vector space, the definitions of scalar product
and norm presented in Sec. 1.5 still hold. In particular, if

|𝜙⟩ = ∑
𝑖,𝑗

𝛼𝑖,𝑗 ⋅ |𝑒𝑖𝑓𝑗⟩ , |𝜓 ⟩ = ∑
𝑖,𝑗

𝛽𝑖,𝑗 ⋅ |𝑒𝑖𝑓𝑗⟩ ,

then

⟨ 𝜙 | 𝜓 ⟩ = (∑
𝑖,𝑗

𝛼𝑖,𝑗 ⋅ |𝑒𝑖𝑓𝑗⟩) (∑
𝑖,𝑗

𝛽𝑖,𝑗 ⋅ |𝑒𝑖𝑓𝑗⟩) = ∑
𝑖,𝑗

𝛼𝑖,𝑗𝛽𝑖,𝑗 ,

and

|| 𝜓 || =
√
∑
𝑖,𝑗

|𝛼𝑖,𝑗 |2.

If instead |𝜙⟩ = ∑𝑖 𝛼𝑖 ⋅ |𝑒𝑖⟩ and |𝜓 ⟩ = ∑𝑗 𝛽𝑗 ⋅ |𝑓𝑗⟩, one can then derive that

|||𝜙⟩ ⊗ |𝜓 ⟩|| = |||𝜙⟩|| ⋅ |||𝜓 ⟩||,
and if moreover |𝜙′⟩ = ∑𝑖 𝛼′𝑖 ⋅ |𝑒𝑖⟩ and |𝜓 ′⟩ = ∑𝑗 𝛽′𝑗 ⋅ |𝑓𝑗⟩,

(⟨𝜙| ⊗ ⟨𝜓 |)(|𝜙′⟩ ⊗ |𝜓 ′⟩) = ⟨ 𝜙 | 𝜙′ ⟩ ⟨ 𝜓 | 𝜓 ′ ⟩ .

1.7.4 Notation The notation of Sec. 1.7.1 is overloaded for arbitrary kets. For in-
stance, remember that |+⟩ = 1

√2(|0⟩ + |1⟩): we write |+0⟩ for the vector

|+0⟩ = |+⟩ ⊗ |0⟩
= 1

√2
(|0⟩ + |1⟩) ⊗ |0⟩

= 1
√2

(|00⟩ + |10⟩).

In general, |𝜙𝜓 ⟩ is |𝜙⟩ ⊗ |𝜓 ⟩.

1.8 Linear Maps

1.8.1 Given two vector spaces ℰ and ℱ with respective bases {𝑒𝑖}𝑖 and {𝑓𝑗}𝑗 , a linear
map (or linear operator) 𝑓 from ℰ to ℱ is a set-function from ℰ to ℱ such that

𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣), 𝑓 (𝛼 ⋅ 𝑢) = 𝛼 ⋅ 𝑓 (𝑢).

1.8.2 A linear function fromℰ toℱ is uniquely characterized by its action on the basis
elements. Using the ket-notation :

𝑓 (∑
𝑥

𝛼𝑥 ⋅ |𝑥⟩) = ∑
𝑥

𝛼𝑥 ⋅ 𝑓 (|𝑥⟩).

12

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.8.3 Provided that the canonical basis is ordered, one can use matrices to represent
linear maps. In dimension 2, a matrix has the generic form

𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22) .

In the coefficient 𝑎𝑖𝑗 , the index 𝑖 stands for the line number while 𝑗 stands for the column
number. Provided that we use the lexicographic ordering on canonical basis states as in
Sec. 1.6.8, this matrix represents the linear map ℋ → ℋ defined by

|0⟩ ↦ 𝑎11 ⋅ |0⟩ + 𝑎21 ⋅ |1⟩ ,
|1⟩ ↦ 𝑎12 ⋅ |0⟩ + 𝑎22 ⋅ |1⟩ .

1.8.4 If 𝐴 and 𝐵 are two 𝑛 × 𝑛 matrices and if 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are their respective coefficients
on line 𝑖 and column 𝑗 , then the coefficient at position (𝑖, 𝑗) of thematrix𝐴⋅𝐵 is∑𝑘 𝑎𝑖𝑘𝑏𝑘𝑗 .
For instance, in dimension 2:

(𝑎11 𝑎12
𝑎21 𝑎22) ⋅ (𝑏11 𝑏12

𝑏21 𝑏22) = (𝑎11𝑏11 + 𝑎12𝑏21 ...
... ...) .

1.8.5 The action of a linear operator on a vector becomes the matrix multiplication
with the corresponding vector. Indeed, a column vector is ”just” a matrix with only one
column, so

(𝑎11 𝑎12
𝑎21 𝑎22) (𝑣1

𝑣2) = (𝑎11𝑣1 + 𝑎12𝑣2
𝑎21𝑣1 + 𝑎22𝑣2)

If 𝐴 is the matrix of a linear operation 𝑓 and 𝐵 the matrix of 𝑔, then
𝑓 (𝑔(𝑣)) = 𝐴 ⋅ (𝐵 ⋅ 𝑣) = (𝐴 ⋅ 𝐵) ⋅ 𝑣 ,

so 𝑓 ∘ 𝑔 corresponds to 𝐴 ⋅ 𝐵.

1.8.6 For instance, the linear map Had ∶ ℋ → ℋ is defined using the kets introduced
in Sec. 1.5.6 as follows:

Had ∶ { |0⟩ ↦ |+⟩ = 1
√2(|0⟩ + |1⟩),

|1⟩ ↦ |−⟩ = 1
√2(|0⟩ − |1⟩).

It can be represented with the matrix

1

1
1

−1
1
√2

|−⟩|+⟩

|0⟩ |1⟩

|0⟩

|1⟩

(21)

The first column is |+⟩, the output of the function at |0⟩, and the second column is |−⟩,
the output of the function at |1⟩.

13

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.8.7 The operation Had is called Hadamard . It can be written in a more compact way
as

|𝑥⟩ ↦ 1
√2

(|0⟩ + (−1)𝑥 |1⟩),
with the convention of Sec. 1.6.5 that 𝑥 is one of the basis-set element “0” or “1”. the
exponent (−1)𝑥 then assimilates 𝑥 to its “integer” value, and (−1)0 = 1 while (−1)1 =
−1.

1.8.8 The application of the function to a vector corresponds to matrix-vector multipli-
cation. for instance, Had |0⟩ is

1
√2

(1 11 −1) (10) = 1
√2

(11) .

1.8.9 Similarly, the composition of functions corresponds to matrix multiplication. One
can for instance check that Had∘Had is the identity. Using the definition from Sec. 1.8.7:

Had(Had |𝑥⟩) = Had(1
√2

(|0⟩ + (−1)𝑥 |1⟩))

= 1
√2

(Had |0⟩ + (−1)𝑥Had |1⟩)

= 1
√2

(1
√2

(|0⟩ + |1⟩) + (−1)𝑥 1
√2

(|0⟩ − |1⟩))

= 1
2(|0⟩ + |1⟩ + (−1)𝑥 |0⟩ − (−1)𝑥 |1⟩)

= 1
2((1 + (−1)𝑥) |0⟩ + (1 − (−1)𝑥) |1⟩)

= {
1
2(2 ⋅ |0⟩ + 0 ⋅ |1⟩) if 𝑥 = 0,
1
2(0 ⋅ |0⟩ + 2 ⋅ |1⟩) if 𝑥 = 1

= |𝑥⟩ .
One can then check that

1
√2

(1 11 −1) ⋅ 1
√2

(1 11 −1) = (1 00 1) .

1.8.10 As for column and row vectors, we can define a notion of conjugate transpose
for matrices:

(
𝛼1,1 ⋯ 𝛼1,𝑛
⋮ ⋱ ⋮

𝛼𝑚,1 ⋯ 𝛼𝑚,𝑛
)
∗

≜ (
𝛼1,1 ⋯ 𝛼𝑚,1
⋮ ⋱ ⋮

𝛼1,𝑛 ⋯ 𝛼𝑚,𝑛
)

1.8.11 We shall be using 𝐼 and Id for the identitymap on vector spaces. This is obviously
a linear map.

14

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.8.12 The Kronecker product is also overloaded to functions, as follows. Given two
linear maps 𝑈 ∶ ℰ → ℰ and 𝑉 ∶ ℱ → ℱ , we define the linear map

𝑈 ⊗ 𝑉 ∶ ℰ ⊗ ℱ → ℰ → ℱ
by

(𝑈 ⊗ 𝑉) |𝑥𝑦⟩ ≜ (𝑈 |𝑥⟩) ⊗ (𝑉 |𝑦⟩).
Because of the linearity of the operation, function application and composition permutes
with the tensor as follows. Let |𝜙⟩ ∈ ℰ , |𝜓 ⟩ ∈ ℱ , 𝑈 ′∶ ℰ → ℰ and 𝑉 ′∶ ℱ → ℱ , then

(𝑈 ⊗ 𝑉)(|𝜙⟩ ⊗ |𝜓 ⟩) = (𝑈 |𝜙⟩) ⊗ (𝑉 |𝜓 ⟩), (22)

(𝑈 ⊗ 𝑉) ∘ (𝑈 ′ ⊗ 𝑉 ′) = (𝑈 ∘ 𝑈 ′) ⊗ (𝑉 ∘ 𝑉 ′). (23)

1.8.13 The tensor symbol can be regarded as forming an impermeable, spacial separa-
tion between the left side and the right side.

“What’s on the left stays on the left;
what’s on the right stays on the right.”

1.8.14 Note how the symbol “⊗” has been overloaded 3 times: for vector spaces (as in
“ℰ ⊗ ℱ ”), for vectors (as in “|𝜙⟩ ⊗ |𝜓 ⟩”), and for linear operations (as in “𝑈 ⊗ 𝑉 ”).

1.9 Hermitian and Unitary Maps

1.9.1 A linear map 𝑈 ∶ ℰ → ℰ is called unitary if

• it is invertible : there exists a linear map ℰ → ℰ written 𝑈−1 such that 𝑈−1 ∘ 𝑈
and 𝑈 ∘ 𝑈−1 are the identity,

• the inverse of 𝑈 is its conjugate transpose: 𝑈−1 = 𝑈 ∗.

Unitary maps preserves norm and orthogonality: they can be regarded as rotations. For
instance, the map Hadamard from Sec. 1.8.6 is unitary. It sends the canonical basis
{ |0⟩ , |1⟩ } to the basis { |+⟩ , |−⟩ }.

1.9.2 If 𝑈 is a unitary map, then

⟨𝜙 | 𝜓 ⟩ = ⟨𝑈 𝜙 | 𝑈 𝜓⟩ .

1.9.3 If 𝑈 |𝜓 ⟩ = 𝜆 |𝜓 ⟩, we say that |𝜓 ⟩ is an eigenvector of 𝑈 and 𝜆 an eigenvalue In the
case where 𝑈 is unitary, 𝜆 is of the form 𝑒2𝑖𝜋𝜔 with 0 ≤ 𝜔 < 1 a real number, because 𝑈
preserves the norm, and thus |𝜆| = 1. By abuse of language, we say that 𝜔 is the phase
of the eigenvalue.

15

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.9.4 A linear map 𝐻 ∶ ℰ → ℰ is called Hermitian when 𝐻 = 𝐻 ∗. Equivalently:

• If (ℎ𝑖,𝑗)𝑖,𝑗 is a matrix representation of 𝐻 in an orthonormal basis, then ℎ𝑖,𝑗 = ℎ𝑗,𝑖.
• 𝐻 admits a set of eigenvectors {|𝑢𝑗⟩}𝑗 forming an orthonormal basis, and all of its

eigenvalues are real numbers.

With the convention in 1.6.9, the Hermitian operator can be written as

𝐻 = ∑
𝑗
𝜆𝑗 |𝑢𝑗⟩ ⟨𝑢𝑗 | , (24)

when 𝜆𝑗 is the eigenvalue corresponding to |𝑢𝑗⟩. One can check that

𝐻 |𝑢𝑗0⟩ = ∑
𝑗
𝜆𝑗 |𝑢𝑗⟩ ⟨𝑢𝑗 | |𝑢𝑗0⟩

= 𝜆𝑗0 |𝑢𝑗0⟩ ⟨𝑢𝑗0 | |𝑢𝑗0⟩ + ∑
𝑗≠𝑗0

𝜆𝑗 |𝑢𝑗⟩ ⟨𝑢𝑗 | |𝑢𝑗0⟩

= 𝜆𝑗0 ⟨𝑢𝑗0 | 𝑢𝑗0⟩ |𝑢𝑗0⟩ + ∑
𝑗≠𝑗0

𝜆𝑗 ⟨𝑢𝑗 | 𝑢𝑗0⟩ |𝑢𝑗⟩

= 𝜆𝑗0 ⋅ 1 ⋅ |𝑢𝑗0⟩ + ∑
𝑗≠𝑗0

𝜆𝑗 ⋅ 0 ⋅ |𝑢𝑗⟩

= 𝜆𝑗0 |𝑢𝑗0⟩
since the |𝑢𝑗⟩s were picked pairwise distinct.

1.9.5 The eigenvalues of a Hermitian matrix are all real numbers, and there is a finite
number of them. One of them is them minimal, the other maximal. In general, we talk
about extremal eigenvalues, and by abuse of notation we speak of minimal / maximal /
extremal eigenvectors to refer to the corresponing eigenvectors. Note that (say) minimal
eigenvector are not unique. For instance, the identity has many of them.

1.9.6 In the context of quantum computation, a Hermitian map is often called a Hamil-
tonian. Hamiltonian operators are used to model physical properties of a system such
as its energy. For the purpose of this course, we can safely stay at this (low) level of
understanding.

1.9.7 The set of Hermitian maps forms a real vector field: it is closed under addition
and (real) scalar multiplication.

1.9.8 Unitary and Hermitian operators are related through the exponential formula in
Eq (2): If 𝐻 is Hermitian, then

𝑒𝑖𝐻 =
∞
∑
𝑘=0

1
𝑘!𝐻

𝑘

is unitary. Conversely, every unitary 𝑈 can be written as 𝑒𝑖𝐻 for a Hermitian operator𝐻 .

16

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.9.9 Eigenvectors are preserved through exponentiation. Suppose that |𝜙⟩ is an eigen-
vector of the Hermitian 𝐻 with eigenvalue 𝜆, so 𝐻 |𝜙⟩ = 𝜆 |𝜙⟩. Then

(𝑒𝑖𝐻) |𝜙⟩ = (
∞
∑
𝑘=0

1
𝑘!𝐻

𝑘) |𝜙⟩

=
∞
∑
𝑘=0

1
𝑘!𝐻

𝑘 |𝜙⟩

=
∞
∑
𝑘=0

1
𝑘!𝜆

𝑘 |𝜙⟩

= (
∞
∑
𝑘=0

1
𝑘!𝜆

𝑘) |𝜙⟩

= 𝑒𝑖𝜆 |𝜙⟩ .

The eigenvalue of 𝑒𝑖𝐻 corresponding to |𝜙⟩ is 𝑒𝑖𝜆.

1.9.10 If 𝐴 and 𝐵 are Hermitian operators (or, in general, square matrices) such that
𝐴𝐵 = 𝐵𝐴, then

𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵.

1.9.11 For any 𝐴 and 𝐵 Hermitian operators (or, in general, square matrices) without
special conditions,

𝑒𝐴⊗𝐵 = 𝑒𝐴 ⊗ 𝑒𝐵.

1.10 Exercices

1.10.1 Consider the vector |𝜙⟩ = 𝑖
3 |0⟩ +

2√2
3 |1⟩ in ℋ .

1. Show that |𝜙⟩ is of norm 1.

2. Compute ⟨𝜙|.
3. Compute ⟨𝜙|+⟩ and ⟨−|𝜙⟩.
4. The vector |𝜙⟩ has been given in the basis {|0⟩ , |1⟩}. Write it in the basis {|+⟩ , |−⟩}.
5. Give an vector of norm 1 orthogonal to |𝜙⟩

1.10.2 Assume that 𝑥 is either 0 or 1. Show that

1
√2

(|𝑥⟩ − |1 ⊕ 𝑥⟩) = (−1)𝑥 1
√2

(|0⟩ − |1⟩).

The symbol “⊕” is the XOR bit operation.

17

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.10.3 Consider the set ℬ ≜ {𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} and a bijection 𝜎 on the set ℬ.
Letℰ be the Hilbert space generated by the setℬ, and 𝑈 the linearmapℰ → ℰ defined
as

𝑈 ∶ |𝑒𝑘⟩ ↦ |𝜎(𝑒𝑘)⟩ for 𝑘 = 0, … , 7
Show that this map is unitary.

1.10.4 Consider the setting of Exo 1.10.3. Let 𝜎 be the map sending 𝑒𝑘 to 3 ⋅ 𝑘 mod 8,
that is: 0 ↦ 0 2 ↦ 6 4 ↦ 4 6 ↦ 2

1 ↦ 3 3 ↦ 1 5 ↦ 7 7 ↦ 5
Write the matrix 𝑈 corresponding to the unitary based on 𝜎 with the basis ordering

𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7.
What does it means when 𝑈𝑚,𝑛 = 1?

1.10.5 Consider the ket vectors of ℋ ⊗ℋ

|Φ+⟩ = 1
√2

(|00⟩ + |11⟩)

|Φ−⟩ = 1
√2

(|00⟩ − |11⟩)

|Ψ+⟩ = 1
√2

(|01⟩ + |10⟩)

|Ψ−⟩ = 1
√2

(|01⟩ − |10⟩)

1. Show that these 4 vectors form an orthonormal basis

2. Consider the ket vector
|𝜙⟩ = 2

√5
|01⟩ + 𝑖

√5
|10⟩

(a) Show that this is a vector of norm 1.

(b) Write it as a linear combination of |Φ+⟩, |Φ−⟩, |Ψ+⟩ and |Ψ−⟩.
(c) Compute ⟨ 𝜙 | Ψ+ ⟩.

1.10.6 Show that for every vector |𝜙⟩ in ℋ , we have

|𝜙⟩ = ⟨0|𝜙⟩ ⋅ |0⟩ + ⟨1|𝜙⟩ ⋅ |1⟩

1.10.7 Consider the vectors |𝜙⟩ = 𝑖
3 |0⟩ +

2√2
3 |1⟩ and |𝜓 ⟩ = 1

√5 |0⟩ +
2
√5 |1⟩ in ℋ .

1. Compute |𝜙⟩ ⊗ |𝜓 ⟩ in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}.
2. Compute |𝜙⟩ ⊗ |𝜓 ⟩ in the basis {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩}.
3. Give an orthonormal basis of ℋ ⊗ℋ for which |𝜙⟩ ⊗ |𝜓 ⟩ is one of the elements.

18

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.10.8 Consider the operation ⊙ acting on two bitstrings:

(𝑥1…𝑥𝑛) ⊙ (𝑦1…𝑦𝑛) = (𝑥1 ∧ 𝑦1) ⊕ … ⊕ (𝑥𝑛 ∧ 𝑦𝑛).
Show that Had⊗𝑛 performs the action

|𝑥1…𝑥𝑛⟩ ⟼ 1
√2𝑛

∑
𝑦1…𝑦𝑛

(−1)(𝑥1…𝑥𝑛)⊙(𝑦1…𝑦𝑛) |𝑦1…𝑦𝑛⟩ .

1.10.9 Consider the linear maps (called Pauli maps)

𝑋 ≜ (0 1
1 0) , 𝑍 ≜ (1 0

0 −1) , 𝑌 ≜ (0 −𝑖
𝑖 0)

in the ordered basis {|0⟩ , |1⟩}. For each 𝐺 = 𝑋, 𝑌 , 𝑍 :

1. Show that 𝐺 is both unitary and hermitian

2. Give a map √𝐺 such √𝐺√𝐺 = 𝐺
3. If 𝜃 is a real number, compute 𝑒𝑖𝜃𝐺

1.10.10 A known result is that any Hermitian matrix of size 2𝑛 × 2𝑛 can be written as
a linear combination of tensors of Pauli matrices (and identity) with real coefficients.
More precisely, using the notations of Exo 1.10.9, any Hermitian matrix of dimension
2𝑛 × 2𝑛 can be written as

∑
𝐺1,…𝐺𝑛∈{𝑋 ,𝑌 ,𝑍 ,𝐼 }

ℎ𝐺1,…,𝐺𝑛 ⋅ 𝐺1 ⊗⋯ ⊗ 𝐺𝑛

with ℎ𝐺1,…,𝐺𝑛 ∈ ℝ. This exercise focuses on the 4 × 4 case.

1. Compute the 16 following 4 × 4 matrices

𝑋 ⊗ 𝑋, 𝑋 ⊗ 𝑌 , 𝑋 ⊗ 𝑍, 𝑋 ⊗ 𝐼 , 𝑌 ⊗ 𝑋 , 𝑌 ⊗ 𝑌 , 𝑌 ⊗ 𝑍, 𝑌 ⊗ 𝐼 ,
𝑍 ⊗ 𝑋, 𝑍 ⊗ 𝑌 , 𝑍 ⊗ 𝑍, 𝑍 ⊗ 𝐼 , 𝐼 ⊗ 𝑋 , 𝐼 ⊗ 𝑌 , 𝐼 ⊗ 𝑍 , 𝐼 ⊗ 𝐼 .

2. Consider the following Hermitian matrix:

⎛
⎜⎜
⎝

2 0 4 − 𝑖 0
0 5 3 0

4 + 𝑖 3 0 0
0 0 0 0

⎞
⎟⎟
⎠

Write it as a linear decomposition of the 16 matrices in the first question, with real
coefficients.

19

B. Valiron Intro to Quantum Course Notes v.2024.09.10

1.10.11 Consider the following matrix.

𝑀 = (2 1
1 2)

Questions:

1. Write 𝑀 as a linear combination of Pauli matrices (and identity)

2. Find the eigenvectors and eigenvectors of 𝑀
3. Write 𝑀 in the form of Eq.(24) in 1.9.4.

1.10.12 Using the notations of Exo 1.10.9, compute the following (𝜃 is a real number).

Had ⋅ 𝑋 ⋅ Had Had ⋅ 𝑍 ⋅ Had Had ⋅ 𝑌 ⋅ Had
Had ⋅ 𝑒𝑖𝜃𝑋 ⋅ Had Had ⋅ 𝑒𝑖𝜃𝑍 ⋅ Had Had ⋅ 𝑒𝑖𝜃𝑌 ⋅ Had

1.10.13 Using the notations of Exo 1.10.9, compute the following (𝜃 is a real number).

𝑒𝑖𝜃(𝑍⊗𝑍), 𝑒𝑖𝜃(𝑋⊗𝑋), 𝑒𝑖𝜃(𝑋⊗𝑍).
You might want to consider doing first Exos 1.10.9 and 1.10.12.

1.10.14 Consider the matrices 𝑋, 𝑌 and 𝑍 of Exo.1.10.9, together with Had defined in
1.8.6. Fill in the multiplication table starting with

⧵ 𝐼 𝑋 𝑌 𝑍 𝑋 ⋅ 𝑍 Had ⋯
𝐼
𝑋
𝑌
𝑍

𝑋 ⋅ 𝑍
Had Had ⋅ 𝑋
⋮

You will have to add more lines and columns. For instance, Had ⋅ 𝑋 is not in the list and
should be added. But beware for redundancy: we only want to add matrices not already
there (for instance, check Had ⋅ 𝑋 and 𝑍 ⋅ Had). Overall, how many (distinct) matrices
are obtained?

1.10.15 Consider the following two linear maps:

SWAP ∶ |00⟩ ↦ |00⟩ |01⟩ ↦ |10⟩ |11⟩ ↦ |11⟩ |10⟩ ↦ |01⟩
CNOT ∶ |00⟩ ↦ |00⟩ |10⟩ ↦ |11⟩ |01⟩ ↦ |01⟩ |11⟩ ↦ |10⟩

For each of the following linearmaps acting onℋ⊗ℋ , give all its possible representative
matrices depending on the orderings of the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} (and for each
matrix, give the corresponding ordering(s)).

20

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2 Qubit-based Computation

2.1 TheQuantum Co-Processor Model

2.1.1 In the standard interpretation, a quantum computer is a standard, conventional
computer together with a particular kind of coprocessor. Other, conventional coproces-
sor includes: GPUs, FGPAs, TLS/SSL accelerators, etc. Inside the computer, the processor
is the part that actually runs a program; a co-processor is governed by the processor for
specific tasks (for instance, a GPU is used for fast matrix operations). A co-processor
typically has its own memory, and the operations available to the co-processor will be
performed on this local memory.

2.1.2 For our purpose, a typical use of a co-processor is then:

1. Allocate and initialize part of the memory local to the co-processor;

2. Perform some action;

3. Read the memory and free (de-allocate) some part of the memory.

These 3 actions are the primary requirements for a co-processor: we need to be able to
set up the memory, read it, and do something on it (ideally non-trivial).

2.1.3 The part of the memory that is being manipulated is modeled in term of register :
elementary units of data stored on the physical medium and that can be individually
addressed. A classical register can for instance hold a single bit, or a byte (i.e. an 8-bit
sequence), or 8 bytes (i.e. 64 bits), etc. By extension, an array of registers can itself be
seen as a register. For instance, an array of 64-bit integers can be described as a register.
In the storage of a bit, there are therefore three distinct levels of abstraction:

• Mathematical level: The Boolean algebra 𝔹 = { 0, 1 };
• Computer science level: A register holding a bit of information, with a unique

identifier to programmatically address it (a pointer or a reference);

• Physics level: A bunch of transistors wired together, realizing a hardware imple-
mentation of the register.

If the word register can be used to refer to any of these levels, it is important to keep
the distinction in mind, in particular the fact that “register” refer to both amathematical
value and a location.

2.1.4 Our quantum co-processor is designed with the philosophy presented in 2.1.1 and
2.1.2: it holds a quantum memory that can be initialized and read, while allowing one to
perfom a particular set of (usually) local operations. The memory consists of quantum
registers, and for the purpose of this set of notes, these holds the so-called quantum bit ,
described in Section 2.2.

21

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Classical
host

Quantum
co-processor

Instructions:
−unitaries → quantum circuit
−measurements

Quantum
program
lives here “just” holding

quantum memoryResults of
measurements

Figure 1: The coprocessor model.

2.2 OneQuantum Bit

2.2.1 A quantum bit , or qubit , corresponds to a piece of quantum memory containing
an elementary unit of quantum information.

2.2.2 The easiest way to understand what is going on is to refer to what happens in the
classical setting. In the latter, to encode a bit of information, one chooses a medium, and
two states. These states have to be unequivocally distinguished , and they should be easy
to act upon (to encode computation). One such state then represents “True”, the other
“False”. Examples include:

• Coin, head/tail;

• Coin, steel or copper;

• Magnet, north or south facing up;

• Piece of paper, black or white color.

The choice is completely arbitrary and is purely conventional: The knowledge of which
states were chosen is mandatory to recover the information.

2.2.3 One follows the same strategy for quantum information. A quantum bit, the
smallest piece of quantum information, is encoded on an object governed by the law
of quantum mechanics, together with a choice of two states for this object. As for the
classical case, one should be able to

• distinguish the two states

• act upon the states: initialize, read, and otherwise modify the state.

Examples include:

• Photon, vertical and horizontal polarization;

22

B. Valiron Intro to Quantum Course Notes v.2024.09.10

• Photon, position (wire A or wire B);

• Electron, spin up or spin down;

• Electron, orbital position;

• Atom, energy level.

2.2.4 Hilbert spaces form the framework for the mathematical formalism to represent
the state of a quantum system. For our purpose, such a state is a normalized vector in
a Hilbert space (up to global phase, see 2.2.5). A quantum bit is represented within the
two-dimensional Hilbert spaceℋ : the chosen two states are represented with |0⟩ and |1⟩
(called basis state). In this framework, distinguishability corresponds to orthogonality ,
while the actions are modeled with unitary maps.

2.2.5 Global phase. Let us formalize the mathematical representation of a quantum
bit. Within the state ℋ , define the set of kets

𝑆1 = { 𝛼 |0⟩ + 𝛽 |1⟩ ∈ ℋ | |𝛼|2 + |𝛽|2 = 1 } .
We say that two elements |𝜙⟩ , |𝜓 ⟩ ∈ 𝑆1 are related by a global phase if there exists an
angle 𝜃 such that |𝜓 ⟩ = 𝑒𝑖𝜃 |𝜙⟩. In this case, we write |𝜓 ⟩ ≡𝑝ℎ𝑎𝑠𝑒 |𝜙⟩.

States of quantum bits are equivalence classes under ≡𝑝ℎ𝑎𝑠𝑒 . In other words, the state
of a quantum bit (qubit) 𝑄 is a subset of 𝑆1 such that

• Elements of 𝑄 are pariwise related by a global phase: |𝜙⟩ , |𝜓 ⟩ ∈ 𝑄 implies that ∃𝜃
such that |𝜓 ⟩ = 𝑒𝑖𝜃 |𝜙⟩;

• 𝑄 is maximal: |𝜙⟩ ∈ 𝑄 implies that for every angle 𝜃 , we have 𝑒𝑖𝜃 |𝜙⟩ ∈ 𝑄.

2.2.6 An element |𝜓 ⟩ ∈ 𝑄 is called a representative element of 𝑄. By abuse of notation,
when talking about a qubit, the equivalence class 𝑄 is identified with its representative
elements: we say that |𝜓 ⟩ ∈ 𝑄 is the state of a qubit instead of referring to 𝑄.

2.2.7 Quantum register Coming back to the discussion of 2.1.3, we can spell out the
3 abstraction levels for a quantum register holding a qubit:

• At the mathematical level: a normalized vector of ℋ , modulo a global phase. At
this level, we only have a mathematical object, there is no information.

• At the computer science level: a way to programmatically refer to it (by some
pointer for instance), and the fact that |0⟩ and |1⟩ corresponds to the basis of in-
formation.

• At the physics level: the choice of an object and a pair of orthogonal states: photon
and polarization, electron and spin, etc.

23

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝜓

𝜃

x

z

y

|0⟩

|1⟩

|+⟩

|−⟩

|−𝑖⟩ |+𝑖⟩

Figure 2: Bloch sphere

2.2.8 Canonical representative. Consider a qubit 𝛼 |0⟩ + 𝛽 |1⟩. The two complex
numbers 𝛼 and 𝛽 can be written as 𝜌𝑎𝑒𝑖𝜙𝑎 and 𝜌𝑏𝑒𝑖𝜙𝑏 with 𝜌𝑎 and 𝜌𝑏 non-negative and

such that 𝜌2𝑎 + 𝜌2𝑏 = 1. So there exists an angle 𝜃 ∈ [0, 𝜋] such that 𝜌𝑎 = cos (𝜃2) and

𝜌𝑏 = sin (𝜃2). Another representative element of the same qubit is 𝑒−𝑖𝜙𝛼 (𝛼 |0⟩ + 𝛽 |1⟩)
which is then cos (𝜃2) |0⟩ + sin (𝜃2) 𝑒

𝑖(𝜙𝛽−𝜙𝛼) |1⟩. We call this representative element the
canonical representative element .

2.2.9 Bloch sphere. Without loss of generality, a qubit can therefore be parameter-
ized by two angles 𝜃 ∈ [0, 𝜋] and 𝜓 ∈ [0, 2𝜋) as follows:

cos (𝜃2) ⋅ |0⟩ + sin (𝜃2) 𝑒
𝑖𝜓 ⋅ |1⟩ .

The angle 𝜓 is called the phase of the qubit. This gives a 3-D representation of a qubit
on the so-called Bloch sphere, shown in Figure 2. Apart from |0⟩ and |1⟩, the canonical
representative element is uniquely described by such a pair of angles. (𝜃, 𝜓).

2.2.10 On the Bloch sphere, two antipodal points correspond to two orthogonal kets,
i.e. to an orthonormal basis. The three axes 𝑥 , 𝑦 and 𝑧 respectively corresponds to the
bases {|−⟩ , |+⟩}, {|−𝑖⟩ , |+𝑖⟩} and {|1⟩ , |0⟩}:

|+⟩ ≜ 1
√2

(|0⟩ + |1⟩), |−⟩ ≜ 1
√2

(|0⟩ − |1⟩),

24

B. Valiron Intro to Quantum Course Notes v.2024.09.10

vertical polarization = |1⟩ horizontal polarization = |0⟩

cos(𝜃) ⋅ |0⟩ + sin(𝜃) ⋅ |1⟩ cos(𝜃) ⋅ |0⟩ + sin(𝜃)𝑒𝑖𝜓 ⋅ |1⟩

Figure 3: Encoding a qubit on the polarization of a photon.

|+𝑖⟩ ≜ 1
√2

(|0⟩ + 𝑖 ⋅ |1⟩), |−𝑖⟩ ≜ 1
√2

(|0⟩ − 𝑖 ⋅ |1⟩).

We find once again one of the orthonormal basis introduced in 1.5.6.

2.2.11 The canonical representation of a qubit using two angles can be visualized with
the encoding of qubit as the polarization of a photon. This is presented in Fig. 3. In
each case, the direction of the photon is given with the diagonal arrow. The photon is
represented as a wave, and the plane of the wave stands for the polarization. The photon
encodes |0⟩ if the polarization is horizontal, |1⟩ if it is vertical. It can then be a (real) linear
combination of |0⟩ and |1⟩: in this case (shown on the bottom left), the plane is tilted by
the corresponding angle. Finally, the photon can also encode a non-zero phase on |1⟩
(bottom right in the Figure): the wave is then helical, and the phase determine how
much eccentric it is.

2.3 SeveralQuantum Bits

2.3.1 A quantum memory usually contains more than one quantum bit: each quantum
bit is encoded as a physical object, while its mathematical description relies on ℋ . The
quantum memory therefore consists of several such objects. The mathematical model
of the joint quantum system consisting of all of these objects has a state described by the
Kronecker product of the individual state spaces: If A and B are two quantum systems

25

B. Valiron Intro to Quantum Course Notes v.2024.09.10

whose state spaces are respectively 𝐸 and 𝐹 , the state space of the joint system AB is
ℰ ⊗ ℱ , defined as in 1.7.1.

2.3.2 Let us recall what happens in the classical case. When considering 2 registers,
each holding a bit of information, the state of the joint system consisting of the 2 registers
is the product of the individual state spaces: 𝔹 × 𝔹. If the state of the system is (0, 1),
we can for instance say that the second register is in state 1. The joint system is always
separable.

2.3.3 Consider now a 2-qubit registers. This system has a state belonging to the tensor
space ℋ ⊗ℋ . As discussed in 1.7.1, it is defined with the canonical basis elements

|00⟩ , |01⟩ , |10⟩ , |11⟩ .
The notation is scalable: the canonical basis for ℋ ⊗ℋ ⊗ℋ is

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .

2.3.4 This notation is versatile. For instance, the following set of ket-vectors defines a
basis for ℋ ⊗ℋ ⊗ℋ , called the SHIFT basis1:

|000⟩ , |111⟩ , |+01⟩ , |−01⟩ , |1+0⟩ , |1−0⟩ , |01+⟩ , |01−⟩ ,
where for example |01+⟩ stands for |0⟩⊗ |1⟩⊗ |+⟩ as discussed in 1.7.4. The kets |+⟩ and
|−⟩ were defined in 1.5.6.

2.3.5 The canonical basis of ℋ⊗𝑛 (i.e. the tensoring of ℋ 𝑛 times) is the set

{ |𝑏1…𝑏𝑛⟩ | 𝑏𝑖 ∈ {0, 1} },
the set of all bitstrings of size 𝑛. Note how the space ℋ⊗𝑛 is of dimension 2𝑛. These
bitstrings can be seen as the binary representation of numbers between 0 and 2𝑛 − 1:
when the dimension of the space is clear we will use

2𝑛−1
∑
𝑖=0

𝛼𝑖 ⋅ |𝑖⟩

with |𝑖⟩ understood as the binary representation of 𝑖 on the correct bitstring size. By con-
vention, in this course the least significant bit is stored on the right: |011⟩ corresponds
to |3⟩. Note however that this is completely arbitrary: one could have done the opposite
(and QisKit indeed chooses the other—see 4.3.2 for a longer discussion).

1https://arxiv.org/abs/2202.00440

26

https://arxiv.org/abs/2202.00440

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.3.6 Entanglement. In general, a vector of ℋ ⊗ℋ is of the form

𝛼 ⋅ |00⟩ + 𝛽 ⋅ |01⟩ + 𝛾 ⋅ |10⟩ + 𝛿 ⋅ |11⟩ .
One can wonder whether all such vector can be written as |𝜙⟩⊗ |𝜓 ⟩, for |𝜙⟩ , |𝜓 ⟩ ∈ ℋ , as
in the classical case discussed in 2.3.2: the answer is no.

• If it is possible, the vector is called separable;

• If it is not, the vector is called entangled .

An example of entangled state is

1
√2

(|00⟩ + |11⟩).

It is called a Bell state, or an EPR pair2.

2.3.7 Bell basis. This state can be extended to a basis of entangled elements: the Bell
basis. It is defined as

|Φ+⟩ = 1
√2

(|00⟩ + |11⟩)

|Φ−⟩ = 1
√2

(|00⟩ − |11⟩)

|Ψ+⟩ = 1
√2

(|01⟩ + |10⟩)

|Ψ−⟩ = 1
√2

(|01⟩ − |10⟩)

2.3.8 Following the convention of 1.6.8 we keep the lexicographic order for writing the
basis, and this allows us to write kets as column vectors. Given two kets in ℋ defined
as |𝜙1⟩ = (𝛼1𝛽1) and |𝜙2⟩ = (𝛼2𝛽2), the tensor of |𝜙1⟩ with |𝜙2⟩ is the vector

⎛
⎜⎜
⎝

𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

⎞
⎟⎟
⎠

← |00⟩
← |01⟩
← |10⟩
← |11⟩

It can be computed in a block-matrix manner as follows:

|𝜙1⟩ ⊗ |𝜙2⟩ = (𝛼1 |𝜙2⟩
𝛽1 |𝜙2⟩) =

⎛
⎜⎜
⎝

𝛼1 (𝛼2
𝛽2)

𝛽1 (𝛼2
𝛽2)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

⎞
⎟⎟
⎠

2Named after Einstein, Podolsky and Rosen.

27

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.4 TheQuantum Circuit Model

2.4.1 In 2.1.3 and 2.2.7, we discussed how registers should be individually addressable,
and how one should be able to act on them. In the case of the quantum co-processor, all
of this is constrained by what can be realized at the physical level. In general, the physics
of the encoding objects allows one to perform two kinds of operations: unitaries on the
state space: the internal operations discussed in 2.1.2, and measurements—the reading of
the memory. We first focus on the internal operations: the unitaries.

2.4.2 By unitary operation, we literally mean the linear operations that have been de-
scribed in 1.9.1: Internal actions of the co-processor on the quantum memory are re-
stricted to unitary operations on the state space. Assume that the memory holds 𝑛
qubits and that 𝑈 is a unitary on ℋ⊗𝑛. If the state of the memory is |𝜙⟩, applying the
“action” of 𝑈 on the memory has the net effect of deterministicly changing the state of
the memory to 𝑈 |𝜙⟩. There are no side-effects in the sense that no classical informa-
tion is leaked to the classical computer (beside the information that the action has been
performed), and in the sense that the state of the memory after the action is uniquely
determined by 𝑈 and by its state before the action.

2.4.3 Of course, in general the co-processor does not have access to arbitrary opera-
tions on all of the memory at once. As for a classical machine where only a finite set of
instructions is available, the quantum co-processor is limited to a finite set of unitary
operations, typically acting on one or two qubits at a time. Such operations are referred
to as quantum gates: elementary unitary gates that are considered not too costly in gen-
eral. The notion is flexible, and each algorithm might consider a slightly different set
of gates. One of the problem is to conciliate what it can do with what we want to do.
2.5 and 2.6 present standard gate-sets; we focus here on the technique to combine gates
together.

2.4.4 Following the discussion of 2.4.2, the sequential action of the unitaries 𝑈 followed
by 𝑉 then corresponds to the action 𝑉 ∘𝑈 , the composition of 𝑉 and 𝑈 . In this scheme, a
timed sequence of actions has the mathematical correspondance of successive compo-
sition of operators. With the caveat that “𝑈 then 𝑉 then 𝑊 ” corresponds to 𝑊 ∘ 𝑉 ∘ 𝑈
(note the reversal in the order).

2.4.5 The action consisting of not doing anything (such as the instruction no-op in
assembly) is still an action: it corresponds to the identity map: if the state of the system is
|𝜙⟩, it is still |𝜙⟩ after doing nothing. This representation plays well with the composition
of action presented in 2.4.4: doing nothing followed with 𝑈 is literally the same thing as
doing 𝑈 , and this is acknowledged with the fact that 𝑈 ∘ Id = 𝑈 .

2.4.6 Consider two quantum systems A and B respectively described by the state spaces
ℰ and ℱ . We discussed in 2.3.1 that the joint system is described by ℰ ⊗ ℱ . Suppose
now that we perform a unitary 𝑈 on A and 𝑉 on B. The action on the ℰ ⊗ ℱ is the
unitary map 𝑈 ⊗ 𝑉 defined in 1.8.12. If we only perform 𝑈 on A (while not touching B),
overall action on the global system AB is 𝐴 ⊗ Id: the sub-system B is acted upon with

28

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑈1

𝑈2
𝑈3

𝑈4

𝑈5

Figure 4: An example of quantum circuit

a trivial action, whose semantics is described in 2.4.5. Thanks to the properties of the
tensor product, performing 𝑈 on A followed by 𝑉 on B is equivalent to performing first
𝑉 on B then 𝑈 on A. Indeed, the former is the operation (Id ⊗ 𝐵) ∘ (𝐴 ⊗ Id) while the
latter is (𝐴 ⊗ Id) ∘ (Id ⊗ 𝐵). Thanks to 1.8.13, we know that both actions are equal to
𝐴 ⊗ 𝐵.

2.4.7 A quantum memory consists of separately addressable quantum bits: each quan-
tum bit is a distinct subsystem, of state-spaceℋ . The global state-space of the memory
is the tensor product of all of these state-spaces. We then have two notion of sequen-
tiality:

• timed sequentiality: as discussed in 2.4.4, this is represented with composition of
operations.

• spacial separation: as discussed in 2.4.6, this is represented with tensor of opera-
tions.

Following what can be done for Boolean circuits, we can design a notion of quantum
circuit .

• Wires are horizontal lines, representing the life-span of one qubit;

• Vertical juxtaposition of wires corresponds to the spacial separation of qubits. By
convention, the top wire is the first qubit in the list of qubits, the last wire is the
last qubit;

• Boxes on wires corresponds to actions. They can span over several wires to repre-
sent action on several qubits;

• Horizontal sequences of boxes correspond to the successive action of boxes.

2.4.8 An example of quantum circuit is shown in Fig. 4. There are two wires. The
circuit corresponds to the following sequence of actions: apply 𝑈1 on qubit 1; apply 𝑈2
on qubit 2; apply 𝑈3 on qubits 1 and 2; apply simultaneously 𝑈4 and 𝑈5 on qubit 1 and 2
respectively.

2.4.9 In the circuit of Fig. 4, we decided to place 𝑈1 before 𝑈2, and to place 𝑈4 and 𝑈5
simultaneously. Thanks 2.4.6, we know that this is completely arbitrary: boxes behave as
beads on a string, and one can freely “move” boxes along wires. The only limit being that
in general, one cannot make them go over one another. In particular, the two circuits
presented in Fig. 5 then corresponds to the same action on the quantum memory.

29

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑈1

𝑈3
𝑉1

𝑈4

𝑈5

𝑈2

𝑉2

𝑉3

𝑈8

𝑈6

𝑈7 𝑈1

𝑈3
𝑉1

𝑈4

𝑈5

𝑈2
𝑉2

𝑉3

𝑈8

𝑈6

𝑈7

Figure 5: Two equivalent circuits

2.4.10 Suppose that 𝐴 and 𝐵 are two linear operations acting on ℋ . Using the lexico-
graphic ordering of the basis, they can be represented with the matrices

𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22) , 𝐵 = (𝑏11 𝑏12

𝑏21 𝑏22)

Then 𝐴 ⊗ 𝐵 is defined as a block-matrix, in a same way as tensors of vectors in 2.3.8 as
follows

𝐴 ⊗ 𝐵 = (𝑎11𝐵 𝑎12𝐵
𝑎21𝐵 𝑎22𝐵)

=
⎛
⎜⎜
⎝

𝑎11 (𝑏11 𝑏12
𝑏21 𝑏22) 𝑎12 (𝑏11 𝑏12

𝑏21 𝑏22)

𝑎21 (𝑏11 𝑏12
𝑏21 𝑏22) 𝑎22 (𝑏11 𝑏12

𝑏21 𝑏22)
⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

𝑎11𝑏11 𝑎11𝑏12
𝑎11𝑏21 𝑎11𝑏22

𝑎12𝑏11 𝑎12𝑏12
𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12
𝑎21𝑏21 𝑎21𝑏22

𝑎22𝑏11 𝑎22𝑏12
𝑎22𝑏21 𝑎22𝑏22

⎞
⎟⎟
⎠

The basis ordering is the lexicographic order used in 2.3.3: canonical basis elements are
listed as |00⟩ , |01⟩ , |10⟩ , |11⟩.

2.4.11 The order in the tensor product is important: performing Id⊗ Had or Had⊗ Id
on a 2-qubit system is not the same thing. This is reflected by corresponding matrices,
which are respectively

1
√2

⎛
⎜⎜
⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟
⎠
, 1

√2
⎛
⎜⎜
⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟
⎠
.

2.4.12 Not all 4×4 unitary matrix corresponds to a tensor of two 2×2 unitary matrices.
For instance, the operation

SWAP ≜
⎛
⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟
⎠

|00⟩
|01⟩
|10⟩
|11⟩

|00⟩ |01⟩ |10⟩ |11⟩
30

B. Valiron Intro to Quantum Course Notes v.2024.09.10

is unitary, but it cannot be written as 𝑈 ⊗ 𝑉 with 𝑈 and 𝑉 1-qubit operations. Written
as an operation on the canonical basis, corresponds to the function

|𝑥⟩ ⊗ |𝑦⟩ ⟼ |𝑦⟩ ⊗ |𝑥⟩ .
We call it the swap operation.

2.4.13 The swap operation has the same effect as literally swapping the position of two
qubits. And indeed, one can show that

SWAP ∘ (𝑈 ⊗ Id) = Id ⊗ 𝑈 .

2.4.14 Thanks to 2.4.13, the graphical representation of quantum circuits can be ex-
tended with a special representation for the swap operation: the crossing of wires, as
follows:

,

or, more compactly,

The first graphical representation is compatible with a series of equational properties
satisfied by quantum circuits equipped with swaps, such as

= .

2.4.15 The equational theory derived from the rules such as the one shown in 2.4.14
gives rise to what is called a PROP3. The bottom line is that

Wires can be shuffled as much as we want, the only constraint is that they
need to always stay from left to right.

Said otherwise, the spacial ordering of wires is irrelevant.

2.4.16 The fact that one cannot exchange two sequencial actions on the same wire
means that there is a notion of causality in the sequence of actions. Since the spacial
ordering of wires is irrelevant, this causality is somehow the only important information
to keep track of. The nice, planar circuit representation contains too much information:
we can instead use directed acyclic graphs (DAG) to represent circuit. The circuits of
Fig. 5 can then be represented in a unique manner by the DAG shown in Fig 6. If one has
to programmatically construct a circuit, a DAG might be more suitable than a sequence
of gates. This is for instance one of the possible circuit representation within the Python
library QisKit4.

3The canonical reference is a paper from S. Lack, but it is a bit off topic
4https://qiskit.org/documentation/stubs/qiskit.dagcircuit.DAGCircuit.html

31

http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://qiskit.org/documentation/stubs/qiskit.dagcircuit.DAGCircuit.html

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑈1

𝑈3

𝑉1
𝑈4

𝑈5

𝑈2
𝑉2

𝑉3

𝑈8

𝑈6

𝑈7𝑞1

𝑞2

𝑞3

𝑞4

𝑞1

𝑞2

𝑞3

𝑞4

Figure 6: DAG representing a circuit

2.4.17 Consider a circuit 𝐶 implementing a unitary 𝑈 : the circuit is a sequence of gates
𝐺1, 𝐺2, …, 𝐺𝑘 . Because

(𝐴𝐵)−1 = 𝐵−1𝐴−1, (𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1,
the circuit 𝐶−1 defined with the reversed application of the inverse of the gates: 𝐺−1𝑘 , …,
𝐺−12 , 𝐺−11 implements 𝑈−1. Graphically:

⎛
⎜⎜
⎝

𝑇
𝑈

𝑉 𝑊
⎞
⎟⎟
⎠

−1

= 𝑈−1
𝑇−1

𝑊−1 𝑉−1

2.5 Quantum Gates on 1Qubit

2.5.1 Any reasonnable set of quantum gates include the Pauli gates. These consists of
the three 1-qubit gates

𝑋 = (0 1
1 0) , 𝑌 = (0 −𝑖

𝑖 0) , 𝑍 = (1 0
0 −1) .

together with the identity. Each Pauli gate is equal to its conjugate transpose, and squar-
ing it yields the identity. The 𝑋 gate is also denoted NOT, since it flips |0⟩ and |1⟩. Its
action on canonical basis vectors is

𝑋 ∶ |𝑥⟩ ⟼ |¬𝑥⟩ .
It has a special graphical representation in circuit, as follows:

The Z-gate does not touch the canonical basis kets, but it adds a phase to |1⟩:
𝑍 ∶ |𝑥⟩ ⟼ (−1)𝑥 |𝑥⟩ .

2.5.2 S-gate. Another standard gate is the S gate, defined as

𝑆 = (1 0
0 𝑖) .

It is the square root of 𝑍 : 𝑆2 = 𝑍 .

32

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.5.3 Hadamard gate. The Hadamard presented in 1.8.6 is also amongst the usual
quantum gates. It is written 𝐻 , or Had. It is its own inverse: 𝐻 2 = Id.

2.5.4 T-gate. By composing Pauli gates, 𝑆-gates and Hadamard gates one can only
reach a finite number of unitary matrices. To get an infinite set, we need to add a refined
phase-gate: the typical choice is the square root of 𝑆, the 𝑇 -gate:

𝑇 = (1 0
0 𝑒𝑖𝜋/4) .

2.5.5 Theorem (Approximate Universality). Consider a unitary 𝑈 acting on ℋ , and
an error 𝜀 > 0. There exists a sequence 𝐶 of gates 𝐻 and 𝑇 such that 𝐶 implements 𝑈
up to error 𝜀 :

∀ |𝜓 ⟩ , ||(𝑈 − 𝐶) |𝜓 ⟩|| ≤ 𝜀 ⋅ |||𝜓 ⟩||.
Moreover, this sequence of gates is “short” in the sense that there is a constant 𝑐 such
that the size of 𝐶 is in 𝑂(log𝑐(1/𝜀)).

2.5.6 Th. 2.5.5 is a result known since 1995 with the now standard Solovay-Kitaev algo-
rithm, with 𝑐 = 3.97, followed in 2002 by an improvement with 𝑐 = 3+𝛿 , for 𝛿 arbitrarily
small. Of course, as usual in this situation, the smallest 𝛿 is, the biggest the overhead.
Since the Solovay-Kitaev algorithm based on a geometric interpretation, the circuit syn-
thesis problem for 1-qubit gates has been greatly improved with algorithms relying on
the resolution of Diophantine equations. In the 2010’s, several competing groups devel-
opped more and more refined versions; the last paper of this academic jousting [RS16]
yields an optimal strategy with 𝑐 = 1. From a practical standpoint, it provides a very
fast and efficient procedure to approximate Z-rotations, i.e. unitaries of the form

(1 0
0 𝑒𝑖𝜃)

For instance, for 𝜃 = 𝜋/128 and 𝜀 = 10−10, the procedure yields in a tenth of a second
the approximation

𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻
𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆
𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻
𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇
𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻 .

If these optimized algorithms do not usually bring anything in the relative asymptotic
complexity of quantum and classical algorithms, they are crucial when discussing prac-
tical implementations.

2.5.7 Rotations If we want to perform an exact circuit synthesis of 1-qubit unitaries,
one strategy is to include the so-called rotations gates 𝑅𝑋 (𝜃), 𝑅𝑌 (𝜃) and 𝑅𝑍 (𝜃), parame-
terized by an angle 𝜃 . These rotations respectively corresponds to rotations around the
𝑋 , 𝑌 and 𝑍 axis of the Bloch sphere. They are defined as follows: 2.2.9

33

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑅𝐺(𝜃) ≜ 𝑒𝑖 𝜃2 ⋅𝐺 = cos (𝜃2) ⋅ Id − 𝑖 sin (𝜃2) ⋅ 𝐺,
for 𝐺 ∈ {𝑋 , 𝑌 , 𝑍 }. Matrix-wise, they can be written as

𝑅𝑋 (𝜃) = (cos(𝜃/2) −𝑖 sin(𝜃/2)
−𝑖 sin(𝜃/2) cos(𝜃/2))

𝑅𝑌 (𝜃) = (cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2))

𝑅𝑍 (𝜃) = (𝑒−𝑖𝜃/2 0
0 𝑒𝑖𝜃/2)

2.5.8 The gate 𝑅𝑍 (𝜃) is defined with a global phase: it is customary to define an alter-
native version of the gate:

Ph(𝜃) ≜ 𝑅𝜃 ≜ (1 0
0 𝑒𝑖𝜃) .

We then have 𝑇 = Ph(𝜋/4), 𝑆 = Ph(𝜋/2) and 𝑍 = Ph(𝜋).

2.5.9 Theorem (Parametrization of 1-qubit gates). The canonical form of a unitary
map 𝑈 on 1 qubit is parametrized by 3 angles up to a global phase as follows:

𝑈 = (cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)
𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)) . (25)

Such a map 𝑈 can be written as a product of rotation gates and a global phase as follows:

(cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)
𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)) = 𝑒𝑖(𝜙+𝜆)/2𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜆). (26)

2.5.10 Proof. To prove the decomposition of 𝑈 into the form of Eq. (25), one can first
note that the first column is the parametrization of a qubit state given in 2.2.9. The
second column is obtained by specifying the fact that it is supposed to be of norm 1, and
orthogonal to the first column.

For the proof of Eq. (26), we can simply unfold the definitions of the rotations, and
execute the matrix multiplications as follows.

𝑒𝑖(𝜙+𝜆)/2𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜆)
= 𝑒𝑖(𝜙+𝜆)/2 (𝑒−𝑖𝜙/2 0

0 𝑒𝑖𝜙/2) (cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)) (𝑒−𝑖𝜆/2 0

0 𝑒𝑖𝜆/2)

= 𝑒𝑖(𝜙+𝜆)/2 (𝑒−𝑖𝜙/2 0
0 𝑒𝑖𝜙/2) (𝑒−𝑖𝜆/2 cos(𝜃/2) −𝑒𝑖𝜆/2 sin(𝜃/2)

𝑒−𝑖𝜆/2 sin(𝜃/2) 𝑒𝑖𝜆/2 cos(𝜃/2))

= 𝑒𝑖(𝜙+𝜆)/2 (𝑒−𝑖(𝜆+𝜙)/2 cos(𝜃/2) −𝑒𝑖(𝜆−𝜙)/2 sin(𝜃/2)
𝑒𝑖(𝜙−𝜆)/2 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙)/2 cos(𝜃/2))

= (cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)
𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)) ,

which is the definition of 𝑈 . □

34

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.5.11 The global phase in Th. 2.5.9 is there to make sure that “things fall in the right
place”. From a computational point of view, it is invisible since quantum states are con-
sidered modulo global phases. Note however that global phases in unitaries are impor-
tant to keep in mind when considering controlled gates (see 2.6.11 for a discussion).

2.6 Quantum Gates on SeveralQubits

2.6.1 One-qubit operations are limited in the sense that from a basis ket they do not
make it possible to realize entangled states such as the EPR state. Although the SWAP 2.3.6

operation is a 2-qubit operations, it preserves separability: to get all possible states from 2.4.13

a basis state we need more. A strategy to get there—and to get more expressivity in
general— is to use controlled operations.

2.6.2 Notation To represent a bundle of 𝑛 wires, we shall use the notation

𝑛

2.6.3 If 𝐴 is a unitary on 𝑛 qubits, one can build a new unitary map called controlled
operation as follows. Pick𝐴 ∶ ℋ⊗𝑛 → ℋ⊗𝑛, and build the unitary 𝐶-𝐴 ∶ ℋ⊗ℋ⊗𝑛 →
ℋ ⊗ℋ⊗𝑛 by adding a control qubit :

𝐶-𝐴∶ { |0⟩ ⊗ |𝑥⟩ ↦ |0⟩ ⊗ |𝑥⟩
|1⟩ ⊗ |𝑥⟩ ↦ |1⟩ ⊗ (𝐴 ⋅ |𝑥⟩) .

The map 𝐶-𝐴 admits a graphical notation as follows:

𝑛 𝐴
The bullet is placed on the control qubit. The vertical line is not a wire: it is there to
indicate which gate is being controlled by which wire.

2.6.4 The matrix corresponding to 𝐶-𝐴 is defined blockwise as follows:

(𝐼 𝑑 0
0 𝐴) |0𝑥⟩

|1𝑥⟩
|0𝑥⟩ |1𝑥⟩

.

It preserves the two orthogonal subspaces |0⟩ ⊗ ℋ⊗𝑛 and |1⟩ ⊗ ℋ⊗𝑛: it does nothing
on the former while applying 𝐴 on the latter.

2.6.5 The control operation is compositional: 𝐶-(𝐴 ∘ 𝐵) is (𝐶-𝐴) ∘ (𝐶-𝐵), and 𝐶-𝐼 = 𝐼 .

35

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.6.6 It is useful to be able to perform negative controls: controls where the action is
triggered in |0⟩ and not on |1⟩. The graphical notation is

𝑛 𝐴
The operation is

|0⟩ ⊗ |𝑥⟩ ↦ |0⟩ ⊗ (𝐴 ⋅ |𝑥⟩)
|1⟩ ⊗ |𝑥⟩ ↦ |1⟩ ⊗ |𝑥⟩ .

2.6.7 The gate CNOT, or 𝐶-𝑋 acts on 2 qubits as follows:

CNOT∶ { |0⟩ ⊗ |𝑥⟩ ↦ |0⟩ ⊗ |𝑥⟩
|1⟩ ⊗ |𝑥⟩ ↦ |1⟩ ⊗ |¬𝑥⟩ .

This can be written in a more compact way as

CNOT∶ |𝑥⟩ ⊗ |𝑦⟩ ↦ |𝑥⟩ ⊗ |𝑦 ⊕ 𝑥⟩ .
The matrix of the CNOT gate is

⎛
⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟
⎠

|00⟩
|01⟩
|10⟩
|11⟩

|00⟩ |01⟩ |10⟩ |11⟩
Its graphical representation in a circuit is

2.6.8 One can also build the gate 𝐶-𝐶-𝑋 , also known as the Toffoli gate:

|𝑥𝑦⟩ ⊗ |𝑧⟩ ↦ |𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦⟩ .
As a circuit, it is

2.6.9 The control of a gate 𝑅𝜃 has an internal symmetry: 𝐶-𝑅𝜃 sends every canonical 2.5.8

basis vector to itself, with a phase 𝑒𝑖𝜃 in the case |11⟩. The matrix is

⎛
⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒𝑖𝜃

⎞
⎟⎟
⎠
,

and

36

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑅𝜃 =
𝑅𝜃

.

It sends |𝑥⟩ ⊗ |𝑦⟩ to (𝑒𝑖𝜃)𝑥𝑦 ⋅ |𝑥⟩ ⊗ |𝑦⟩.

2.6.10 A special case if the gate 𝐶-𝑍 , a controlled rotation of angle 𝜋 . It has the special
diagrammatic notation

.

It sends |𝑥⟩ ⊗ |𝑦⟩ to (−1)𝑥𝑦 ⋅ |𝑥⟩ ⊗ |𝑦⟩.

2.6.11 Control and global phases In 2.5.11, we mentionned that global phases are
irrelevant for unitaries when applied on the whole state space. When the unitary cor-
respond to a subcircuit that might be controlled, the global phase is important. Indeed,
consider the circuit

𝑒𝑖𝜃
.

where the controlled gate applies a global phase to a qubit: |𝑥⟩ ↦ 𝑒𝑖𝜃 |𝑥⟩. The circuit
performs the operation:

|0⟩ |𝑥⟩ ↦ |0⟩ |𝑥⟩ ,
|1⟩ |𝑥⟩ ↦ 𝑒𝑖𝜃 |1⟩ |𝑥⟩ .

That is, the global phase is only applied when the top qubit is in state |1⟩. The action of
this circuit is not equivalent to the identity: it is equivalent to a phase-gate on the top
qubit.

We shall come back to this point when controlling arbitrary unitaries in Th. 3.3.2
and 3.3.4.

2.7 Creating NewQuantum Registers

2.7.1 In 2.1.2, we discussed how the co-processor implements three classes of actions.
So far, we discussed the internal actions, mathematically represented with unitary oper-
ators. In this section, we shall discuss the two other classes: allocation and initialization,
and deallocation and reading.

2.7.2 Initialization is the easiest to handle: if the memory has say 1 qubit in state |𝜙⟩,
adding a new qubit in state |0⟩ corresponds to changing the memory state to |𝜙⟩ ⊗ |0⟩.
Before the action, the memory state space was ℋ , and after the action it is ℋ ⊗ ℋ .
Note that we arbitrarily decided to add the new qubit at the end, but we could have done
otherwise.

37

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.7.3 Initialization as in 2.7.2 can be seen as a linear operation:

ℋ → ℋ ⊗ℋ
|𝑥⟩ ↦ |𝑥⟩ ⊗ |0⟩ .

This map is clearly not unitary since it is not total: vectors of the form |𝜙⟩ ⊗ |1⟩ are not
in the image. However, it still preserves norm and orthogonality, and if we consider it as
a map from ℋ to the subspace ℋ ⊗ |0⟩, it is unitary.

2.7.4 We say that we initialize auxiliary qubits, or ancillas. The circuit representation
for ancillas is as follows

|0⟩
This represents the operation of 2.7.3.

2.8 ReadingQuantum Registers

2.8.1 Measurement. The last class of action is concerned with “poking the existing
memory state”: either by de-allocating part of it, or simply reading it. Any such operation
leaves the realm of unitary maps and need the notion of measurement . It is moreover
the only way to get back classical data out of quantum data.

2.8.2 The measure of a qubit state 𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩, we obtain

• with prob. |𝛼 |2: the Boolean value “0”, and the qubit is now in state |0⟩
• with prob. |𝛽|2: the Boolean value “1”, and the qubit is now in state |1⟩

The qubit state has been probabilistically projected on one of the canonical basis vector.
As vectors are normalized, the sum of probabilities is indeed equal to 1: we are sure to
get a result.

2.8.3 Note thatmeasuring |0⟩ returns “0” with probability 1. Therefore, measuring twice
the same qubit returns twice the same result.

2.8.4 Since the state of a quantum bit is collapsed by themeasurement, we can consider
that the qubit “disappeared” during the process: a so-called destructive measure. In this
case, we can consider that the qubit is turned into a bit. The circuit notation is extended
with a special gate for the measurement, and a special wire type for bit, represented with
a double line. Destructive measurements are represented with

while non-destructive are

38

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Here we consider that the gate “spits out” a bit on top. After the measurement gate, the
qubit is either |0⟩ or |1⟩ depending on the measured Boolean value. We can control on
bit wire: it means that the controlled gate is applied provided that the bit is in state 1
for black bullet and in state 0 for white bullets.

2.8.5 Beware A circuit with a measurement is in general not invertible, and the pro-
cedure presented in 2.4.17 makes in general no sense with measurements.

2.8.6 For instance,

𝐻

implements the operation sending 𝛼 |0⟩ + 𝛽 |1⟩ to |0⟩ with probability |𝛼 |2 and |−⟩ with
probability |𝛽|2. We know which state we are left with by reading the bit wire.

2.8.7 A qubit is never alone: it is part of a larger memory. The behavior in this general
situation is very similar to what happens for 1 qubit: the state of the system is projected. 2.8.2

More precisely, suppose that the memory consists of 𝑛 + 1 qubits and that we measure
the first qubit of the memory. The state space of the memory is ℋ ⊗ℋ⊗𝑛. The state
of the memory can then be written as

|𝜙⟩ =
2𝑛−1
∑
𝑖=0

(𝛼0,𝑖 ⋅ |0⟩ ⊗ |𝑖⟩ + 𝛽1,𝑖 ⋅ |1⟩ ⊗ |𝑖⟩) . (27)

Measuring the first qubit projects the state |𝜙⟩ to one of the two orthogonal subspaces
|0⟩ ⊗ ℋ and |1⟩ ⊗ ℋ . These subspaces respectively contains all of the vectors of the
forms

|0⟩ ⊗ ℋ ≜ {
2𝑛−1
∑
𝑖=0

𝛽𝑖 ⋅ |0⟩ ⊗ |𝑖⟩} ,

|1⟩ ⊗ ℋ ≜ {
2𝑛−1
∑
𝑖=0

𝛾𝑖 ⋅ |1⟩ ⊗ |𝑖⟩} .

Said otherwise, the vectors of |0⟩ ⊗ ℋ only have canonical basis kets starting with 0,
and the vectors of |1⟩ ⊗ ℋ only have canonical basis kets starting with 1.

39

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.8.8 Measuring the first qubit of the quantum memory, the vector |𝜙⟩ in Eq. (27) is
then collapsed into either

|𝜙0⟩ =
2𝑛−1
∑
𝑖=0

𝛼0,𝑖
𝜌0

⋅ |0⟩ ⊗ |𝑖⟩ = |0⟩ ⊗ (
2𝑛−1
∑
𝑖=0

𝛼0,𝑖
𝜌0

⋅ |𝑖⟩)

or

|𝜙1⟩ =
2𝑛−1
∑
𝑖=0

𝛽1,𝑖
𝜌1

⋅ |1⟩ ⊗ |𝑖⟩ = |1⟩ ⊗ (
2𝑛−1
∑
𝑖=0

𝛽1,𝑖
𝜌1

⋅ |𝑖⟩)

with

𝜌0 =
√

2𝑛−1
∑
𝑖=0

|𝛼0,𝑖|2, 𝜌1 =
√

2𝑛−1
∑
𝑖=0

|𝛼1,𝑖|2.

The collapse happens modulo renormalization: the adjunction of 𝜌0 and 𝜌1 ensures that
|𝜙0⟩ and |𝜙1⟩ are unit vectors. We can separate the state of the first qubit, and if we
define

|𝜓0⟩ =
2𝑛−1
∑
𝑖=0

𝛼0,𝑖
𝜌0

⋅ |𝑖⟩ , |𝜓1⟩ =
2𝑛−1
∑
𝑖=0

𝛽1,𝑖
𝜌1

⋅ |𝑖⟩ ,

they are also normalized vectors, and

|𝜙⟩ = 𝜌0 ⋅ |0⟩ ⊗ |𝜓0⟩ + 𝜌1 ⋅ |1⟩ ⊗ |𝜓1⟩ . (28)

2.8.9 Having set up the framework in 2.8.8, we can now use the decomposition of Eq. 28
to describe the process of the measure of the first qubit:

• With probability 𝜌20 , the measurement returns the bit 0 and the memory state
collapses to |0⟩ ⊗ |𝜓0⟩;

• With probability 𝜌21 , the measurement returns the bit 1 and the memory state
collapses to |1⟩ ⊗ |𝜓1⟩.

In particular, if we perform a second measure of the same qubit, as for the case of 2.8.2
we get the same output bit with probability 1.

2.8.10 Let us consider the 2-qubit case, and measure the first qubit in

|𝜙⟩ = 𝛼 ⋅ |00⟩ + 𝛽 ⋅ |01⟩ + 𝛾 ⋅ |10⟩ + 𝛿 ⋅ |11⟩ .
The projection on the subspace |1⟩ ⊗ ℋ is

𝛼 ⋅ |00⟩ + 𝛽 ⋅ |01⟩ ,
and the one on subspace |1⟩ ⊗ ℋ is

𝛾 ⋅ |10⟩ + 𝛿 ⋅ |11⟩ .

40

B. Valiron Intro to Quantum Course Notes v.2024.09.10

If we write 𝜌0 = √|𝛼|2 + |𝛽|2 and 𝜌1 = √|𝛾 |2 + |𝛿|2, the decomposition of Eq. (28) gives

|𝜙⟩ = 𝜌0 ⋅ |0⟩ ⊗ (𝛼
𝜌0

⋅ |0⟩ + 𝛽
𝜌0

⋅ |1⟩) + 𝜌1 ⋅ |1⟩ ⊗ (𝛾
𝜌1

⋅ |0⟩ + 𝛿
𝜌1

⋅ |1⟩) .

We can check that we are in the situation of 2.8.8: |𝜌0|2+|𝜌0|2 = 1, and each component
is normalized. According to 2.8.9, by measuring the first qubit we then obtain

• the bit 0 with probability |𝜌0|2 = |𝛼|2 + |𝛽|2, and the state of the system is now

|0⟩ ⊗ (𝛼
𝜌0

⋅ |0⟩ + 𝛽
𝜌0

⋅ |1⟩ ;)

• the bit 1 with probability |𝜌1|2 = |𝛾 |2 + |𝛿|2, and the state of the system is now

|1⟩ ⊗ (𝛾
𝜌1

⋅ |0⟩ + 𝛿
𝜌1

⋅ |1⟩) .

2.8.11 We can then proceed and measure the second qubit. If we had measured 0 for
the first qubit, the state is

|0⟩ ⊗ (𝛼
𝜌0

⋅ |0⟩ + 𝛽
𝜌0

⋅ |1⟩ ;) ,
and measuring the second qubit yields

• the bit 0 with probability | 𝛼𝜌0 |
2
, and the state of the system is now |00⟩;

• the bit 1 with probability | 𝛽𝜌0 |
2
, and the state of the system is now |01⟩.

If we had instead measured 1 for the first qubit, the state is

|1⟩ ⊗ (𝛾
𝜌1

⋅ |0⟩ + 𝛿
𝜌1

⋅ |1⟩) .
and measuring the second qubit yields

• the bit 0 with probability | 𝛾𝜌1 |
2
, and the state of the system is now |10⟩;

• the bit 1 with probability | 𝛿𝜌0 |
2
, and the state of the system is now |11⟩.

2.8.12 Combining the sequence of measurements, when a 2-qubit system is in state

|𝜙⟩ = 𝛼 ⋅ |00⟩ + 𝛽 ⋅ |01⟩ + 𝛾 ⋅ |10⟩ + 𝛿 ⋅ |11⟩ ,
measuring the first then the second qubit yields the values

• ”00” with the state now at |00⟩ with probability |𝛼 |2;
• ”01” with the state now at |01⟩ with probability |𝛽|2;
• ”10” with the state now at |10⟩ with probability |𝛾 |2;
• ”11” with the state now at |11⟩ with probability |𝛿 |2.

41

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.8.13 Note one can measure qubits in an arbitrary order, this does not change the final
result.

2.8.14 In general, if we measure the whole state of a memory of 𝑛 qubits:

2𝑛−1
∑
𝑖=0

𝛼𝑖 ⋅ |𝑖⟩ ,

we retrieve the bitstring corresponding to 𝑖 (as discussed in 2.3.5) with probability |𝛼𝑖|2.
In this case, the memory state is collapsed to the canonical basis ket |𝑖⟩.

2.8.15 Deferredmeasurements. The deferred measurement principle states that one
can always “push” the meassurements at the end of a circuit without changing its overall
behavior. The trick is to replace classically controlled gates with quantum controlled
gates. For instance:

𝐻
(29)

has the same effect as

𝐻
(30)

2.8.16 Example. Applied to the state |00⟩, the circuit (29) has the following effect:

|00⟩ ↦ 1
√2

|0⟩ ⊗ (|0⟩ + |1⟩) applying Had

= 1
√2

(|00⟩ + |01⟩)

↦ { (|0⟩ , bit 0) with prob. 1/2
(|0⟩ , bit 1) with prob. 1/2 measuring

↦ { (|0⟩ , bit 0) with prob. 1/2
(|1⟩ , bit 1) with prob. 1/2 applying CNOT

Thus, overall, the qubit in in state |0⟩ or |1⟩ with probability 1
2 . The bit wire stores the

value of the qubit wire.
The circuit (30) has instead the effect:

|00⟩ ↦ 1
√2

|0⟩ ⊗ (|0⟩ + |1⟩) applying Had

= 1
√2

(|00⟩ + |01⟩)

↦ 1
√2

(|00⟩ + |11⟩) applying CNOT

42

B. Valiron Intro to Quantum Course Notes v.2024.09.10

↦ { (|0⟩ , bit 0) with prob. 1/2
(|1⟩ , bit 1) with prob. 1/2 measuring.

We therefore get the same effect as the previous circuit.

2.8.17 Measuring in other bases Themeasurement presented in 2.8.2 “tests” a qubit
against the basis states |0⟩ and |1⟩. It can be spelled out with the scalar product: the
probability of getting |0⟩ while measuring |𝜙⟩ is

| ⟨0 | 𝜙⟩ |2.
This turns out to be arbitrary, and it can in fact be done in any basis.5 For instance, we
can measure a qubit against the basis {|+⟩ , |−⟩}: we get |+⟩ with probability

| ⟨+ | 𝜙⟩ |2. (31)

Of course, the bit returned by the measurement is not defined a priori and this has to
be specified in advanced.

2.8.18 One can always reduce the problem of the general measurement presented in
2.8.17 to the measure in the canonical basis. Consider the probability of Eq. (31): using
1.9.2 we can reduce it as follows:

| ⟨+ | 𝜙⟩ |2 = | ⟨Had+ |Had𝜙⟩ |2 = | ⟨0 |Had𝜙⟩ |2.
Measuring in the basis |+⟩ , |−⟩ can therefore be obtained by applying a Hadamard gate
followed with a measurement in the standard basis.

2.8.19 By abuse of language we say that we measure in the basis Had, referring to the
fact that the unitary can be regarded as an encoding of the basis (as in Eq (21) in 1.8.6).

2.9 DiscardingQuantum Registers

2.9.1 In regular programming languages, it makes sense to allocate and free (or discard)
memory on the fly. With quantum registers, discarding amounts to perform a destructive
measure and forget the result of the measurement. Discarding is represented in circuits
with a small symbol reminiscent of “ground”. In the following example, we discard the
second qubit after the application of a gate 𝑈 :

𝑉

𝑈
5As a matter of fact, it can be formalized in the more general framework of POVM but this is out of

the scope of this document.

43

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.9.2 In general, discarding a qubit generates a probabilistic distribution of states. For
instance, the circuit

|0⟩
|0⟩

𝐻

returns a memory with only one qubit (the upper wire), whose state is |0⟩ or |1⟩ with
probability 1/2.

2.9.3 Safely discarding a wire requires to make sure that it is not entangled with the
rest of the memory. As an example, one can make sure that it is in a canonical basis
state. Indeed, if we were to discard the first qubit, the measurement process behind the
discard operation would project the state of the memory on the subspaces |0⟩ ⊗ ℋ⊗𝑛
or |1⟩ ⊗ ℋ⊗𝑛. If the first qubit is separated from the rest of the memory, in state |0⟩ or
|1⟩, the projection does not do anything beside focusing on the corresponding subspace:
there is no loss of information.

2.9.4 For instance, suppose that the input of the circuit

in in state

∑
𝑥

𝛼𝑥 |𝑥⟩ ⊗ |0⟩ = (∑
𝑥

𝛼𝑥 |𝑥⟩) ⊗ |0⟩ ,

then the output is
∑
𝑥

𝛼𝑥 |𝑥⟩ .

2.9.5 The canonical use-case for discard is for managing ancillas. A frequent situation
is when a unitary operation 𝑈 on 𝑛 qubits might be cumbersome to implement with
exactly 𝑛 wires, but easier if we allocare more “room”, that is, more wires. The operation
𝑈 is then seen as a block of a larger unitary 𝑉 acting on ℋ⊗𝑘 ⊗ ℋ⊗𝑛. Assume 𝑘 = 2
for simplicity. Then

𝑉 =
⎛
⎜⎜
⎝

𝑈 0 0 0
0 𝑊01,01 𝑊01,10 𝑊01,11
0 𝑊10,01 𝑊10,10 𝑊10,11
0 𝑊11,01 𝑊11,10 𝑊11,11

⎞
⎟⎟
⎠

(32)

for matrices 𝑊𝑥𝑦,𝑧𝑡 acting on ℋ⊗𝑛. In the block decomposition of 𝑉 , each column cor-
responds to a possible value for the two auxilary qubits: |00⟩ corresponds to the column
with 𝑈 , and the other columns are associated with |01⟩, |10⟩ and |11⟩. Said otherwise,
the action of 𝑉 on a canonical basis vector is

𝑉 ∶ { |00⟩ ⊗ |𝑥⟩ ↦ |0⋯ 0⟩ ⊗ (𝑈 |𝑥⟩)
|𝑦𝑧⟩ ⊗ |𝑥⟩ ↦ |01⟩ ⊗ (𝑊01,𝑦𝑧 |𝑥⟩) + |10⟩ ⊗ (𝑊10,𝑦𝑧 |𝑥⟩) + |11⟩ ⊗ (𝑊11,𝑦𝑧 |𝑥⟩)

when 𝑦𝑧 ≠ 00. The circuit for 𝑈 is then

44

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑛 𝑛

|0⟩
|0⟩ 𝑉

It is design so that the only column used in Eq. (32) is the most-left one, corresponding to
the case where the ancillas are |00⟩. The action of 𝑉 then return something of the form
|00⟩ ⊗ ⋯, therefore making the ancillas qubits separated from the environment: we can
discard them without perturbating the global state of the memory. Globally, we recover
the action of 𝑈 , as desired.

2.9.6 The circuit presented in 2.9.5 can be inverted using the technique of 2.4.17. Indeed,
the inverse of 𝑉 is blockwise:

𝑉−1 = (𝑈−1 0
0 𝑊−1)

where 𝑊 is the block made out of the 𝑊𝑥𝑦,𝑧𝑡 ’s. The ancillas are kept initialized at 0.

2.9.7 If 𝑉 were to set the ancilla back to some canonical basis state other than |0⟩,
the procedure of 2.9.5 would still work: we could still measure without perturbating the
global state. The inverse discussed in 2.9.6 would still be valid, modulo the fact that
ancillas would have to be set to the correct, non-𝑘𝑒𝑡0 value.

2.9.8 A standard case for an operation 𝑈 described using a larger matrix 𝑉 as in 2.9.5
is when the matrix 𝑈 performs an action on the basis vectors, made of several subcom-
putations. We can store the subcomputations in ancilas qubits, building the final result
step by step. Once it is done, we then uncompute the ancillas by reversing the local
operations.

As an example, consider the gate 𝐶-𝐶-𝐶-𝑋 , a flip gate controlled by 3 qubits. On
canonical basis vectors, it performs the operation

|𝑥⟩ ⊗ |𝑦⟩ ⊗ |𝑧⟩ ⊗ |𝑡⟩ ⟼ |𝑥⟩ ⊗ |𝑦⟩ ⊗ |𝑧⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ .
This operation can be decomposed into two conjunctions: first 𝑥 with 𝑦 , then 𝑥𝑦 with 𝑧.
Each conjunction can be realized with a Toffoli gate, and we can store the result of the
first conjunction inside an ancilla. The circuit is as follows.

|0⟩

𝑞1
𝑞2
𝑞3

𝑞4

cReate 𝑉 discaRd

45

B. Valiron Intro to Quantum Course Notes v.2024.09.10

It acts on 3 qubits, therefore on the space ℋ⊗3 ⊗ℋ , and consists of three parts:

cReate ∶ ℋ⊗3 ⊗ℋ → ℋ⊗3 ⊗ |0⟩ ⊗ ℋ ,
𝑉 ∶ ℋ⊗3 ⊗ℋ ⊗ℋ → ℋ⊗3 ⊗ℋ ⊗ℋ,

discaRd ∶ ℋ⊗3 ⊗ℋ ⊗ℋ → ℋ⊗3 ⊗ℋ.
The operations cReate and 𝑉 composes since

ℋ⊗3 ⊗ |0⟩ ⊗ ℋ ⊆ (ℋ⊗3 ⊗ |0⟩ ⊗ ℋ) ⊕ (ℋ⊗3 ⊗ |1⟩ ⊗ ℋ) = ℋ⊗3 ⊗ℋ ⊗ℋ.
In general, the behavior of discaRd is probabilistic, as the 3rd qubit is measure. However,
the state is not completely general: it is resulting from the function 𝑉 ∘ cReate; let us
compute its action on a basis canonical state:

|𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡⟩ ↦ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡⟩ by cReate

↦ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0 ⊕ 𝑥𝑦⟩ ⊗ |𝑡⟩ by 1st Toffoli

= |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦⟩ ⊗ |𝑡⟩
↦ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ by 2nd Toffoli

↦ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦 ⊕ 𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ by 3rd Toffoli

= |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .
For compactness, we omitted some of the tensors. This maps therefore only populates a
subspace of its co-domain:

𝑉 ∘ cReate ∶ ℋ⊗3 ⊗ℋ → ℋ⊗3 ⊗ |0⟩ ⊗ ℋ .
Whatever input |𝜙⟩ ∈ ℋ⊗3 ⊗ℋ

|𝜙⟩ = ∑
𝑥,𝑦 ,𝑧,𝑡∈{0,1}

𝛼𝑥,𝑦 ,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡⟩ ,

the resulting state lives in ℋ⊗3 ⊗ |0⟩ ⊗ ℋ :

(𝑉 ∘ cReate) |𝜙⟩ = ∑
𝑥,𝑦 ,𝑧,𝑡∈{0,1}

𝛼𝑥,𝑦 ,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .

If we perform a destructive measurement, the projection will have no effect, and we
retrieve the vector

∑
𝑥,𝑦 ,𝑧,𝑡∈{0,1}

𝛼𝑥,𝑦 ,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .

2.9.9 Although the ancilla is not written in the same place, the circuit of 2.9.8 follows
the specification given in 2.9.5: although we allocate and discard auxiliary registers, it
corresponds to a unitary operation.

46

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.10 Cloning, Copy, Teleportation

2.10.1 Quantum information cannot be cloned: it is the so-called no-cloning theorem.
More precisely, one cannot physically realize the map

|𝜙⟩ ⊗ |0⟩ ⟼ |𝜙⟩ ⊗ |𝜙⟩
what would work for all ket vectors. One way to understand it is by writing the ket |𝜙⟩
as a column vector: the map should therefore send

⎛
⎜⎜
⎝

𝛼
0
𝛽
0

⎞
⎟⎟
⎠
⟼

⎛
⎜⎜
⎝

𝛼2
𝛼𝛽
𝛼𝛽
𝛽2

⎞
⎟⎟
⎠
.

This operation is not linear: it cannot be synthetized with unitary maps…

2.10.2 If cloning is not possible, copying is possible. Consider the circuit

|0⟩
It sends a basis element |𝑥⟩ to |𝑥𝑥⟩. This is clearly not the same map as in 2.10.1: it sends

(𝛼
𝛽) ⟼

⎛
⎜⎜
⎝

𝛼
0
0
𝛽

⎞
⎟⎟
⎠
.

It is a linear map: in ket-notation, it does

𝛼 |0⟩ + 𝛽 |1⟩ ⟼ 𝛼 |00⟩ + 𝛽 |11⟩ .

2.10.3 Teleportation In 2.8.2 we said that because of the projection that happens,
some quantum information is lost when we perform ameasurement. In particular, when
we measure the qubit 𝛼 |0⟩ + 𝛽 |1⟩, the coefficients 𝛼 and 𝛽 disappear. This turns out to
not be the case in general, and a non-intuitive effect can happen in the circuit presented
in Fig. 7.

2.10.4 The circuit is typically read as follows. In the left dashed boxed, an entangled pair
of qubits is built. The first qubit is sent to Alice, the other one to Bob. Alice has another
qubit (the top wire) whose state she want to send to Bob. Unfortunately, they only share
a classical communication channel! Thankfully, they can succeed: Alice performs the
middle dashed box with the measurement of both of her qubits, she sends the result to
Bob, and Bob uses the Boolean values he receives to execute a correction on his qubit: as
we shall see, the qubit is now in the same state Alice’s qubit was originally in. However,
note that we did not clone anything: Alice’s qubit has been measured, and his state is
not a canonical basis element.

47

B. Valiron Intro to Quantum Course Notes v.2024.09.10

|0⟩

|0⟩

|𝜓 ⟩

𝐻

⨁

•

•

⨁

𝐻 𝑏1

𝑏2

𝑈𝑏1,𝑏2

Alice

Bob

(A) (B) (C) (D)

Figure 7: Scheme for Teleportation.

2.10.5 Let us develop the computation. Assume that |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. Consider each
layers in Fig. 7.
In (A).

|𝜓 ⟩ ⊗ |00⟩ 𝐻−−→ |𝜓⟩ ⊗ 1
√2

(|0⟩ + |1⟩) ⊗ |0⟩

= |𝜓 ⟩ ⊗ 1
√2

(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |0⟩)
𝐶𝑁𝑂𝑇−−−−−→ |𝜓⟩ ⊗ 1

√2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

= |𝜓 ⟩ ⊗ 1
√2

(|00⟩ + |11⟩)

= (𝛼 |0⟩ + 𝛽 |1⟩) ⊗ 1
√2

(|00⟩ + |11⟩)

= 1
√2

(𝛼 |000⟩ + 𝛼 |011⟩ + 𝛽 |100⟩ + 𝛽 |111⟩)

In (B). 1
√2

(𝛼 |000⟩ + 𝛼 |011⟩ + 𝛽 |110⟩ + 𝛽 |101⟩)
In (C).

1
√2

(𝛼 1
√2 (|0⟩ + |1⟩) ⊗ |00⟩ + 𝛼 1

√2 (|0⟩ + |1⟩) |11⟩
+𝛽 1

√2 (|0⟩ − |1⟩) |10⟩ + 𝛽 1
√2 (|0⟩ − |1⟩) |01⟩)

= 1
2(𝛼|000⟩ + 𝛼|100⟩ + 𝛼|011⟩ + 𝛼 |111⟩ + 𝛽|010⟩ − 𝛽 |110⟩ + 𝛽|001⟩ − 𝛽|101⟩)

= 1
2 (

|00⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) + |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩)
+|10⟩ ⊗ (𝛼 |0⟩ − 𝛽 |1⟩) + |11⟩ ⊗ (𝛼 |1⟩ − 𝛽 |0⟩)) .

In (D). The two first qubits got measured. The system lives in ℋ ⊗ ℋ ⊗ ℋ . The
measurement projects the system on one of |00⟩⊗ℋ , |01⟩⊗ℋ , |10⟩⊗ℋ and |11⟩⊗ℋ .
Measuring, I then get with probability 1/4 two bits 𝑏1𝑏2 as follows:

48

B. Valiron Intro to Quantum Course Notes v.2024.09.10

|0⟩

|0⟩ 𝐻

⨁

•

𝑋 𝑍

𝑏2 𝑏1

⨁

• 𝐻

Alice

Bob(A) (B) (C)
(D) (E)

Figure 8: Scheme for Dense Coding.

• 00, and the state is now |00⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩),
• 01, and the state is now |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩),
• 10, and the state is nowt |10⟩ ⊗ (𝛼 |0⟩ − 𝛽 |1⟩),
• 11, and the state is now |11⟩ ⊗ (𝛼 |1⟩ − 𝛽 |0⟩).

If Bob wants to get back |𝜓 ⟩, he needs to perform

𝑈00 = Id, 𝑈01 = 𝑋, 𝑈10 = 𝑍, 𝑈11 = 𝑍𝑋.

2.10.6 Discussion Note that the teleportation protocol does not refer to the local-
ization of Alice and Bob. The only constraint is for them to share an entangled pair of
qubits. But once this is done, they can go as far of each other as they want, the protocol
will succeed. One could argue that the teleportation of the state is instantaneous, thus
breaking the physical law stating that information cannot move faster than the speed
of light. But there is no contradiction here: the state of the qubit is only modified when
Bob receives the results of the measures of Alics. These bits moves inside a classical
channel, subject to the law of physics, so nothing goes faster than the speed of light.

2.10.7 Recalling 2.8.18, Alice’s action consists in measuring its two qubits in the Bell
basis. 2.3.7

2.10.8 Dense Coding. The teleportation algorithm can be somehow “inverted”: in-
stead of sending a qubit through a classical channel, we can send two bits through a
quantum channel, encoded on one single qubit. The algorithm is presented in Fig. 8. The
gates 𝑋 and 𝑍 are fired by Alice whenever the corresponding bit is set to 1. Bob should
read the two bits at the end of the circuit in a non-probabilistic manner. See Exo. 2.11.7.

49

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.11 Exercices

2.11.1 Consider the circuit

|𝑥⟩
|𝑦⟩

What does it compute? Give it in “function” form, and in matrix form (do not forget the
basis ordering used for the representation!). Lay out the details in a convincing way.

2.11.2 Consider the following circuits.

𝐻 𝐻
𝐻 𝐻

𝐻 𝐻
For each of them, give a simpler, equivalent circuit, and the corresponding linear map
in function-style and in matrix form. Make sure to give the ordering of basis states you
rely on. You might want to recall Exo 1.10.14, but it is not necessary.

2.11.3 Consider the circuit

|𝑥⟩

|𝑦⟩ 𝑅𝜃
with 𝜃 a real number. What does it compute? Give it in “function” form, and in matrix
form (do not forget the basis ordering used for the representation!). Lay out the details
in a convincing way.

2.11.4 Consider the circuit

|𝑥⟩
|𝑦⟩

|0⟩ 𝑅𝜃
with 𝜃 a real number. What does it compute? Give it in “function” form, in (simpler)
circuit-form, and in matrix form (do not forget the basis ordering used for the represen-
tation!). Lay out the details in a convincing way.

2.11.5 Section 2.9.8 gives a procedure to generate a multi-controlled NOT gate from
Toffoli and ancillas. We want to realize a 𝐶4-NOT gate (a NOT gate with 4 controls).
Give two circuits only consisting of Toffoli gates, making use of 3 ancillas for the first
circuit and only 2 ancillas for the other circuit.

50

B. Valiron Intro to Quantum Course Notes v.2024.09.10

2.11.6 Consider the circuit 2.5.7

𝑅𝑦 (𝜃1) 𝑅𝑦 (𝜃2)

1. Gives the corresponding matrices in the basis orderings (|00⟩ , |01⟩ , |10⟩ , |11⟩) and
(|00⟩ , |10⟩ , |11⟩ , |11⟩).

2. Give a circuit made of multi-controlled 1-qubit gates and realizing the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos(𝜃1) 0 0 0 − sin(𝜃1) 0 0 0
0 cos(𝜃2) 0 0 0 − sin(𝜃2) 0 0
0 0 cos(𝜃3) 0 0 0 − sin(𝜃3) 0
0 0 0 cos(𝜃4) 0 0 0 − sin(𝜃4)

sin(𝜃1) 0 0 0 cos(𝜃1) 0 0 0
0 sin(𝜃2) 0 0 0 cos(𝜃2) 0 0
0 0 sin(𝜃3) 0 0 0 cos(𝜃3) 0
0 0 0 sin(𝜃4) 0 0 0 cos(𝜃4)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

when written in the canonical basis ordering

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .
Explain why it works.

2.11.7 Spell out the details of the computation for the dense-coding algorithm in 2.10.8,
when the circuit is fed with an arbitrary pair of bits 𝑏1, 𝑏2.

51

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3 Hardware Constraints and Circuit Synthesis

3.1 A bit of Complexity Theory

3.1.1 The notion of complexity refers to two related concepts: complexity of algorithms,
and complexity of problems. In this section, we focus on the former, and we briefly recall
what should be known about it in the context of quantum programming.

3.1.2 An algorithm is a mechanical procedure taking some input, and producing a re-
sult (possibly a simple “yes/no”) after a certain number of well-defined operations. The
complexity of the algorithm is an estimate of the amount of resources required when
the size of the inputs grows to infinity. The complexity can focus on the overall memory
footprint of the algorithm (space complexity), or on the number of operations required
to run it to completion (time complexity).

The “size of the input” is taken in a literal sense: if we were to store the input on a
regular storage device (USB key, hard-drive, etc), the input size is the number of bits it
takes to store it. For instance, storing a natural number 𝑁 in can be done in binary and
this requires log2(𝑁) bits.

The notion of “number of operations” is of course a moving target, as it depends on
the considered operations. In the conventional setting, one typically counts arithmetic
operations and memory accesses. In the quantum setting, one considers the interaction
with the quantum co-processor.

3.1.3 The complexity cares about the asymptotic behavior of the algorithm in a coarse
way: If 𝑓 (𝑥) is the quantity of resources required for processing an input of size 𝑥 , we
say that 𝑓 (𝑥) is a big-O of 𝑔(𝑥) if there exists 𝑀 and 𝑥0 such that

∀𝑥 ≥ 𝑥0, 𝑓 (𝑥)𝑙𝑒𝑞𝑀 ⋅ 𝑔(𝑥).
We write 𝑓 (𝑥) = 𝑂(𝑔(𝑥)).

In general, we consider functions of several variables: the amount of resources might
be based on two parameters. For instance, an adder takes an input consisting of two
natural numbers 𝑀 and 𝑁 . The complexity of the adder depends on 𝑁 and 𝑀 (for an
adder, typically the complexity is 𝑂(log2(𝑀) + log2(𝑁)).

3.1.4 The definition of big-O in 3.1.3 hides constants and smaller growth. This makes
it possible to write 𝑥 + 𝑐 = 𝑂(𝑥) and 𝑐 ⋅ 𝑥 = 𝑂(𝑥), when 𝑐 is a constant. We also
have 𝑥 + log(𝑥) = 𝑂(𝑥) for instance. The definition permits overapproximation, such as
𝑥 = 𝑂(𝑥2).

Such an approach makes the notion of “input size” and “amount of resources” some-
how canonical. For instance, maybe the integer 𝑁 requires log2(𝑁) + 4 bits in memory
to account for its type or other meta-data. Another, more involved example is when the
input is a graph with 𝑣 nodes and 𝑒 edges: the resources needed to store the graph will
grow in correlation with 𝑒 and 𝑣 , but we can omit the fact that node and edge identifiers
are more than 1-bit long: as long as they are “small-enough” they won’t count in the
complexity, and we can focus on 𝑣 and 𝑒 for the big-O formula.

52

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.1.5 The complexity of an algorithm gives some clue on howmuch useful it can be. For
instance, one can expect an algorithm with an exponential complexity (i.e. a complexity
of the form𝑂(𝑒𝑥)) to scale badly for large input sizes. On the contrary, an algorithmwith
a logarithmic, a linear or a low-degree polynomial complexity should be better-behaved:
such complexities are the usual target for reasonnable amount of resources.

3.1.6 The complexity of an algorithm is however not the last word: the complexity is
in particular hiding constant terms that might end up being very large. Consider for in-
stance an algorithm running in logarithmic time with, for an input of size 𝑥 , the number
of operations being 1040 + log(𝑥). This is 𝑂(log(𝑥)), an arguably very good complexity.
In real-life though, even for very small 𝑥 ’s the algorithm requires a tantalizing amount
of time to complete.

3.1.7 If the example of 3.1.6 might look contrived, such large, hidden overheads are
unfortunately someting rather common in the context of quantum algorithms. This
is why concrete resource estimation is very important to assess the effectiveness of a
quantum algorithm for a given task.

3.1.8 In the discussion so far, we are omitting an important fact: because of the potential
use of measurement, quantum algorithms are probabilistic algorithms. We say that a
quantum algorithm has a complexity of 𝑂(𝑓 (𝑥)) when it sucessfully completes with
probability at least 2/3 in 𝑂(𝑓 (𝑥)).

Note that the probability 2/3 is somewhat arbitrary: any other high probability of suc-
cess can be attained in 𝑂(𝑓 (𝑥)) by executing the algorithm several times. For instance,
executing twice the algorithm makes a new algorithm succeeding with probability 8/9 in
𝑂(𝑓 (𝑥)). We use the fact that 2 ⋅ 𝑓 (𝑥) = 𝑂(𝑓 (𝑥)).

3.1.9 Finally, it is always good to keep in mind that the complexity of a quantum pro-
gram might be radically changed along the compilation process. Indeed, the chosen
hardware might require costly gate decompositions, various error correcting schemes
and complex qubit mapping, blowing up the overall cost of running the program.

3.2 Low-level gate-sets

3.2.1 As discussed in 2.1.4 and 2.4.3, on a quantum memory one cannot directly imple-
ment arbitrary unitaries: each quantum co-processor is limited to a particular gate-set .
These constrainsts can come from the physics of the implementation, but also from the
error correcting scheme, limiting what is possible. Typically, these gate-sets are chosen
so that any unitary operator can be synthetized, at least in an approximate manner.

3.2.2 Formally, we say that a gate-set 𝑆 is universal if for all 𝑛, for all unitary operator
𝑈 , there exists a ciruit made out of gates from 𝑆 realizing 𝑈 . We say that the gate-set
is appoximately universal if for all 𝑛, for all unitary operator 𝑈 , for all error 𝜀 > 0, there
exists a circuit 𝐶 made out of gates of 𝑆 such that “𝐶 approximates 𝑈 up to 𝜀”, i.e.

∀ |𝜓 ⟩ , ||(𝑈 − 𝐶) |𝜓 ⟩|| ≤ 𝜀 ⋅ |||𝜓 ⟩||.

53

B. Valiron Intro to Quantum Course Notes v.2024.09.10

These two definition generalizes the 1-qubit case discussed in Sec. 2.5.5 and 2.5.7.

3.2.3 In order to perform quantum computation, the main gate-set that is required
for every set-up is a set allowing one to implement Clifford operators. These are the
operations generated by the gates Had, 𝑆 and CNOT. It is not universal, and in fact it is
efficiently simulable on a classical machine.

Typical examples of universal gate sets extends Clifford gates with at least one non-
Clifford gates, as follows.

• CNOT + 1-qubit rotations. This is the typical gate-set that can be realized in the
context of linear optics or supraconducting qubits (the quantum co-processor of
IBM , Google, Rigetti, etc). The universality of this gate set is proved in Sec. 3.3.

• 𝑀𝑆 + 𝑅𝑧 + 𝑅𝑥 also form a universal gate set, with

𝑀𝑆(𝜃) =
⎛
⎜⎜
⎝

cos(𝜃) 0 0 −𝑖 sin(𝜃)
0 cos(𝜃) −𝑖 sin(𝜃) 0
0 −𝑖 sin(𝜃) cos(𝜃) 0

−𝑖 sin(𝜃) 0 0 cos(𝜃)

⎞
⎟⎟
⎠

This is the Mølmer-Sørensen gate, also written 𝑋𝑋 . Parameterized by an angle 𝜃 ,
this gate is used in the context of the ion-trap technology6.

• Control-Z and the family of gates 𝐽 (𝛼), defined by

𝐽 (𝛼) = (1 𝑒𝑖𝛼
1 𝑒−𝑖𝛼) .

This set of gates is in strong relation with MBQC (Measurement-Based Quantum
Computation), discussed in Sec. 3.6.

• Clifford+𝑇 . This is the typical gate-set for fault-tolerant quantum computation,
approximately universal. This is discussed in Sec. 3.3.19.

Some more exotic universal gate-set exists, based on the Toffoli gate. A first result due to
Kitaev [Kit97] shows that Toffoli, Had and 𝑆 are (approximately) universal. Maybe more
surprisingly, Toffoli and any 1-qubit basis change such as Had is also universal! [Shi03].
Youmight notice that none of these two gates contains coefficients with imaginary parts.
The encoding of a generic unitary operation then requires an extraneous wire to “store”
this imaginary part, but the encoding is efficient in the sense that one can turn a Clif-
ford+T circuit into a Toffoli+Had circuit in a polynomial manner.

3.2.4 Clifford needs “a bit of help” to get to universality. Instead of using additional
unitary gates such as Toffoli or 1-qubit gates, it is also possible to consider the use of
magic states [BK05]. These are typically 1-qubit registers, initialized in a non-canonical
basis state. The use ofmagic states requiresmeasurements and the possibility to perform
some form of classical processing in the quantum co-processor. We discuss magic states
in Sec. 3.5.

6see e.g. https://arxiv.org/abs/1603.07678

54

https://arxiv.org/abs/1603.07678

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.3 Universality of CNOT and 1-qubit rotations

3.3.1 In 2.4.3, we discussed how quantum internal operations are unitaries acting on
the whole state space, while the quantum co-processor can only apply a handful of op-
erations. In this section, we shall see how one can realize any unitary operation on
any 𝑛-qubit states with only CNOT gates and 1-qubit rotations. The reader can refer to
arXiv:quant-ph/9503016 for a reference.

3.3.2 Theorem For all unitary 𝑈 on 1-qubit, there exists an angle 𝛼 and 3 1-qubit
unitaries 𝐴1, 𝐴2, 𝐴3 such that 𝐴1𝐴2𝐴3 = 𝐼 and 𝑈 = 𝑒𝑖𝛼𝐴1𝑋𝐴2𝑋𝐴3.

3.3.3 Proof. According to Th. 2.5.9, 𝑈 can be written as

𝑈 = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑦 (𝛾)𝑅𝑧(𝛿).
Define

𝐴1 = 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2),
𝐴2 = 𝑅𝑦 (−𝛾/2)𝑅𝑧(−(𝛿 + 𝛽)/2),
𝐴3 = 𝑅𝑧((𝛿 − 𝛽)/2),

Then

𝐴1𝐴2𝐴3 = 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (−𝛾/2)𝑅𝑧(−(𝛿 + 𝛽)/2)𝑅𝑧((𝛿 − 𝛽)/2)
= 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (−𝛾/2)𝑅𝑧(−𝛽)
= 𝑅𝑧(𝛽)𝑅𝑧(−𝛽)
= 𝐼 .

Then, we can realize that 𝑋𝑋 = 𝐼 , and 𝑋𝑅𝑦 (𝛼)𝑋 = 𝑅𝑦 (−𝛼), and 𝑋𝑅𝑧(𝛼)𝑋 = 𝑅𝑧(−𝛼).
The following the hold:

𝐴1𝑋𝐴2𝑋𝐴3 = 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑋𝑅𝑦 (−𝛾/2)𝑅𝑧(−(𝛿 + 𝛽)/2)𝑋𝑅𝑧((𝛿 − 𝛽)/2)
= 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑋𝑅𝑦 (−𝛾/2)𝑋𝑋𝑅𝑧(−(𝛿 + 𝛽)/2)𝑋𝑅𝑧((𝛿 − 𝛽)/2)
= 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (𝛾/2)𝑋𝑅𝑧(−(𝛿 + 𝛽)/2)𝑋𝑅𝑧((𝛿 − 𝛽)/2)
= 𝑅𝑧(𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (𝛾/2)𝑅𝑧((𝛿 + 𝛽)/2)𝑅𝑧((𝛿 − 𝛽)/2)
= 𝑅𝑧(𝛽)𝑅𝑦 (𝛾)𝑅𝑧(𝛿),

closing the proof. □

3.3.4 Theorem Let 𝑈 be a 1-qubit unitary. The operation 𝐶-𝑈 can be realized with
only CNOT and 1-qubit gates.

55

https://arxiv.org/abs/quant-ph/9503016

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.3.5 Proof. Using Th. 3.3.2, one can decomposed 𝑈 into 𝑈 = 𝑒𝑖𝛼𝐴1𝑋𝐴2𝑋𝐴3. One
can write the circuit:

Ph(𝛼)

𝐴1 𝐴2 𝐴3

with Ph(𝛼) defined as in Sec. 2.5.8. Indeed, when the control wire is |1⟩, we need to
perform 𝑈 , including the global phase. But this global phase should not be done with
the control qubit is |0⟩. This has already been discussed in 2.6.11. □

3.3.6 Theorem Consider an 𝑛-qubit unitary 𝑈 . There exists an 𝑛-qubit unitary 𝑉
such that 𝑉 2 = 𝑈 .

3.3.7 Proof. The existence of 𝑉 derives from the decomposition of 𝑈 as 𝑒𝑖𝐻 for some
hermitian matrix 𝐻 (see 1.9.8). One can then use 𝑉 = 𝑒𝑖𝐻/2, relying on 1.9.10. □

3.3.8 Theorem Let 𝑈 by an 𝑛-qubit unitary. The doubly-controlled gate 𝐶-𝐶-𝑈 can
be realized with only CNOT and simply-controlled 𝑛-qubit gates.

3.3.9 Proof. Let 𝑉 be defined as in Th. 3.3.6. A circuit realizing 𝐶-𝐶-𝑈 is

𝑛 𝑈
=

𝑛 𝑉 𝑉−1 𝑉
Indeed, the various cases for the controlling qubits are as follows:

• 00 → on ne fait rien

• 01 → on fait C-V et C-Vinv → identité

• 10 → d’abord C-Vinv puis C-V → identité

• 11 → C-V puis C-V : C-U

The operation 𝑈 is then applied to the target qubit if and only if the control qubits are
at 11. □

3.3.10 Theorem Let 𝑈 by a 1-qubit unitary. We can realize the multi-controlled gate
𝐶-𝐶-… -𝐶-𝑈 with only CNOT and 1-qubit gates.

3.3.11 Proof. Using repeatedly Th. 3.3.8 we decompose 𝐶-⋯𝐶-𝑈 into CNOT-gates
and simply-controlled 1-qubit gates. We can conclude by using Th. 3.3.4 to decompose
each simply-controlled 1-qubit gates into CNOT and 1-qubit unitaries, to reach the re-
quired form. □

56

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.3.12 We are now almost ready to show that a 2𝑛 × 2𝑛 unitary matrix can be realized
(we say synthetized) with CNOT gates and 1-qubit unitaries. For this, we need a result
allowing us to relate arbitrary unitary matrices and multi-controlled gates. The result is
the following theorem, yielding Th. 3.3.15.

3.3.13 Theorem (Cosine-Sine Decomposition). Let 𝑈 by any 𝑛 + 1-qubit unitary. One
can decompose 𝑈 as

(𝐵1 0
0 𝐵2) (𝐶 −𝑆

𝑆 𝐶) (𝐴1 0
0 𝐴2

)

with 𝐴1, 𝐵1, 𝐴2 and 𝐵2 𝑛-qubit unitaries, and 𝐶 and 𝑆 𝑛-qubit diagonals such that 𝑆2 +
𝐶2 = Id.

3.3.14 Proof. See Appendix C.

3.3.15 Theorem. Any 𝑛 + 1-qubit unitary can be realized with multi-controlled, 1-
qubit unitaries.

3.3.16 Proof. The proof proceeds by induction on 𝑛. In the base case, 𝑛 = 1 and
there is nothing to fo. The inductive case makes use of the CS decomposition stated in
Th. 3.3.13. This decomposition can be drawn as the circuit:

𝑛

𝑅

𝐴2 𝐴1 𝐵2 𝐵1
where 𝑅 is a circuit realizing the matrix

(𝐶 −𝑆
𝑆 𝐶) .

This circuit can be built using the technique on 2.11.6: the matrix 𝐶 can be seen as a diag-
onal of Cosine functions, while the matrix 𝑆 contains the corresponding Sine functions.
This gives a multiplexor of multi-controlled 𝑅𝑦 -rotations. □

3.3.17 Theorem. Given a unitary matrices on 𝑛 qubit, one can synthetize it with only
CNOT gates and 1-qubit rotations.

3.3.18 Proof. The proof consists in chaining the decompositions. First, using Th. 3.3.15
the matrices yields a circuits consisting of multi-controls of 1-qubit gates. Then, using
Th. 3.3.10 each of these multi-controls can be decomposed into CNOT and 1-qubit uni-
taries. Finally, each of these 1-qubit unitaries can be implemented with rotations using
Th. 2.5.9. □

3.3.19 Combining Th. 2.5.5 and 3.3.17, we can conclude that any 𝑛-qubit unitary can be
implemented up to arbitrary error with only CNOT, Hadamard and T-gates.

57

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.3.20 Discussion The proof in Sec. 3.3.18 gives a construction for a circuit imple-
menting an arbitrary unitary 2𝑛 ×2𝑛-matrix. The size of the circuit is clearly exponential
on the number 𝑛 of qubits. Is there a way of constructing a non-exponentially-sized cir-
cuit? Without any constraints on 𝑈 , this is bound to fail. One can count the number of
degrees of liberty for the system: the matrix contains 4𝑛 complex numbers. Even if we
factor out the unitarity constraints, we still need on the order of 4𝑛 angles to describe all
of them. These angles are necessary: regardless of how we will handle them, they will
end up crawling inside rotation gates in the circuit.

3.4 Tradeoffs: a Case-Study

3.4.1 Given a unitary matrix 2𝑛 × 2𝑛, if one question is to be able to implement it with
the available gate-set, the other is to be able to do it with a circuit of reasonnable size.
As discussed in 3.1.5, in computer science, “reasonnable” is defined as “polynomial in 𝑛”.
The strategy proposed in 3.3.18 is clearly not reasonnable with this definition.

In some situation, it is possible to do better when we can capitalize on the structure
of the unitary. In order to see how this can work in practice, we propose to study two
techniques to implement a multi-controlled 𝑅𝜃 -gate (where we write 𝑅𝜃 in place of Ph(𝜃)
for compactness).

3.4.2 Exponentially large circuit Using Th. 3.3.4, note that we canwrite 𝑅𝜃 ≜ Ph(𝜃)
as

𝑒𝑖 𝜃2𝑅𝑧(𝜃/4)𝑅𝑦 (0)𝑅𝑧(𝜃/4).
From the proof of Th. 3.3.2, we set

𝐴1 = 𝑅𝑧(𝜃/4), 𝐴2 = 𝑅𝑧(− 𝜃/4), 𝐴3 = Id,
so that

𝑅𝜃 =
𝑅𝜃/2

𝑅𝑧(𝜃/4) 𝑅𝑧(− 𝜃/4)

3.4.3 Let us now write a circuit for 𝐶-𝐶-𝑅𝜃 : using Th. 3.3.8 with 𝑈 = 𝑅𝜃 , we get

𝑅𝜃
=

𝑅𝜃/2 𝑅∗𝜃/2 𝑅𝜃/2

58

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Decomposing each 𝐶-𝑅𝜃/2 as the circuit of Sec. 3.4.2, we get:

𝑅𝜃/4

𝑅𝜃/4 𝑅∗𝜃/4

𝑊8 𝑊 ∗8 𝑊 ∗8 𝑊8 𝑊8 𝑊 ∗8

(33)

with 𝑊𝑛 being 𝑅𝑧(𝜃/𝑛)

3.4.4 Let us now write a circuit for 𝐶-𝐶-𝐶-𝑅𝜃 : using Th. 3.3.8 with 𝑈 = 𝐶-𝑅𝜃 , we get

𝑅𝜃

=
𝑅𝜃/2 𝑅∗𝜃/2 𝑅𝜃/2

And each 𝐶-𝐶-𝑅𝜃/2 can itself be replaced with the circuit of Eq. (33).

3.4.5 The process can be iterated for synthetizing the multi-control gate 𝐶𝑛-𝑅𝜃 with
only CNOT-gates, 𝑅𝑧 and 𝑅 gates. Let us count how many of them we get: we write 𝑁𝐺𝑛
for the number of gates 𝐺 in 𝐶𝑛-𝑅𝜃 .

• 𝑁CNOT1 = 2, and 𝑁CNOT𝑛+1 = 2 + 3𝑁CNOT𝑛 . We deduce that

𝑁CNOT𝑛 = 2
𝑛−1
∑
𝑖=0

3𝑖 = 3𝑛 − 1.

• 𝑁 𝑅𝑧1 = 2, and 𝑁 𝑅𝑧𝑛+1 = 3𝑁 𝑅𝑧𝑛 . We deduce that

𝑁 𝑅𝑧𝑛 = 2 ⋅ 3𝑛−1.
• 𝑁 𝑅1 = 1, and 𝑁 𝑅𝑛+1 = 3𝑁 𝑅𝑛 . We deduce that

𝑁 𝑅𝑛 = ⋅3𝑛−1.
Furthermore, for 𝑛 controls the angle for the 𝑅-gate is always ±𝜃/2𝑛, and the angle for
the 𝑅𝑧-gate is always ±𝜃/2𝑛+1.

3.4.6 In any case, in this construction the size of the circuit is exponential on the number
of controls. Furthermore, there is no possibility to “compact” the circuit by parallelizing
the calls to 𝑅𝑧-gates, as they are all on the last line, interwined with CNOT-gates. If this
circuit is arguably not the smallest one, without any ancillas we are bound to have an
exponential number of rotation gates.

59

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.4.7 Polynomial-sized circuit If we can allocate ancillas, it is possible to do bet-
ter using the trick presented in Sec. 2.9.8. Indeed, the operation 𝐶𝑛-𝑅𝜃 performs the
operation

|𝑥1⟩ |𝑥2⟩⋯ |𝑥𝑛⟩ ⊗ |𝑧⟩ ⟼ (𝑒𝑖𝜃)𝑥1𝑥2…𝑥𝑛 |𝑥1⟩ |𝑥2⟩⋯ |𝑥𝑛⟩ ⊗ |𝑧⟩
We can then first compute the product of the 𝑥𝑖’s, store it in an ancilla, perform a simple
𝐶-𝑅𝜃 -gate, and undo the intermediate computations. An example for 𝐶-𝐶-𝐶-𝑅𝜃 is as
follows.

|0⟩
|0⟩

𝑥1
𝑥2
𝑥3

𝑧 𝑅𝜃
In general, the gate 𝐶𝑛+1-𝑅𝜃 with 𝑛 + 1 controls requires 𝑛 ancillas, 2𝑛 Toffoli gates and
one 𝐶-𝑅𝜃 gate. The former can be realized for instance with two Had-gates and the
circuit of Sec. 3.4.3, while the latter can be realized with the circuit of Sec. 3.4.2. We then
have a linear-sized, much more compact circuit. We can also note that the angles that
are required for the single-qubit rotation gates are at worst 𝜃/8: we are not working with
exponentially small angles, as discussed in Sec 3.4.5. But again, this assumes that we
can afford to use auxiliary registers.

3.4.8 Discussion We presented two concrete algorithms to synthetize 𝐶𝑛-𝑅𝜃 gates:
these are of course not the only existing techniques. However, the main idea remains:
there is no silver bullet, and tradeoffs have to be decided upon, depending both on the
backend and on the targetted use-case. In particular, one can note the following three
tradeoffs

1. As discussed above, the reduction of the circuit size is typically correlated with an
increase in the pool of ancillas.

2. The more compact the circuit is, the more time it takes to synthetize it. If one
needs a steady stream of circuit generation on the fly, one might prefer a tech-
nique producing slightly larger circuits but in a fast manner rather than a slower
technique producing more optimized circuits.

3. Informations on the structure of the unitary to synthetize might be capitalized
upon to produce a smaller circuit. An example of such as case is discussed in 4.2.1
with the generation of oracles.

3.5 Quantum Computation with Magic States

3.5.1 If the low-level target is error corrected —such as with the surface code [Cle22]—
non-Clifford gates might not be directly implementable at the logical level. If non-
Clifford such as 𝑇 -gates are not available, a solution consists in initializing the memory

60

B. Valiron Intro to Quantum Course Notes v.2024.09.10

in a state that contains the phases that the rotations would have brought. Rotation gates
are then not native, but instead built from these magic states [BK05], Clifford gates, and
a bit of classical processing. Such a rotation gate is then way more costly than Clifford
gates, requiring dedicated error correction and optimization scheme.

3.5.2 A typical magic state is

|𝐴𝜃⟩ = 1
√2

(|0⟩ + 𝑒𝑖𝜃 |1⟩).

If we have access to several copies of the magic states, it is possible to realize the rotation

𝑅𝜃 = (1 0
0 𝑒𝑖𝜃) .

The procedure is summarized by the circuit:

|0⟩

|𝜙⟩

|𝐴𝜃⟩

Meas

A B C D

Suppose that |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. At each step, the state of the system is:

(A) |𝜙⟩ ⊗ |𝐴𝜃⟩ ⊗ |0⟩, that is
1
√2

(𝛼 |000⟩ + 𝛼𝑒𝑖𝜃 |010⟩ + 𝛽 |100⟩ + 𝛽𝑒𝑖𝜃 |110⟩).

(B) The two CNOT-gates store in qubit 3 the parity respective of qubit 1 and 2: 0 for 00
and 11, and 1 for 01 and 10. The state becomes

1
√2

(𝛼 |000⟩ + 𝛼𝑒𝑖𝜃 |011⟩ + 𝛽 |101⟩ + 𝛽𝑒𝑖𝜃 |110⟩).

(C) The measurement gives with probability 1
2 the states

(𝛼 |00⟩ + 𝛽𝑒𝑖𝜃 |11⟩) ⊗ |0⟩
when 0 is measured, and

(𝛼𝑒𝑖𝜃 |01⟩ + 𝛽 |10⟩) ⊗ |1⟩
when 1 is measured.

61

B. Valiron Intro to Quantum Course Notes v.2024.09.10

(D) The last CNOT-gate will unentangle the state of qubit 1 and 2: if we had measured
0 we would get

(𝛼 |0⟩ + 𝛽𝑒𝑖𝜃 |1⟩) ⊗ |0⟩ ⊗ |0⟩
and if we had measured 1 we would get

(𝛼𝑒𝑖𝜃 |0⟩ + 𝛽 |1⟩) ⊗ |1⟩ ⊗ |1⟩
that can be rewritten (by change of global phase) into

(𝛼 |0⟩ + 𝛽𝑒−𝑖𝜃 |1⟩) ⊗ |1⟩ ⊗ |1⟩ .
The two last qubits are now in a canonical basis state: they can be recycled and
reused without impacting the global state of the memory.

The effect of the circuit is then

(𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |𝐴𝜃⟩ ⊗ |0⟩ ⟼ (𝛼 |0⟩ + 𝛽𝑒±𝑖𝜃 |1⟩) ⊗ |1⟩ ⊗ |1⟩ ,
with the sign depending on the result of the measurement.

3.5.3 Because the sign measurement is probabilistic, if we repeat the process (each time
with a fresh magic state |𝐴𝜃⟩), we will get roughly the same number of 0 and 1 out of
the measurements —let us respectively denote these numbers with 𝑛0 and 𝑛1. The state
is in this case:

(𝛼 |0⟩ + 𝛽𝑒(𝑛0−𝑛1)𝑖𝜃 |1⟩).
Because of the statistic of the process, we will eventually meet a point in time where
𝑛0 = 1 + 𝑛1: the state of qubit 1 then corresponds to the application of the gate 𝑅𝜃 to
|𝜙⟩. We can stop there: we implemented the gate 𝑅𝜃 .

3.5.4 Of course, in general, the number of times needed to repeat the circuit is not
known: we have a repeat-until-success scenario. In order for this scheme to work, the
result of the measurement should not have to be sent to the classical host. Indeed, the
delay would be way too costly. In this setting, the co-processor therefore needs to have
some form of classical control: here, the possibility to perform some simple arithmetics,
and the possibility to repeat a piece of circuit.

3.5.5 The magic state presented in Sec. 3.5.2 is a very simple one. There are many
other proposals, possibly with simpler computational schemes. All of these schemes are
however relying on the same underlying technique: repeat-until-success. See for instance
[BK05].

3.6 Measurement-BasedQuantum Computation
My scribbles are not yet written properly, this section is still to be filled!

62

B. Valiron Intro to Quantum Course Notes v.2024.09.10

3.7 Classical Computation in the Co-Processor

3.7.1 In order to implement the techniques presented in 3.5, the circuit model presented
in 2.4.7 has to be extended with classical registers, and operations to act on them. In
this extended model, the bit generated from a measurement gets stored in a classical
register, within the quantum co-processor. If the classical host needs the information,
this bit needs to be extracted from the co-processor.

3.7.2 A quantum programming framework offering such a model is QisKit, a Python
library developed by IBM7. An example of circuit mixing both quantum and classical
control is as follows.

1 # 2 qubits for the Bell pair
2 epr = QuantumRegister(2, name="epr")
3

4 # The qubit to teleport
5 phi = QuantumRegister(1, name="phi")
6

7 # Classical register for storing the results
8 c = ClassicalRegister(2, name="c")
9

10 # We build a quantum circuit with both registers.
11 # By default, everything is initialized to 0 and to |0>
12 qc = QuantumCircuit(phi, epr, c)
13

14 # Generating the Bell pair
15 qc.h(epr[0])
16 qc.cnot(epr[0],epr[1])
17 qc.barrier()
18

19 # Action of Alice
20 qc.cnot(phi, epr[0])
21 qc.h(phi)
22 qc.barrier()
23

24 # Mesure of all of register q, storing results in c.
25 # This is still part of the circuit
26 qc.measure(phi, c[0])
27 qc.measure(epr[0], c[1])
28 qc.barrier()
29

30 # Now, action of Bob
31 qc.x(epr[1]).c_if(c[1],1)
32 qc.z(epr[1]).c_if(c[0],1)

For legibility of the printed circuit, we added “barriers” to regroup pieces of circuits
together. The resulting circuit, as shown by QisKit in ASCII art is as follows. At the end

7https://qiskit.org/

63

https://qiskit.org/

B. Valiron Intro to Quantum Course Notes v.2024.09.10

of the circuit, the state of the qubit phi is in epr_1.

░ ┌───┐ ░ ┌─┐ ░
phi: ───────────░───■──┤ H ├─░─┤M├────░───────────

┌───┐ ░ ┌─┴─┐└───┘ ░ └╥┘┌─┐ ░
epr_0: ┤ H ├──■───░─┤ X ├──────░──╫─┤M├─░───────────

└───┘┌─┴─┐ ░ └───┘ ░ ║ └╥┘ ░ ┌───┐┌───┐
epr_1: ─────┤ X ├─░────────────░──╫──╫──░─┤ X ├┤ Z ├

└───┘ ░ ░ ║ ║ ░ └─╥─┘└─╥─┘
c_0: ═══════════════════════════╩══╬══════╬════■══

║ ║
c_1: ══════════════════════════════╩══════■═══════

3.7.3 A question is the classical power of the quantum co-processor: what are the op-
erations allowed on classical registers? We at least need to be able to apply quantum
gates conditionally on the value of a Boolean register. To realize the scheme presented
in Sec. 3.5, we also need (limited) arithmetic but also loops. For representing such a
process, the circuit notation starts to show its limits, and if this were a more expressive
language might be required. More generally, this question of where to place the limit
between the classical and the quantum host is at the core of the discussions on hybrid
computation.

3.8 A Word on Hardware

3.8.1 Noise As discussed in 2.2.3, quantum information is encoded on the state of
objects governed by the laws of quantum physics. Such objects are subject to a physical
phenomenon called decoherence: due to an interaction with the environment, the state
of the system evolves in uncontrolled ways. From a computer science point of view, this
amounts to noise and the introduction of errors in the stored information.

3.8.2 NISQ and LSQ Noisy hardware is the current state of quantum co-processors.
As of 2024, quantum memory holds at most a few hundred of noisy qubits: we are in
the realm of NISQ, Noisy Intermediate Scale Quantum Computation. If we are arguably
reaching the tipping point, the error rate and the (relatively) small memory size makes it
still impossible to run quantum error correcting schemes. Building (logical) stable qubits
for enabling large memory (dubbed LSQ: Large Scale Quantum) is still an active subject
of research, both in academic and industrial labs.

3.8.3 Topology For hardware (or some fault-tolerant scheme, such as surface code),
the quantum bits have a fixed location. In these cases, two-qubits operations can only
be performed on neighboring qubits: the notion of neighbors is described with a graph.
We say that there is a topology . For instance, the IBM co-processor “Montreal” has 26
qubits arranged as follows:

64

B. Valiron Intro to Quantum Course Notes v.2024.09.10

The Rigetti co-processor “Aspen-M” is as follows:

In these two cases, the circles are the qubit locations, while the edges are where CNOT-
gates are allowed. Another example using the same technology is theGoogle coprocessor
“sycamore”, with one non-functionning qubit (the white one):

Here, qubits are crosses, and the blue links are where 2-qubit operations are allowed.

3.8.4 The problem this poses is the mapping, or routing of qubits. That is: given a
(logical) circuits, to which physical qubit do we associate each wire? This question turns
out to be an NP-complete problem: the subgraph isomorphism problem. In general not
all circuits can be mapped on any given topology, and when not feasable the goal is
to rewrite the circuit into an equivalent one such that a mapping exists: this turns the
decision problem into an optimization problem.

3.8.5 For instance, consider the circuit

65

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑞0
𝑞1
𝑞2
𝑞3
𝑞4

Wire 𝑞0 needs to be mapped to a physical qubit of arity 4: if it is somewhat possible for
Google Sycamore co-processor (modulo the fact that CNOT-gates are not native there), it
is not possible to do it directly for IBM’sMontreal and Rigetti’s Aspen-M co-processor, as
the largest possible arity is 3. To implement such a circuit, a solution consists in rewriting
the circuit with swaps (themselves implementable with CNOT-gates) to reduce the arity
of problematic gates.

3.8.6 The circuit presented in Sec. 3.8.5 can be rewritten as

𝑞0
𝑞1
𝑞2
𝑞3
𝑞4

with a swap between 𝑞3 and 𝑞4. We can now find a routing for e.g. IBM Montreal:

𝑞0 ↦ 12, 𝑞1 ↦ 15, 𝑞2 ↦ 13, 𝑞3 ↦ 10, 𝑞4 ↦ 7.
At the end of the computation, the wires are found in the following locations:

𝑞0 ↦ 12, 𝑞1 ↦ 15, 𝑞2 ↦ 13, 𝑞3 ↦ 7, 𝑞4 ↦ 10.
We can perform another swap if needed to place back 𝑞3 and 𝑞4 at their original locations
if needed.

3.8.7 In general, finding an optimal mapping or routing for a given circuit is an NP-
complete problem: for non-trivial circuits we have to rely on approximate solutions. Ex-
isting compilers such as t|Ket⟩ fromCQCorQasm fromAtos implements state-of-the-art
techniques for the mapping problem. Such tools can also handle additional constraints
such as specific costs to minimize.

3.9 Exercises

3.9.1 Consider the following quantum algorithm for factoring a number 𝑁 :

• Allocate 𝑛 = log2(𝑁) qubits in state |0⟩
• Apply Hadamard on all of them

• Measure them and retrieve the corresponding bitstring

66

B. Valiron Intro to Quantum Course Notes v.2024.09.10

• This bitstring is the encoding of a natural number: test whether it is a factor of 𝑁
(with the usual, efficient Euler division)

• If it is not, start over.

This algorithm eventually succeeds. Questions:

1. What is the probability of success?

2. Howmany times should we iterate the process in order to reach a high probability?

3. Derive the complexity of this (probabilistic) algorithm.

67

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4 Structure ofQuantum Algorithms

4.1 High-Level View

4.1.1 As any algorithm, the role of a quantum algorithm is to solve a regular, classical
problem. Such a problem typically consists in

• An instance: a list of classical information: a graph, an integer, a matrix, etc. These
can be given as datastructure: an nsigned integer on 64 bits, an array of floating
point numbers, etc, or as a function: for constructing the neighbors of a node in a
graph, for computing the coefficient of a matrix given a pair of indices, etc.

• A question, whose answer might be yes or no, or an object to construct.

Given a problem, an algorithm inputs an instance and outputs an answer to the question.
The critical point is that the output should indeed answer the question: this requires a
mathematical analysis of the algorithm and its adequacy with the problem.

4.1.2 A quantum algorithm can be regarded as a regular algorithm which makes use of
a quantum co-processor to build an answer to the question. The general structure of a
quantum algorithm as found in the litterature is as follows:

1. Input a problem instance.

2. From this instance, specify a bunch of quantum registers, and build a quantum
circuit made of quantum (unitary) gates. Among the registers, one of them is
meant to be measured at the end.

3. Send the circuit to the quantum co-processor, and measure the specified register:
This gives back a bitstring.

4. Perform some post-processing using the bitstring. There are two cases:

(a) A solution to the problem instance was found! Exit with success.

(b) No solution was found: Loop back at Step (3).

The measurement is probabilistic: the algorithm is designed in such a way that we even-
tually branch out in (4a) with high enough probability. In such an algorithm, if the circuit
depends on the problem instance, once it is built it is used over and over until a solution
is found. The algorithm somehow builds its very own faulty soothsayer. Since it is faulty,
several queries might be needed to eventually get a correct solution.

4.1.3 Note how the general structure presented in 4.1.2 generates a distinct circuit for
every problem instance. If your algorithm aims at finding a specific node a graph, two
different graphs will give two different circuits. Similarly, if you aim at factoring 15 or
110210873687 surely you wouldn’t use the same circuit either. A quantum algorihm is
therefore not describing one quantum circuit but a family of quantum circuits.

68

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.1.4 The situation presented in 4.1.2 is very simple: given a problem instance the cir-
cuit is defined once for all. A slightly more general procedure is found in variational
algorithms. There, instead of constructing one circuit, the algorithm constructs a circuit
parameterized by angles: some gates, such as rotation gates, can be changed specified at
run-time. For instance, the following circuit is parameterized by three angles 𝜃1, 𝜃2, 𝜃3:

|0⟩

|0⟩

𝑅𝑦 (𝜃1)

𝑅𝑧(𝜃2) 𝑅𝑦 (𝜃3)

When the angles are not decided yet, we just have a shape, or a structure of circuit. Such
a circuit-shape is called an ansatz .

4.1.5 The interaction with the quantum coprocessor is relatively simple for both 4.1.2
and 4.1.4: a circuit is flushed to the quantummemory, followed by ameasurement, and a
complete reset. The quantummemory between calls to the co-processor is not preserved.
More exotic algorithms require such a preservation between calls: the stream of gates
sent to the co-processor is not a circuit built once for all, but is instead based on the
result of intermediary measurements. More than a fixed structure, the circuit comes as
a trace of (classical) execution.

4.1.6 In the rest of this section, we shall look at typical subroutines used in the design
of quantum algorithms.

4.2 Oracles

4.2.1 As discussed in 4.1.3, a quantum circuit should somehow contain a description
of the problem instance. As the problem instance is typically encoded on a regular,
conventional memory made of bits, such description can typically be defined using a
classical, conventional function acting on bitstrings. We are therefore given a Boolean
function 𝑓 ∶ 𝔹𝑛 → 𝔹𝑚, and we need to make it available to the quantum co-processor.
Of course, this has to be done with the use of unitary operations.

4.2.2 If the function 𝑓 is reversible, then 𝑛 = 𝑚 and we can rely on 1.10.3 to identify 𝑓
with the action of a unitary map on basis vectors. For instance, consider the operation

𝑥 000 001 010 011 100 101 110 111
𝑓 (𝑥) 001 010 011 100 101 110 111 000

You can easily convince yourself that this function is a bijection on bitstrings of size 3 as
it corresponds to single digit increment modulo 8. This operation can be generalized to
the unitary operation

|000⟩ ↦ |001⟩ |001⟩ ↦ |010⟩ |010⟩ ↦ |011⟩ |011⟩ ↦ |100⟩
|100⟩ ↦ |101⟩ |101⟩ ↦ |110⟩ |110⟩ ↦ |111⟩ |111⟩ ↦ |000⟩ .

69

B. Valiron Intro to Quantum Course Notes v.2024.09.10

With the standard basis in lexicographic ordering, the corresponding matrix is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Referring again to 1.10.3, we can claim that this matrix is unitary. From what we dis-
cussed in Ch. 3, we know that we can implement this operation on a quantum co-
processor.

4.2.3 In general, the function 𝑓 of 4.2.1 might not be reversible: we cannot identify it
with a unitary.

Without loss of generality, one can assume that𝑚 = 1. Indeed, if𝑚 > 1, the function
𝑓 can be regarded as a family of functions (𝑓1, … , 𝑓𝑚), all of codomain 𝔹. Therefore
assuming 𝑚 = 1, as the function 𝑓 is usually not invertible the standard way to do this
is to instead implement

̃𝑓 ∶𝔹𝑛 × 𝔹 → 𝔹𝑛 × 𝔹
(𝑥, 𝑦) ↦ (𝑥, 𝑦 ⊕ 𝑓 (𝑥)).

This function is invertible, as

̃𝑓 (̃𝑓 (𝑥, 𝑦)) = ̃𝑓 (𝑥, 𝑦 ⊕ 𝑓 (𝑥)) = (𝑥, 𝑦 ⊕ 𝑓 (𝑥) ⊕ 𝑓 (𝑥)) = (𝑥, 𝑦)
since 𝑧 ⊕ 𝑧 = 0 for all 𝑧, and 𝑧 ⊕ 0 = 𝑧 for all 𝑧. This function being invertible, the
unitary

𝑈𝑓 ∶ ℋ⊗𝑛 ⊗ℋ → ℋ⊗𝑛 ⊗ℋ
defined by

𝑛|𝑥⟩
𝑈𝑓

|𝑥⟩

|𝑦⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 (𝑥)

Note that 𝑈𝑓 is indeed a unitary, it sends a basis vector to a basis vector,

4.2.4 In general, such a box is called an oracle: it captures the (classical) structure of
the problem instance. For instance, it can correspond to an arithmetic operation, or the
neighboring relation for a graph, etc.

4.2.5 From 3.3, we know that regardless of its internal structure, the unitary 𝑈𝑓 is real-
izable using CNOT and 1-qubit rotations. The procedure however requires in general to
perform Cosine-Sine decompositions. In the case of 𝑈𝑓 , we can rely on the fact that it
was built from the classical, boolean function 𝑓 .

70

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.2.6 In the most general situation, 𝑓 is given as a truth table. As an example, consider
the function 𝑓 ∶ 𝔹3 → 𝔹 defined as follows.

𝑥1𝑥2𝑥3 000 001 010 011 100 101 110 111
𝑓 (𝑥1, 𝑥2, 𝑥3) 0 0 0 1 0 1 1 1

Given the truth table, a simple way to build the circuit 𝑈𝑓 is to add one multi-control for
each value entry yielding 1, as follows.

|𝑥1⟩
|𝑥2⟩
|𝑥3⟩
|𝑦⟩

000 001 010 011 100 101 110 111

As you can easily see, this is not optimal in general: the size of the circuit is typically
exponential on the number of inputs of 𝑓 .

4.2.7 This function is the majority function: 𝑓 (𝑥1𝑥2𝑥3) is 0 if there are more 0’s than 1
in 𝑥1𝑥2𝑥3, and 1 otherwise. Instead of a truth table, the function can be described with
the formula:

𝑓 (𝑥1, 𝑥2, 𝑥3) = (𝑥1𝑥2) ⊕ (𝑥2𝑥3) ⊕ (𝑥3𝑥1).
Compared to the circuit presented in 4.2.6, we can then do better with only 3 Toffoli
gates:

|𝑥1⟩
|𝑥2⟩
|𝑥3⟩
|𝑦⟩

(34)

The idea behind this circuit is akin to what was described in 3.4.7: subformulas are com-
puted and their results are stored for use later on. For the circuit of Eq. 34 we did not
have to use auxiliary wires, but in general we can: this is the topic of 4.2.8.

4.2.8 If the Boolean function 𝑓 is given as a boolean formula made of conjunctions and
negations, using ancillas one can build a circuit of size linear to the size of the formula.
The idea is that

• Conjunctions: implementable with Toffolis;

• Negations: implementable with 𝑋 -gates and CNOT-gates;

• Composition: corresponds to circuit composition.

71

B. Valiron Intro to Quantum Course Notes v.2024.09.10

The procedure follows the description given in 3.4.7: we first compute the final result us-
ing a sub-circuit 𝑉𝑓 , aggregating subcomputations in ancillas (these are called garbage
qubits), we copy the result to the dedicated register, and we finally uncompute the ancil-
las:

|𝑓 (𝑥)⟩

|𝑥⟩
𝑉𝑓

|𝑥⟩
𝑉−1𝑓

|𝑥⟩
|0⟩ garbage |0⟩
|0⟩ |0⟩
|𝑦⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩

(35)

4.2.9 The operator 𝑉𝑓 has a strict specification: the input qubits should be left un-
touched (when in canonical basis state), the last wire should contain the result (when
fed with |0⟩), while the middle qubits (the garbage qubits) store the subcomputations. In
particular, the circuit 𝑉𝑓 sends canonical basis states to canonical basis states.

4.2.10 The construction presented in 4.2.8 is using the trick discussed in 2.9.8: we tem-
porarily work inside a larger space to have more rooms, in this case to be able to store
intermediary computations. If 𝑉𝑓 is sending

|𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ⟼ |𝑥⟩ ⊗ |𝑓garbage(𝑥)⟩ ⊗ |𝑓 (𝑣𝑒𝑐𝑥)⟩
then the sequence of operations given in Eq. 35 is doing the following:

∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |𝑦⟩

↦∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |𝑦⟩ (ancilla allocation)

↦∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |𝑓garbage(𝑥)⟩ ⊗ |𝑓 (𝑥)⟩ ⊗ |𝑦⟩ (applying 𝑉𝑓)

↦∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |𝑓garbage(𝑥)⟩ ⊗ |𝑓 (𝑥)⟩ ⊗ |𝑦 ⊕ 𝑓 (𝑥)⟩ (CNOT-gate)

↦∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |𝑦 ⊕ 𝑓 (𝑥)⟩ (applying 𝑉−1𝑓)

The middles qubits are back to |0⟩, so there are not entangled with the rest of the system:
if we discard them, following the discussion of 2.9, the result is deterministic and yield
with probability 1

∑
𝑥,𝑦

𝛼𝑥,𝑦 ⋅ |𝑥⟩ ⊗ |𝑦 ⊕ 𝑓 (𝑥)⟩

which is precisely the behavior expected for 𝑈𝑓 .

72

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.2.11 One can build the circuit for the operator 𝑉𝑓 is built inductively on the structure
of 𝑓 , as follows:

• If 𝑓 is the conjunction: 𝑓 (𝑥, 𝑦) = 𝑥 ∧ 𝑦 = 𝑥𝑦 , we build 𝑉𝑓 with a Toffoli gate:

|𝑥⟩ |𝑥⟩
|𝑦⟩ |𝑦⟩
|0⟩ |𝑥𝑦⟩

It leaves the inputs untouched, while storing the 𝑓 (𝑥, 𝑦) in the last wire if it was
initialized with |0⟩.

• If 𝑓 is the negation: 𝑓 (𝑥) = ¬𝑥 = 1 ⊕ 𝑥 , we can builf 𝑉𝑓 with a CNOT-gate:

|𝑥⟩ |𝑥⟩
|0⟩ |𝑦 ⊕ 1 ⊕ 𝑥⟩

Note that we could have used a simple 𝑋 -gate, but this would have modified the
input qubit, therefore breaking the specification.

• Finally, if 𝑓 is a composition of sub-formulas, such as 𝑓 (𝑥) = 𝑔(ℎ(𝑥), 𝑘(𝑥)), one
can build 𝑉𝑓 out of 𝑉𝑔 , and 𝑉ℎ and 𝑉𝑘 :

𝑛𝑥 |𝑥⟩ subcomp.

𝑛𝑘

|𝑘(𝑥)⟩

𝑛ℎ |ℎ(𝑥)⟩

|𝑘(𝑥)⟩

𝑛𝑓

|𝑥⟩ |𝑥⟩
|0⟩ subcomp.

|0⟩ subcomp.

|0⟩ |ℎ(𝑥)⟩
|0⟩ |𝑘(𝑥)⟩
|0⟩ subcomp.

|0⟩ |𝑔(ℎ(𝑥), 𝑘(𝑥))⟩

𝑉𝑘
𝑉ℎ

𝑉𝑔

(36)

The first wires are set back to |𝑥⟩, the last wire contains the result, while themiddle
wires contains all of the sub-computations, including the two values 𝑔(𝑥) and 𝑘(𝑥)
computed along the composition.

4.2.12 Note how in Eq.(36) the input |𝑥⟩ is used twice for 𝑉ℎ and 𝑉𝑘 . This is why, in
general, using this method one cannot use an 𝑋 -gate to realize the negation: one has to
keep keep the original value around. One can use another strategy to produce a more
compact circuit, but this circuit construction is however efficient in the sense that the
number of gates and auxiliary wires is linear on the size of the formula describing 𝑓 .

73

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.2.13 Instead of a basis change, the operation 𝑈𝑓 can also be regarded as a phase-flip,
as follows:

𝑈𝑓 |𝑥⟩ ⊗ |−⟩ = 𝑈𝑓 1
√2

|𝑥⟩ ⊗ (|0⟩ − |1⟩)

= 𝑈𝑓 1
√2

(|𝑥⟩ ⊗ |0⟩ − |𝑥⟩ ⊗ |1⟩)

= 1
√2

(𝑈𝑓 (|𝑥⟩ ⊗ |0⟩) − 𝑈𝑓 (|𝑥⟩ ⊗ |1⟩))

= 1
√2

(|𝑥⟩ ⊗ |𝑓 (𝑥)⟩ − |𝑥⟩ ⊗ |1 ⊕ 𝑓 (𝑥)⟩)

= 1
√2

|𝑥⟩ ⊗ (|𝑓 (𝑥)⟩ − |1 ⊕ 𝑓 (𝑥)⟩)

= (−1)𝑓 (𝑥) 1
√2

|𝑥⟩ ⊗ (|0⟩ − |1⟩) (From 1.10.2)

= (−1)𝑓 (𝑥) |𝑥⟩ ⊗ |−⟩ .

4.3 Encoding Natural Numbers

4.3.1 A typical classical function to turn into a unitary consists in an arithmetic opera-
tion such as 𝑓𝑎,𝑁 ∶ {0…𝑁 − 1} ⟶ {0…𝑁 − 1}

𝑥 ⟼ 𝑎 ⋅ 𝑥 mod 𝑁
for 𝑎 and 𝑁 natural numbers. If 𝑎 and 𝑁 are co-prime, the function is a bijection (this
function is the oracle for Shor’s algorithm, see 5.2). For instance, 𝑓5,8 consists in the map

𝑥 0 1 2 3 4 5 6 7
𝑓5,8(𝑥) 0 5 2 7 4 1 6 3

The map 𝑓5,8 is a bijection of {0, … , 7}: we are in the setting of 1.10.4 (where the map
was 𝑓3,8) and 4.2.2: the function can be regarded as a unitary on a 8-dimensional Hilbert
space. However, the map acts on numbers whereas the discussion in 4.2 is based on
Boolean values: we need a bit encoding of numbers as bitstrings.

4.3.2 A natural number 𝑥 can be decomposed in base 2 as

𝑥 =
𝑁−1
∑
𝑘=0

𝑏𝑘 ⋅ 2𝑘

for some number 𝑁 and some Boolean values 𝑏0, … 𝑏𝑁−1. We say that 𝑏0 is the least
significant bit . The Boolean values 𝑏𝑘 ’s are enough to recover the number 𝑥 , provided
that we choose the ordering of the bits in the list. There are two canonical ones, that we
can refer to as

• big-endian: the number 𝑥 is represented with a list starting with the most signifi-
cant bits:

𝑏𝑁−1, … , 𝑏1, 𝑏0.

74

B. Valiron Intro to Quantum Course Notes v.2024.09.10

This is the mathematical representation (used in base 10 for instance), and used
in most paper and textbooks in quantum computation.

• little-endian: the number 𝑥 is represented with a list starting with the least signif-
icant bit:

𝑏0, 𝑏1, … , 𝑏𝑁−1.
This is useful if the number is stored in an array: 𝑏0 is then literally 𝑏[0]. This
convention is used in QisKit for instance.

4.3.3 Beware In summary, there are at least two difficulties to look for when debug-
ging quantum programs:

• conflicting ordering for binary representations;

• conflicting basis ordering for matrix and vector representations.

4.3.4 The domain and codomain of the map 𝑓5,8 in 4.3.1 can be encoded on bitstrings
of size 3. As discussed in 4.3.2, we can for instance decide on big-endian, so that 3 is rep-
resented by 011. The lexicographic ordering of the canonical basis onℋ⊗3 then exactly
corresponds to the natural number ordering, and the matrix for 𝑓5,8 can be constructed
in the same way as in 1.10.4:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This matrix corresponds to the map 𝑓5,8 acting on

{|𝑒0⟩ , |𝑒1⟩ , |𝑒2⟩ , |𝑒3⟩ , |𝑒4⟩ , |𝑒5⟩ , |𝑒6⟩ , |𝑒7⟩
as in 1.10.3, but also as the corresponding action onℋ⊗ℋ ⊗ℋ with the basis ordering

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .
It performs the action:

|000⟩ ↦ |000⟩ |010⟩ ↦ |010⟩ |100⟩ ↦ |100⟩ |110⟩ ↦ |110⟩
|001⟩ ↦ |101⟩ |011⟩ ↦ |111⟩ |101⟩ ↦ |001⟩ |111⟩ ↦ |011⟩

4.3.5 For the case of 4.3.4, it is possible to infer a circuit “by hand” by realizing that the
map can be factored into

|𝑥⟩ ⊗ |01⟩ ↦ | ̸𝑥⟩ ⊗ |01⟩ |𝑥⟩ ⊗ |11⟩ ↦ | ̸𝑥⟩ ⊗ |11⟩
and identity otherwise. A circuit implementing the action is therefore

75

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.3.6 Example: Reversible Adder The oracle in 4.3.1 is reversible: it was therefore
possible to build a circuit without ancillas as for instance shown in 4.3.5. In general
however, the classical function we care about is not reversible: we therefore need a more
sophisticated circuit. We discuss here how to encode an adder : a function inputting two
numbers 𝑎 and 𝑏 and outputting 𝑎 + 𝑏.

4.3.7 There are still several design choices for arithmetic on a bitstring encoding.

• We want a circuit: an encoding of our numbers as bitstrings. But which numbers?
Integers (signed integers), natural numbers (unsigned integers)? On which range?
Is it the same range for 𝑎 and for 𝑏?

• How do we treat overflows? Is the range of the output expanded by one bit to take
care of it, or do we consider arithmetic modulo instead?

• There are two “standard” ways to turn addition into a reversible operation. One
can first turn the adder into a reversible function as in 4.2.3:

(𝑎, 𝑏, 𝑧) ↦ (𝑎, 𝑏, 𝑧 ⊕ (𝑎 + 𝑏)) (37)

where it is understood that 𝑛 is a bitstring encoding of the number 𝑛. Of course,
we still need to characterize the size of each bitstring, and the actual behavior of
the “+” operator (signed, unsigned, etc).

The procedure shown in Eq. (37) does not modify the input registers 𝑎 and 𝑏 but
requires an additional register 𝑧. If one does not need to retain the input register,
for the addition one can follow a possibly more compact strategy and store the
output in one of the registers:

(𝑎, 𝑏) ↦ (𝑎, 𝑎 + 𝑏). (38)

Of course, this only makes sense if the register 𝑏 is not used later on.

4.3.8 Consider an adder for numbers coded on bitstrings of size 2: 𝑎 = 𝑎1𝑎0 and 𝑏 =
𝑏1𝑏0 (with 𝑎𝑘s and 𝑏𝑘s Boolean values). We have

𝑎 = 𝑎1 ⋅ 2 + 𝑎0, 𝑏 = 𝑏1 ⋅ 2 + 𝑏0.
With a bit of thinking one can show that

𝑎 + 𝑏 = (𝑎1𝑏1 ⊕ 𝑎0𝑏0𝑎1 ⊕ 𝑎0𝑏0𝑏1) ⋅ 22 + (𝑎1 ⊕ 𝑏1 ⊕ 𝑎0𝑏0) ⋅ 2 + (𝑎0 ⊕ 𝑏0) (39)

The operator 𝑈add as in 4.2.3 can be realized with the circuit

76

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑎1
𝑎0
𝑏1
𝑏0
𝑠2
𝑠1
𝑠0

The answer is read in register 𝑠: we have 𝑎 + 𝑏 = 𝑠2𝑠1𝑠0.

4.3.9 The circuit presented in 4.3.8 was built “by hand”. In order to go further, we have
to program the adder. The simplest method is the ripple-carry adder procedure—the
procedure followed when perfoming addition “by hand” on a sheet of paper. There are
two cases:

• Base case: adding 𝑎0 and 𝑏0, yieling a result 𝑠0 and a carry 𝑐0. This is a half-adder ,
and the formulas are

𝑠0 = 𝑎0 ⊕ 𝑏0, 𝑐0 = 𝑎0𝑏0. (40)

• Inductive case: adding 𝑎𝑘+1, 𝑏𝑘+1 and the carry 𝑐𝑘 from the layer below, yielding
a result 𝑠𝑘+1 and a new carry 𝑐𝑘+1. This is a full-adder, and the formulas are

𝑠𝑘+1 = 𝑎𝑘 ⊕ 𝑏𝑘 ⊕ 𝑐𝑘 , 𝑐𝑘+1 = 𝑎𝑘𝑏𝑘 ⊕ 𝑐𝑘𝑎𝑘 ⊕ 𝑐𝑘𝑏𝑘 . (41)

Unsurprisingly, from these formulas we can recover Eq. (39). Such a construction makes
what is called a ripple-carry adder . The 2-bit adder of 4.3.8 can then be written in pseudo-
code as

s0,c0 = HA(a0,b0)
s1,c1 = FA(c0,a1,b1)
return (c1,s1,s0)

where HA is a function coding the half-adder and FA is a function coding the full-adder.
One can easily extend the procedure to any number of bits by chaining together addi-
tional full-adders.

Using the procedure described in 4.2.8, assuming 𝑉𝐻𝐴 and 𝑉𝐹𝐴 don’t require any
ancillas, we can write a reversible 2-bits adder as follows.

77

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝑎0 𝑎0 𝑎0
𝑏0 𝑏0 𝑏0
0 𝑠0 0
0 𝑐0 𝑐0 𝑐0 0
𝑎1 𝑎1 𝑎1
𝑏1 𝑏1 𝑏1
0 𝑠1 0
0 𝑐1 0
0 𝑠0
0 𝑠1
0 𝑐1

𝑉𝐻𝐴 𝑉−1𝐻𝐴

𝑉𝐹𝐴 𝑉−1𝐹𝐴

4.3.10 In term of circuit size, it is possible to show that 𝑉𝐻𝐴 = 2 ⋅ CNOT + 𝐶2-𝑋 and
𝑉𝐹𝐴 = 3 ⋅ CNOT + 3 ⋅ 𝐶2-𝑋 . For 𝑛-bits integers, the ripple-carry procedure yields a
sumber of gates of

𝑛 ⋅ 𝑉𝐻𝐴 + 𝑛 ⋅ 𝑉𝐹𝐴 + (𝑛 + 1) ⋅ CNOT = (6𝑛 + 1) ⋅ CNOT + (4𝑛) ⋅ 𝐶2-𝑋.
For the “naive” procedure of 4.3.8, we have for 2-bits integers: 4 ⋅ CNOT + 4 ⋅ 𝐶2-𝑋 .

Compared to the ripple-carry adder, the computation 𝑎0𝑏0 is performed 2 times. For
𝑛-bits integers, we will also need 𝐶3-𝑋 , 𝐶4-𝑋 , …𝐶𝑛-𝑋 , and all sub-computations would
be repeated several times. It in fact corresponds to unfolding Eqs (40) and (41): we can
see that we would end up with a quadratic number of gates.

A last strategy to generate 𝑈add would consists in using the decompositon summa-
rized in 3.3.17. As discussed in 3.3.20, the size of the generated circuit would then be of
the order of 4𝑁 , where 𝑁 is the size of the matrix. In our case, 𝑁 = 3𝑛 + 1 (3 registers
of size 𝑛 and an additional wubit to store the final carry). The circuit is therefore of size
𝑂(4 ⋅ 64𝑛).

In summary, we are back to the trade-off discussion in 3.4. The ripple-carry produces
a linear-sized circuit but with ancillas. It is possible to get rid of the ancillas, but at
the expense of a circuit of larger size. However, in this particular case, the unitary is
not arbitrary: we can rely on its internal structure to dodge an exponential asymptotic
complexity.

4.4 Amplitude Amplification

4.4.1 A typical situation met in the design of quantum algorithms is the case where the
quantum memory is the superposed state

2𝑛−1
∑
𝑖=0

𝛼𝑖 |𝑖⟩ ⊗ |𝑓 (𝑖)⟩

living in the space �⃗�⊗𝑛 ⊗ℋ , where 𝑓 ∶ 𝔹𝑛 → 𝔹 states whether 𝑖 is a solution to the
problem.

78

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.4.2 For instance, consider the problem SquaReNat:

• Input: a natural number 𝑁 , with the promise that it is a square;

• Output: the square-root of 𝑁 : the non-negative number 𝑎 such that 𝑎2 = 𝑁 .

We can define 𝑓 as follow: it inputs a bitstring 𝑥 and reads it as the binary representation
of a number 𝑗 . The value 𝑓 (𝑥) is then 1 if 𝑗2 = 𝑁 , and 0 otherwise.

4.4.3 A possible quantum algorithm to solve SquaReNat can be:

• Start with |0 … 0⟩ ∈ �⃗� 𝑛 ⊗ �⃗� .

• Apply a tower of Hadamard on the 𝑛th first qubits to get

1
√2𝑛

2𝑛−1
∑
𝑗=0

|𝑖⟩ ⊗ |0⟩ .

• Apply 𝑈𝑓 to get

1
√2𝑛

2𝑛−1
∑
𝑗=0

|𝑖⟩ ⊗ |𝑓 (𝑖)⟩ .

• Measure: if the last bit is 1, we succeed, if not, we start again.

Provided that the promise “N is a square” is held, this algorithm eventually converge to
a solution. However, because all of the coefficients are equal, the probability of success
for each run is very low: 1

2𝑛 .

4.4.4 The procedure called Amplitude Amplification, or Grover’s algorithm (from the
first person to have described it), aims at speeding up the process presented in 4.4.3 by
augmenting the amplitudes of the “good states”, i.e. the ones for which 𝑓 (𝑖) is 1. For
this, we need 3 operations on �⃗�⊗𝑛:

• an oracle 𝑂 ∶ |𝑥⟩ ↦ (−1)𝑓 (𝑥) ⋅ |𝑥⟩;
• an operator 𝑈0⊥ sending |0 … 0⟩ to |0 … 0⟩ and every other canonical basis vector
|𝑥⟩ to − |𝑥⟩;

• a tower of Hadamard 𝐻⊗𝑛.

4.4.5 Note that 𝑂 is not under the canonical form 𝑈𝑓 ∶ |𝑥⟩ ⊗ |𝑧⟩ ↦ |𝑥⟩ ⊗ |𝑧 ⊕ 𝑓 (𝑥)⟩,
but one can build it from 𝑈𝑓 using the circuit

𝑛|𝑥⟩

|1⟩
𝑈𝑓

𝐻 𝐻

(1) (2) (3) (4) (5) (6)

(42)

79

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Starting from a canonical basis state |𝑥⟩, we get:

|𝑥⟩ (1)

↦|𝑥⟩ ⊗ |1⟩ (2)

↦|𝑥⟩ ⊗ |−⟩ (3)

↦(−1)𝑓 (𝑥) |𝑥⟩ ⊗ |−⟩ (4) (from 4.2.13)

↦(−1)𝑓 (𝑥) |𝑥⟩ ⊗ |1⟩ (5)

The measurement operation on the second qubit is deterministic since the state is not
entangled with the rest of the system. We then get at (6) desired state (−1)𝑓 (𝑥) |𝑥⟩.

4.4.6 In Eq. 42, we measure the auxiliary register. If we have to repeat the circuit (and
we will have to do so for Grover), we do not have to measure it: we can reuse it since it
is back to the state |1⟩. If we reuse it for the same circuit, we can even simplify it by not
applying intermediary Hadamard gates.

4.4.7 Using the building blocks of 4.4.4, Grover’s algorithm is as follows:

|0⟩ 𝐻⊗𝑛 𝑂 𝐻⊗𝑛 𝑈⊥ 𝐻⊗𝑛
repeated many times

How many should “many times” be depends on 𝑓 .

4.4.8 Let us denote 𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 with 𝑈⊥𝜓 . What is its action? Let us consider |𝜓 ⟩ =
𝐻⊗𝑛 |0 … 0⟩. Let 𝑉|𝜓 ⟩ be the subspace generated by |𝜓 ⟩ and 𝑉⊥

|𝜓 ⟩ the orthogonal subspace.
We then have

𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 |𝜓 ⟩ = |𝜓 ⟩
Indeed:

𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 |𝜓 ⟩ = 𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 (𝐻⊗𝑛 |0⟩)
= 𝐻⊗𝑛𝑈0⊥ (𝐻⊗𝑛𝐻⊗𝑛) |0⟩
= 𝐻⊗𝑛𝑈0⊥Id |0⟩
= 𝐻⊗𝑛𝑈0⊥ |0⟩
= 𝐻⊗𝑛 |0⟩
= |𝜓 ⟩ .

Now, if |𝜙⟩ ∈ 𝑉⊥
|𝜓 ⟩, the vector 𝐻⊗𝑛 |𝜙⟩ does not contain any instance of |0...0⟩ in its

canonical decomposition. Indeed, supposed that there were such an instance. We would
then have 𝐻⊗𝑛 |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |0⊥⟩ with |0⊥⟩ ⊥ |0⟩. So

𝐻⊗𝑛 (𝐻⊗𝑛 |𝜙⟩) = 𝐻⊗𝑛 (𝛼 |0⟩ + 𝛽 |0⊥⟩)
= 𝛼𝐻⊗𝑛 |0⟩ + 𝛽𝐻⊗𝑛 |0⊥⟩

80

B. Valiron Intro to Quantum Course Notes v.2024.09.10

= 𝛼 |𝜓 ⟩ + 𝛽 |𝜓⊥⟩
with |𝜓⊥⟩ ∈ 𝑉⊥

|𝜓 ⟩. But then 𝐻⊗𝑛 (𝐻⊗𝑛 |𝜙⟩) = |𝜙⟩ is not in 𝑉⊥
|𝜓⟩: contradiction. Therefore,

𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 |𝜙⟩ = − |𝜙⟩. Indeed, 𝑈0⊥ (𝐻⊗𝑛 |𝜙⟩) = −𝐻⊗𝑛 |𝜙⟩ since 𝐻⊗𝑛 |𝜙⟩ does not
contain any instance of |0...0⟩, and is therefore orthogonal to |0...0⟩. So 𝐻⊗𝑛𝑈0⊥𝐻⊗𝑛 |𝜙⟩
= 𝐻⊗𝑛 (−𝐻⊗𝑛 |𝜙⟩) = −𝐻⊗𝑛 (𝐻⊗𝑛 |𝜙⟩) = − |𝜙⟩.

4.4.9 We are now ready to see how the algorithm is working. We start by buiding the
state |𝜓 ⟩. It can be decomposed into

|𝜓 ⟩ = |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩ (43)

The former consists in the canonical basis kets for which 𝑓 gives 1, the latter consists in
the canonical basis kets for which 𝑓 yields 0.

The state |𝜓𝑔𝑜𝑜𝑑⟩ can be decomposed into 𝜖 |𝜓 ⟩ + 𝛿 |𝜓⊥⟩, with |𝜓⊥⟩ ∈ 𝑉⊥
|𝜓⟩. From

Eq. (43) we derive that |𝜓𝑏𝑎𝑑⟩ = |𝜓 ⟩ − |𝜓𝑔𝑜𝑜𝑑⟩ = (1 − 𝜖) |𝜓 ⟩ − 𝛿 |𝜓 ⟩⊥. If there are not “too
many” solutions for 𝑓 , the amplitude 𝜖 is small.

Let us apply 𝐺 to |𝜓 ⟩:
• we first apply 𝑂: it flips around the “bad” states and turns |𝜓 ⟩ = |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩

into − |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩. , that is,
(1 − 2𝜖) |𝜓 ⟩ − 2𝛿 |𝜓⊥⟩ .

• We then apply 𝑈⊥𝜓 : it flips around the |𝜓 ⟩ axis and changes the sign of |𝜓⊥⟩: we
get

(1 − 2𝜖) |𝜓 ⟩ + 2𝛿 |𝜓⊥⟩ ,
that is,

(3 − 4𝜖) |𝜓𝑔𝑜𝑜𝑑⟩ + (1 − 4𝛿) |𝜓𝑏𝑎𝑑⟩
If 𝜖 is small enough, the amplitude of “good” states got increased. We can draw a geo-
metrical intuition as shown in Fig. 9: Two symmetries gives a rotation in the direction of
the “good” states. If we iterate the process, we get closer and closer. If we do too much,
we go too far and the amplitude starts decreasing.

4.4.10 One can compute the optimal number of iterations of 𝐺 . If there are 𝑘 values 𝑥
such that 𝑓 (𝑥) = 1, the optimal is

𝑟 ∼ 𝜋
4√

2𝑛
𝑘

and we get a quadratic speedup compared to a classical approach.

81

B. Valiron Intro to Quantum Course Notes v.2024.09.10

𝐵𝑎𝑑

𝐺𝑜𝑜𝑑

|𝜓 ⟩ = |𝜓𝑏𝑎𝑑⟩ + |𝜓𝑔𝑜𝑜𝑑⟩

|𝜓𝑏𝑎𝑑⟩ − |𝜓𝑔𝑜𝑜𝑑⟩
𝑂

𝑈⊥𝜓

Figure 9: Geometric Intruition for Amplitude Amplification

4.5 Quantum Fourier Transform

4.5.1 TheQuantum Fourier Transform (QFT) is a circuit thatmoves information between
the phase and the canonical basis-ket. The circuit is the QFT, while the reversed one is
the QFT inverse. The latter can presented as a problem to solve as follows. You are given
a state on 𝑛 qubits hiding a number 𝑥 ∈ {0, … 2𝑛 − 1} as follows.

1
√2𝑛

2𝑛−1
∑
𝑘=0

𝜔𝑘𝑥 |𝑘⟩ ,

where
𝜔𝑥 = 𝑒𝑖⋅ 2𝜋2𝑛 ⋅𝑥 .

Can you (classically) retrieve the value of 𝑥?

4.5.2 The answer is yes: we can build a circuit computing the operation

1
√2𝑛

2𝑛−1
∑
𝑘=0

𝜔𝑘𝑥 |𝑘⟩ ⟼ |𝑥⟩

(with the least significant bit on the left in |𝑥⟩).

82

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.5.3 Let us try with 𝑛 = 1: the hidden value 𝑥 is then 0 ou 1. The state of the system
can be rewritten as

1
∑
𝑘=0

𝑒 2𝑖𝜋2 𝑘𝑥 |𝑘⟩ = |0⟩ + (−1)𝑥 |1⟩ .

To get back |𝑥⟩, an Hadamard gate is enough.

4.5.4 Let us try with 𝑛 = 2. The hidden value 𝑥 is then 0, 1, 2 or 3. In binary notation,
⌊𝑥⌋2 = 𝑥1𝑥2, i.e. 𝑥 = 2𝑥1 + 𝑥2. The input state on two qubits is

2𝑛−1
∑
𝑘=0

𝑒 2𝑖𝜋2𝑛 𝑘𝑥 |𝑘⟩

=
3
∑
𝑘=0

𝑒2𝑖𝜋(
𝑥1
2 +

𝑥2
4)𝑘 |𝑘⟩

=
3
∑
𝑘=0

𝑒2𝑖𝜋
𝑥1
2 𝑘𝑒2𝑖𝜋

𝑥2
4 𝑘 |𝑘⟩

=
3
∑
𝑘=0

𝑒𝑖𝜋𝑥1𝑘𝑒𝑖𝜋
𝑥2
2 𝑘 |𝑘⟩

=12(|00⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋
𝑥2
2 |01⟩ + 𝑒2𝑖𝜋𝑥1𝑒𝑖𝜋𝑥2 |10⟩ + 𝑒3𝑖𝜋𝑥1𝑒3𝑖𝜋

𝑥2
2 |11⟩)

=12 (|00⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋
𝑥2
2 |01⟩ + 𝑒𝑖𝜋𝑥2 |10⟩ + 𝑒𝑖𝜋𝑥1𝑒3𝑖𝜋

𝑥2
2 |11⟩)

=12 (|0⟩ + 𝑒𝑖𝜋𝑥2 |1⟩) ⊗ (|0⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋
𝑥2
2 |1⟩)

=12 (|0⟩ + (−1)𝑥2 |1⟩) ⊗ (|0⟩ + (−1)𝑥1𝑒𝑖𝜋
𝑥2
2 |1⟩) .

Note how the memory state is separable:

• Applying Hadamard on the first qubit, we retrieve |𝑥2⟩.
• If it were not for the phase 𝑒𝑖𝜋

𝑥2
2 , we could get |𝑥1⟩ with an Hadamard. We first

need to get rid of the phase, and this can be done with the controlled rotation
𝐶-𝑅−12 , where

𝑅𝑛 = (1 0
0 𝑒𝑖 2𝜋2𝑛 𝑥2) .

Summarizing, to get back |𝑥2𝑥1⟩ one can use the circuit

|𝑥2⟩

|𝑥1⟩

1
√2(|0⟩ + (−1)𝑥2 |1⟩) 𝐻

1
√2(|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥2
2 |1⟩) 𝑅−12 𝐻

(1) (2) (3)

(44)

83

B. Valiron Intro to Quantum Course Notes v.2024.09.10

At each step, the memory is changed towards the goal:

• at (1): |𝑥2⟩ ⊗ 1
√2(|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥2
2 |1⟩);

• at (2): |𝑥2⟩ ⊗ 1
√2(|0⟩ + (−1)𝑥1 |1⟩);

• at 3: |𝑥2⟩ ⊗ |𝑥1⟩.
Note that the bits of 𝑥 are read from right to left!

4.5.5 The situation carries over for larger 𝑛: the state of the system is in fact separable,
and the bits of 𝑥 can be recovered one by one, using more and more controlled rotations
to correct for the additional phases. For instance, at 𝑛 = 3 the state of the system is

1
√23

(|0⟩ + (−1)𝑥3 |1⟩) ⊗ (|0⟩ + (−1)𝑥2𝑒𝑖𝜋
𝑥3
2 |1⟩) ⊗ (|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥2
2 𝑒𝑖𝜋

𝑥3
4 |1⟩) .

One can recover |𝑥3𝑥2𝑥1⟩ using the circuit

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝑅−12 𝐻

𝑅−13 𝑅−12 𝐻

(45)

4.5.6 Remember 2.6.9: the circuit of Eq. (45) can be equivalently rewritten as

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻 𝑅−12 𝑅−13

𝐻 𝑅−12

𝐻

(46)

4.5.7 This structure generalizes to 𝑛 qubits: the circuit calledQFT inverse can be defined
for all 𝑛 in a similar manner, with blocks of increasing sizes. For instance, for 𝑛 = 5 we
get the circuit

|𝑥5⟩

|𝑥4⟩

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝑅−12 𝐻

𝑅−13 𝑅−12 𝐻

𝑅−14 𝑅−13 𝑅−12 𝐻

𝑅−15 𝑅−14 𝑅−13 𝑅−12 𝐻

(47)

84

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.5.8 Reversing the circuit, we get the Quantum Fourier Transform, or QFT . It imple-
ments the map

|𝑥𝑛…𝑥1⟩ ⟼
2𝑛−1
∑
𝑘=0

𝑒 2𝑖𝜋2𝑛 𝑘⌊𝑥1…𝑥𝑛⌋2 |𝑘⟩ ,

where ⌊𝑥1…𝑥𝑛⌋2 = ∑𝑛
𝑘=1 𝑥𝑘2𝑛−𝑘 . For 𝑛 = 5, the circuit is then the inverse of the one in

Eq. (47):

|𝑥5⟩

|𝑥4⟩

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝐻 𝑅2

𝐻 𝑅2 𝑅3

𝐻 𝑅2 𝑅3 𝑅4

𝐻 𝑅2 𝑅3 𝑅4 𝑅5

(48)

4.6 Phase Estimation

4.6.1 Consider the problem PhaseEstimation, defined as follows

Input A unitary 𝑈 , an eigenvector |𝜓 ⟩ and a natural number 𝑛 ∈ ℕ.

Output The phase of the corresponding eigenvalue up to 𝑛 bits of precision. 1.9.3

The algorithm QPE (for Quantum Phase Estimation) proposes a circuit for solving the
problem.

4.6.2 The algorithm is based on the following property of 𝐶-𝑈 :

𝐶-𝑈 ((𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |𝜓 ⟩) = 𝐶-𝑈 (𝛼 |0⟩ ⊗ |𝜓 ⟩ + 𝛽 |1⟩ ⊗ |𝜓 ⟩)
= 𝛼 ⋅ 𝐶-𝑈 (|0⟩ ⊗ |𝜓 ⟩) + 𝛽 ⋅ 𝐶-𝑈 (|1⟩ ⊗ |𝜓 ⟩)
= 𝛼 ⋅ (|0⟩ ⊗ |𝜓 ⟩) + 𝛽 ⋅ (|1⟩ ⊗ (𝑈 |𝜓 ⟩))
= 𝛼 ⋅ (|0⟩ ⊗ |𝜓 ⟩) + 𝛽 ⋅ (|1⟩ ⊗ (𝑒2𝑖𝜋𝜔 |𝜓 ⟩))
= 𝛼 ⋅ (|0⟩ ⊗ |𝜓 ⟩) + 𝛽𝑒2𝑖𝜋𝜔 ⋅ (|1⟩ ⊗ |𝜓 ⟩)
= (𝛼 |0⟩ + 𝛽𝑒2𝑖𝜋𝜔 |1⟩) ⊗ |𝜓 ⟩ .

Note the maybe counterintuitive fact that on this particular shape of input, 𝐶-𝑈 only
changes the phase of the control qubit.

4.6.3 To understand how this works, let us consider that 𝜔 is 0.𝑥1𝑥2 in binary form:

𝜔 = 𝑥1
2 + 𝑥2

4 .

Let |𝜓 ⟩ be the corresponding eigenvector. We then have

𝑈 |𝜓 ⟩ = 𝑒2𝑖𝜋𝜔 |𝜓 ⟩

85

B. Valiron Intro to Quantum Course Notes v.2024.09.10

= (−1)𝑥1𝑒𝑖𝜋
𝑥2
2 |𝜓 ⟩ ,

𝑈 2 |𝜓 ⟩ = (−1)𝑥1𝑒𝑖𝜋
𝑥2
2 (𝑈 |𝜓 ⟩)

= (−1)𝑥2 |𝜓 ⟩ .
Note how the two coefficients are akin to the input of the circuit of Eq. (44). It is not
exactly of the right form, but with the remark of 4.6.2, we can can derive the circuit

𝑚

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓 ⟩ |𝜓 ⟩

𝐻
QFT−1

𝐻

𝑈 2 𝑈

(1) (2) (3) (4)

(49)

At each step, the state of the system is

1. |0⟩ ⊗ |0⟩ ⊗ |𝜓 ⟩.
2. |+⟩ ⊗ |+⟩ ⊗ |𝜓 ⟩ = 1

2(|0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ |𝜓 ⟩.

3. 1
2 (|0⟩ + (−1)𝑥2 |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ |𝜓 ⟩.

4. 1
2 (|0⟩ + (−1)𝑥2 |1⟩) ⊗ (|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥2
2 |1⟩) ⊗ |𝜓 ⟩.

and at this step, the two first qubits are exactly the input of the circuit in Eq. (44): Ap-
plying the QFT inverse yields |𝑥2𝑥1⟩ ⊗ |𝜓 ⟩: we can retrieve 𝜔 with a measurement.

4.6.4 Once again, this generalizes. One can also show that this is also working (albeit
probabilistically) if 𝜔 is not writable on precisely 𝑛 bits. The circuit for 4 bits of precision
is

𝑚

|0⟩ |𝑥4⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓 ⟩ |𝜓 ⟩

𝐻

QFT−1
𝐻

𝐻

𝐻

𝑈 8 𝑈 4 𝑈 2 𝑈

(50)

Note how the powers of 𝑈 are powers of 2. Indeed, each power of 𝑈 corresponds to one
bit of 𝜔.

86

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.6.5 Note how in Circ. (50) the 𝐶-𝑈 𝑘 commutes: the circuit can be equivalently written
as

𝑚

|0⟩ |𝑥4⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓 ⟩ |𝜓 ⟩

𝐻

QFT−1
𝐻

𝐻

𝐻

𝑈 𝑈 2 𝑈 4 𝑈 8

(51)

We can also reorder the top wires, provided that the circuit QFT−1 is written upside down:

𝑚

|0⟩ |𝑥1⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥4⟩

|𝜓 ⟩ |𝜓 ⟩

𝐻

QFT−1
𝐻

𝐻

𝐻

𝑈 𝑈 2 𝑈 4 𝑈 8

(52)

with

QFT−1 = QFT−1 (53)

4.6.6 Let us write QPE for the unitary realized by the circuit of 4.6.4. In particular

QPE(|0000⟩ ⊗ |𝜓 ⟩) = |𝑥4𝑥3𝑥2𝑥1⟩ ⊗ |𝜓 ⟩ .
Note how this operator is linear. Therefore, if |𝜙⟩ is another eigenvector with eivgenvalue
⌊0.𝑦1𝑦2𝑦3𝑦4⌋2, then

QPE(|0000⟩ ⊗ |𝜙⟩) = |𝑦4𝑦3𝑦2𝑦1⟩ ⊗ |𝜙⟩ ,
and

QPE (|0000⟩ ⊗ 1
√2

(|𝜙⟩ + |𝜙⟩)) = 1
√2

(|𝑦4𝑦3𝑦2𝑦1⟩ ⊗ |𝜙⟩ + |𝑥4𝑥3𝑥2𝑥1⟩ ⊗ |𝜓 ⟩).

If we were to measure the first 4 qubits, we would get both 𝑥4𝑥3𝑥2𝑥1 and 𝑦4𝑦3𝑦2𝑦1 with
probability 1/2.

87

B. Valiron Intro to Quantum Course Notes v.2024.09.10

4.7 Trotterization

4.7.1 In QPE, and we shall again use it for VQE and QAPA in Ch. 6, given a Hermitian
matrix 𝐴 we need to derive a circuit for 𝑒𝑖𝑡𝐴. An often used trick is called the Trotter-
Suzuki decomposition. It states that when 𝛿 → 0,

𝑒𝑖𝛿 ⋅(𝐴+𝐵) ≃ 𝑒𝑖𝛿 ⋅𝐴𝑒𝑖𝛿 ⋅𝐵 + 𝑂(𝛿2).
This is called the Order 1 decomposition. There are also higher-order decompositions
with smaller errors, but they are out of scope for this course.

4.7.2 When 𝐴 and 𝐵 commute: 𝐴𝐵 = 𝐵𝐴, the decomposition is exact and we have

𝑒𝑖𝛿 ⋅(𝐴+𝐵) = 𝑒𝑖𝛿 ⋅𝐴𝑒𝑖𝛿 ⋅𝐵.

4.7.3 If 𝐴 and 𝐵 do not commute, and if one cannot make 𝛿 small, one can still make
use of the decomposition with the following trick:

𝑒𝑖𝛿 ⋅(𝐴+𝐵)

= 𝑒𝑖
𝛿
𝑛 ⋅(𝐴+𝐵)+⋯+𝑖 𝛿𝑛 ⋅(𝐴+𝐵)

= (𝑒𝑖
𝛿
𝑛 ⋅(𝐴+𝐵))

𝑛
(𝐴 + 𝐵 commutes with itselt)

≃ (𝑒𝑖
𝛿
𝑛 ⋅𝐴𝑒𝑖

𝛿
𝑛 ⋅𝐵)

𝑛
+ 𝑂(𝛿2/𝑛)

4.8 Exercises

4.8.1 Using controlled-rotations, and identifying the 𝑛-sized bitstring 𝑥 with a natural
number, implements the operation

|𝑥⟩ ↦ 𝑒2𝑖𝜋 𝑥
2𝑛 |𝑥⟩ .

Explain how it works and your choice of encoding.

88

B. Valiron Intro to Quantum Course Notes v.2024.09.10

5 Algorithms for LSQ era

5.1 Simple Oracle-Based Algorithms

5.1.1 Deutsch-Josza algorithm. Suppose that we are given the set-function 𝑓 ∶
bool𝑛 → bool, with the promise that 𝑓 is either constant or balanced (i.e. the sets of
inputs mapping to 0 and 1 are of equal size). We are looking for an algorithm deciding
on the status of 𝑓 : is it constant or balanced? The catch is that 𝑓 is givenas a blackbox :
we only know how to call 𝑓 , and we don’t have any information on how it is built. For
instance, you can consider 𝑓 as a call to an external server. In such an oracle-based
algorithm, we care about the complexity in term of calls to the oracle (the function 𝑓).

5.1.2 With a classical algorithm, the only thinf we can do is call 𝑓 repeatedly on various
inputs. We need 2𝑛−1+1 calls to 𝑓 : wemight be very unlucky, and our classical procedure
might only pick the inputs mapping to the same Boolean value for the 2𝑛−1 first calls.
So we really need one more to be sure that the function is indeed constant or balanced.

5.1.3 In the quantum case, we rely on the trick discussed in Section 4.2.1, and instead of
𝑓 we use 𝑈𝑓 . Deutsch-Josza algorithm is very simple: run the circuit below, and measure
the 𝑛 first qubits. 𝑓 est constant if |0...0⟩ was measured, and balanced otherwise. This
requires one single run of the algorithm!

𝑛|0 … 0⟩ 𝐻⊗𝑛
𝑈𝑓

𝐻⊗𝑛

|1⟩ 𝐻

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 (𝑥)

Of course, one could argue that this changes the algorithm since we somehow have to
build the sub-circuit 𝑈𝑓 out of 𝑓 . But for the purpose of the measure of the oracle-
complexity, this is irrelevant.

5.1.4 Case 𝑛 = 1. Let us compute what happens when 𝑛 = 1. There are 4 possible
functions 𝑓 : The two constant functions of value 0 and 1, the identity and the bit-flip.
Originally, the state is

|0⟩ ⊗ |1⟩ .
After applying the Hadamard gates, we get

1
2 (|0⟩ + |1⟩) ⊗ (|0⟩ − |1⟩)

=12 (|00⟩ + |10⟩ − |01⟩ − |11⟩) .

The oracle is applied:

1
2 (

|0⟩ ⊗ |0 ⊕ 𝑓 (0)⟩ + |1⟩ ⊗ |0 ⊕ 𝑓 (1)⟩
− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩)

89

B. Valiron Intro to Quantum Course Notes v.2024.09.10

=12 (
|0⟩ ⊗ |𝑓 (0)⟩ + |1⟩ ⊗ |𝑓 (1)⟩

− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩) ,
followed by yet another Hadamard gate on the first wire:

1
2√2

((|0⟩ + |1⟩) ⊗ |𝑓 (0)⟩ + (|0⟩ − |1⟩) ⊗ |𝑓 (1)⟩
− (|0⟩ + |1⟩) ⊗ |1 ⊕ 𝑓 (0)⟩ − (|0⟩ − |1⟩) ⊗ |1 ⊕ 𝑓 (1)⟩)

= 1
2√2

⎛
⎜⎜
⎝

|0⟩ ⊗ |𝑓 (0)⟩ + |0⟩ ⊗ |𝑓 (1)⟩
− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |0⟩ ⊗ |1 ⊕ 𝑓 (1)⟩
+ |1⟩ ⊗ |𝑓 (0)⟩ − |1⟩ ⊗ |𝑓 (1)⟩
− |1⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ + |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩

⎞
⎟⎟
⎠

= 1
√2

(|0⟩ ⊗ 1
2 (|𝑓 (0)⟩ + |𝑓 (1)⟩ − |1 ⊕ 𝑓 (0)⟩ − |1 ⊕ 𝑓 (1)⟩)

+ |1⟩ ⊗ 1
2 (|𝑓 (0)⟩ − |𝑓 (1)⟩ − |1 ⊕ 𝑓 (0)⟩ + |1 ⊕ 𝑓 (1)⟩)) . (54)

5.1.5 Case 𝑛 = 1, with contant 𝑓 . Assume 𝑓 is constant: there is some Boolean
value 𝑏 such that 𝑓 (𝑥) = 𝑏 for all 𝑥 . The formula in Eq. (54) becomes

1
√2

(|0⟩ ⊗ 1
2 (|𝑏⟩ + |𝑏⟩ − |1 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩)

+ |1⟩ ⊗ 1
2 (|𝑏⟩ − |𝑏⟩ − |1 ⊕ 𝑏⟩ + |1 ⊕ 𝑏⟩))

= 1
√2

(|0⟩ ⊗ 1
2 (|𝑏⟩ + |𝑏⟩ − |1 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩)

+ |1⟩ ⊗ 1
2(0 − 0))

= |0⟩ ⊗ 1
√2

(|𝑏⟩ − |1 ⊕ 𝑏⟩) .
Measuring the first qubit yield 0 with probability 1, as claimed in Sec. 5.1.3.

5.1.6 Case 𝑛 = 1, with non-constant 𝑓 . If the function 𝑓 is not constant, then it is
either the identity or the bit flip. In both cases, we have 𝑓 (1) = 1 ⊕ 𝑓 (0). The formula
in Eq. (54) then becomes

1
√2

⎛
⎜⎜⎜
⎝

|0⟩ ⊗ 1
2 (

|𝑓 (0)⟩ + |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ − |1 ⊕ 1 ⊕ 𝑓 (0)⟩)

+
|1⟩ ⊗ 1

2 (
|𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ + |1 ⊕ 1 ⊕ 𝑓 (0)⟩)

⎞
⎟⎟⎟
⎠

= 1
√2

⎛
⎜⎜⎜
⎝

|0⟩ ⊗ 1
2 (

|𝑓 (0)⟩ + |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ − |𝑓 (0)⟩)

+
|1⟩ ⊗ 1

2 (
|𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ + |𝑓 (0)⟩)

⎞
⎟⎟⎟
⎠

= 1
√2

(
|0⟩ ⊗ 0
+
|1⟩ ⊗ 1

2 (2 |𝑓 (0)⟩ − 2 |1 ⊕ 𝑓 (0)⟩)
)

= |1⟩ ⊗ 1
√2

(|𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩) .
Measuring the first qubit, we obtain 1 with probability 1.

90

B. Valiron Intro to Quantum Course Notes v.2024.09.10

5.1.7 Generalization to any 𝑛 Through the Hadamard, the state |0 … 0⟩⊗ |1⟩ is sent
to

1
√2𝑛+1

(
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |0⟩ −
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |1⟩)

and the action of the oracle gives

1
√2𝑛+1

(
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |𝑓 (𝑘)⟩ −
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩) . (55)

If 𝑓 is constant of Boolean value 𝑏, we get

1
√2𝑛+1

(
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |𝑏⟩ −
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑏⟩)

= 1
√2𝑛

(
2𝑛−1
∑
𝑘=0

|𝑘⟩) ⊗ 1
√2

(|𝑏⟩ − |1 ⊕ 𝑏⟩) ,

and the last tower of Hadamard yield

|0...0⟩ ⊗ 1
√2

(|𝑏⟩ − |1 ⊕ 𝑏⟩) .

Measuring, we indeed get 00000..000

5.1.8 Now, if 𝑓 were balanced, we can partition the set of indices {0...2𝑛 − 1} into 𝑆0∪𝑆1,
with 𝑆0 ∩ 𝑆1 = ∅, with 𝑓 (𝑥) = 𝑏 whenever 𝑥 ∈ 𝑆𝑏 . From |0 … 0⟩ ⊗ |1⟩, applying the
Hadamard gates and the oracle, we get

1
√2𝑛+1

(
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |𝑓 (𝑘)⟩ −
2𝑛−1
∑
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩)

= 1
√2𝑛+1

(∑𝑘∈𝑆0 |𝑘⟩ ⊗ |𝑓 (𝑘)⟩ − ∑𝑘∈𝑆0 |𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩
+ ∑𝑘∈𝑆1 |𝑘⟩ ⊗ |𝑓 (𝑘)⟩ − ∑𝑘∈𝑆1 |𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩)

= 1
√2𝑛+1

(∑𝑘∈𝑆0 |𝑘⟩ ⊗ |0⟩ − ∑𝑘∈𝑆0 |𝑘⟩ ⊗ |1⟩
+ ∑𝑘∈𝑆1 |𝑘⟩ ⊗ |1⟩ − ∑𝑘∈𝑆1 |𝑘⟩ ⊗ |0⟩)

= 1
√2𝑛

(∑𝑘∈𝑆0 |𝑘⟩ ⊗
1
√2 (|0⟩ − |1⟩)

+ ∑𝑘∈𝑆1 |𝑘⟩ ⊗
1
√2 (|1⟩ − |0⟩)))

= 1
√2𝑛

(∑
𝑘∈𝑆0

|𝑘⟩ − ∑
𝑘∈𝑆1

|𝑘⟩) ⊗ 1
√2

(|0⟩ − |1⟩)

= 1
√2𝑛

(∑
𝑘∈𝑆0

(−1)𝑓 (𝑘) |𝑘⟩ + ∑
𝑘∈𝑆1

(−1)𝑓 (𝑘) |𝑘⟩) ⊗ 1
√2

(|0⟩ − |1⟩)

91

B. Valiron Intro to Quantum Course Notes v.2024.09.10

= 1
√2𝑛

(
2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘) |𝑘⟩) ⊗ 1
√2

(|0⟩ − |1⟩)

Yielding, after the last Hadamard gates, to

|𝜓 ⟩ ⊗ 1
√2

(|1⟩ − |0⟩)

with

|𝜓 ⟩ = 1
2𝑛

2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘)
2𝑛−1
∑
𝑗=0

(−1)𝑗⊙𝑘 |𝑗⟩ = 1
2𝑛

2𝑛−1
∑
𝑗=0

(
2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘)+𝑗⊙𝑘) |𝑗⟩

since 𝐻⊗𝑛 |𝑘⟩ = ∑2𝑛−1
𝑗=0 (−1)𝑗⊙𝑘 |𝑗⟩ (identifying indices with bitstrings, recall 1.10.8). We

are interested in the coefficient of |0 … 0⟩: it corresponds to 𝑗 = 0, so it is

(
2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘)+0⊙𝑘) = (
2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘))

and since 𝑓 is balanced, there are as many 𝑘 for whuch 𝑓 (𝑘) = 0 as there are for which
𝑓 (𝑘) = 1: the coefficient is 0. Thus, we if were to measure |𝜓 ⟩, we cannot obtain 0… 0
since the corresponding probability is 0.

5.1.9 Bernstein-Vazirani. An algorithm following the same structure is Bernstein-
Vazirani. The idea is the same as for Deutsch-Josza, except that this time you are told
that the function 𝑓 acting on a bitstring of size 𝑛 is of the form 𝑓 (𝑥1, … , 𝑥𝑛) = (𝑎1…𝑎𝑛)⊕
(𝑥1…𝑥𝑛) = 𝑎1∧𝑥1⊕⋯⊕𝑎𝑛∧𝑥𝑛, for an unknown bitstring 𝑎. The question is to figure out
this bitstring 𝑎 hidden in the oracle. With a classical algorithm, 𝑛 calls to 𝑓 are needed…
With Bernstein-Vazirani only one is needed!

5.1.10 The circuit is literally the same as for Deutsch-Josza, shown in Sec. 5.1.3. Right
before the last tower of Hadamard, according to Eq. (55) in Sec. 5.1.7 the state is

1
√2𝑛

(
2𝑛−1
∑
𝑘=0

(−1)𝑓 (𝑘) |𝑘⟩) ⊗ 1
√2

(|0⟩ − |1⟩) .

But now 𝑓 (𝑘) = 𝑎 ⊙ 𝑘: when we apply the last tower of Hadamard (see Exercise 1.10.8),
we get

|𝑎⟩ ⊗ 1
√2

(|0⟩ − |1⟩) ,
and measuring gives back the bitstring 𝑎.

92

B. Valiron Intro to Quantum Course Notes v.2024.09.10

FactoRization
Input A number 𝑁 , product of two unknown primes.
Output A divisor of 𝑁 .

ORdeRFinding
Input Two integers 𝑁 and 𝑎, co-primes.
Output The period 𝑟 of 𝑎, i.e. the smallest 𝑟 > 0 such that 𝑎𝑟 ≡ 1 mod 𝑁 .

PhaseEstimation
Input A unitary 𝑈 and an eigenvector |𝜙⟩.
Output The corresponding eigenvalue.

Table 3: Each problem is reduced to the one below.

5.2 Shor

5.2.1 Maybe the first work to have placed the subject of quantum algorithms on the
table is Shor’s factoring algorithm [Sho97]. Although it is not known whether it is NP-
complete or not, the fact is that we do not know of any classical algorithm able to factor
a number 𝑁 = 𝑝𝑞 (𝑝 and 𝑞 prime numbers) coded on 𝑛 digit in a time polynomial on
𝑛. The problem is deemed hard enough that it is at the root of the main cryptographic
protocol used to encrypt data over the internet: RSA.

5.2.2 Provided that we have at disposal a quantum co-processor with a large enough
memory holding stable logical quantum qubits, factoring is at reach in polynomial time
(at least theoretically). The algorithm is based on the concept —standard in complex-
ity theory— of polynomial reduction: the “difficult” part of factorization is encoded in
another problem that we know how to solve. This process in done in two steps: Factori-
sation is first reduced to the problem of ordre finding, and order finding is itself reduced
to the problem of phase estimation: see Table 3.

5.2.3 Step 1: Reducing Factorization to OrderFinding. This really means: “If
I know how to (efficiently) solve ORdeRFinding, I can easily factor an integer 𝑁 ”. In
fact, this part of the algorithm is purely classical, relying on mathematical properties.
Suppose that I can solve ORdeRFinding. I am given 𝑁 = 𝑝𝑞 to factor. The algorithm
proceeds as follows.

1. Select a number 1 < 𝑎 < 𝑁 at random. If it is not co-prime with 𝑁 , we are done:
we have a non-trivial factor.

2. Otherwise, it is co-primewith𝑁 . We then invoke our algorithm for ORdeRFinding.
It outputs the smallest number 𝑟 such that 𝑎𝑟 = 1 mod 𝑁 .

3. Assume 𝑟 is even and 𝑎𝑟/2 ≠ −1 mod 𝑁 . Because of mathematical properties
(see Appendix A in Nielsen and Chuang for details), this happens with probability
greater or equal to 1/2: if it fails, start back at step 1.

4. We have 𝑎2 = (𝑎𝑟/2)2 = 1 mod 𝑁 , so (𝑎𝑟/2 − 1)(𝑎𝑟/2 + 1) = 0 mod 𝑁 . Thus, 𝑁
divides (𝑎𝑟/2 − 1)(𝑎𝑟/2 + 1).

93

B. Valiron Intro to Quantum Course Notes v.2024.09.10

5. 𝑁 cannot divide 𝑎𝑟/2+1 sincewe assumed that 𝑎𝑟/2 ≠ −1 mod 𝑁 . It cannot divide
𝑎𝑟/2 − 1 either since that would make 𝑎𝑟/2 = 1 mod 𝑁 , and 𝑟 is was supposed to
be the smallest such integer. Therefore, the only remaining possibility is that one
of the factor of 𝑁 divide 𝑎𝑟/2 − 1, and the other 𝑎𝑟/2 + 1.

6. These factors can be computed with gcd(𝑁 , 𝑎𝑟/2 ± 1).

5.2.4 Step 2: Solving OrderFinding using PHaseEstimation. Note that if 𝑎 and
𝑁 are co-primes, then 𝑥 ↦ 𝑎 ⋅ 𝑥 mod 𝑁 is a reversible function (it is a permutation of
{0...𝑁 − 1}, see 1.10.3). Build the unitary 𝑈𝑎 ∶ |𝑥⟩ ↦ |𝑎 ⋅ 𝑥 mod 𝑁⟩ (multiplucation
modulo 𝑁) According to what we discussed in 4.2, we know that we can implement it
efficiently. We claim that PhaseEstimation can be used on 𝑈𝑎 to recover the order of 𝑎
modulo 𝑁 .

5.2.5 The claim is that a suitable eigenvector of 𝑈𝑎 has an eigenvalue from which the
order of 𝑎 modulo 𝑁 can be recovered. Let us consider several possibilities.

• 𝑈𝑎 |0 … 0⟩ = |0… 0⟩: the vector |0 … 0⟩ is an eigenvector of eigenvalue 1. We
cannot derive anything from this.

• Let us compute:

𝑈𝑎 (1
√𝑟 ∑

𝑟−1
𝑘=0 |𝑎𝑘 mod 𝑁⟩) = 1

√𝑟 ∑
𝑟−1
𝑘=0 |𝑎(𝑘+1) mod 𝑁⟩

= 1
√𝑟 ∑

𝑟
𝑘=1 |𝑎𝑘 mod 𝑁⟩

= 1
√𝑟 (|𝑎

𝑟 mod 𝑁⟩ + ∑𝑟−1
𝑘=1 |𝑎𝑘 mod 𝑁⟩)

= 1
√𝑟 (|1 mod 𝑁⟩ + ∑𝑟−1

𝑘=1 |𝑎𝑘 mod 𝑁⟩)
= 1

√𝑟 (|𝑎
0 mod 𝑁⟩ + ∑𝑟−1

𝑘=1 |𝑎𝑘 mod 𝑁⟩)
= 1

√𝑟 ∑
𝑟−1
𝑘=0 |𝑎𝑘 mod 𝑁⟩

We have another eigenvector of 𝑈𝑎, with eigenvalue 1. If this is still useless, we
can nonetheless use this technique and add a phase to the various elements in the
sum, in 5.2.6

5.2.6 Fix 𝑠 ∈ {0, … , 𝑟 − 1} and define

|𝜙𝑠⟩ = 1
√𝑟

𝑟−1
∑
𝑘=0

𝑒−2𝑖𝜋
𝑠⋅𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

Let us compute:

𝑈𝑎 |𝜙𝑠⟩ = 1
√𝑟

𝑟−1
∑
𝑘=0

𝑒−2𝑖𝜋
𝑠⋅𝑘
𝑟 𝑈𝑎 |𝑎𝑘 mod 𝑁⟩

94

B. Valiron Intro to Quantum Course Notes v.2024.09.10

= 1
√𝑟

𝑟−1
∑
𝑘=0

𝑒−2𝑖𝜋
𝑠⋅𝑘
𝑟 |𝑎(𝑘+1) mod 𝑁⟩

= 1
√𝑟

𝑟−1
∑
𝑘=0

𝑒−2𝑖𝜋
𝑠⋅(𝑘−1)

𝑟 |𝑎𝑘 mod 𝑁⟩

= 1
√𝑟

𝑟−1
∑
𝑘=0

𝑒2𝑖𝜋
𝑠
𝑟 𝑒−2𝑖𝜋

𝑠⋅𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

= 𝑒2𝑖𝜋
𝑠
𝑟 |𝜙𝑠⟩

This eigenvalue is better since it contains a phase parametrized by 𝑟 . As QPE gives us
the phase, with some luck we can retrieve 𝑟 out. 𝑈𝑎 have 𝑟 such eigenvectors, one for
each value of 𝑠 between 0 and 𝑟 − 1. We would just have to use the fact that

|0...0⟩ ⊗ |𝜙𝑠⟩
𝑄𝑃𝐸(𝑈𝑎)−−−−−−−→ |𝑥1...𝑥𝑛⟩ ⊗ |𝜙𝑠⟩

where 𝑥1...𝑥𝑛 is a binary representation of the phase of the eigenvalue corresponding to
|𝜙𝑠⟩, from which one could infer 𝑟 .

5.2.7 The problem is that one cannot directly use these eigenvectors |𝜙𝑠⟩ since we need
to know 𝑟 to construct them. However, what we can do is use the fact that the QPE is a
linear map, so we can place them in superposition:

|0...0⟩ ⊗ (𝛼 |𝜙𝑠⟩ + 𝛽 |𝜙𝑠′⟩)
𝑄𝑃𝐸(𝑈𝑎)−−−−−−−→ 𝛼 |𝑥1...𝑥𝑛⟩ ⊗ |𝜙𝑠⟩ + 𝛽 |𝑦1...𝑦𝑛⟩ ⊗ |𝜙𝑠′⟩

(where 𝑦1...𝑦𝑛 is a binary representation of the phase of the eigenvalue corresponding to
|𝜙𝑠′⟩). The trick consists in realizing that if we place them all in (equal) superposition, as
follows:

1
√𝑟

𝑟−1
∑
𝑠=0

|𝜙𝑠⟩ = 1
√𝑟

𝑟−1
∑
𝑠=0

1
√𝑟

𝑟−1
∑
𝑘=0

𝑒−2𝑖𝜋
𝑠∗𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

= 1
𝑟
𝑟−1
∑
𝑘=0

𝑟−1
∑
𝑠=0

𝑒−2𝑖𝜋
𝑠∗𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

= 1
𝑟
𝑟−1
∑
𝑘=0

(
𝑟−1
∑
𝑠=0

𝑒−2𝑖𝜋
𝑠∗𝑘
𝑟) |𝑎𝑘 mod 𝑁⟩ (56)

then the inner (red) sum is equal to 𝑟 if 𝑘 = 0, and 0 otherwise (because it is a sum of all
of the roots of unity). Therefore, in Eq (56) all the terms are nul except when 𝑘 = 0: we
get

1
√𝑟

𝑟−1
∑
𝑠=0

|𝜙𝑠⟩ = 1
𝑟 (𝑟 |𝑎

0 mod 𝑁⟩) = |1⟩𝑛

(where the encoding of 1 on 𝑛 qubits is |0...01⟩).

95

B. Valiron Intro to Quantum Course Notes v.2024.09.10

If we run QPE(𝑈𝑎) on this input, we “compute” all of the phases at once. Consider
two registers, the first one for retrieving the 𝜔 of the eigenvalue and the second one for
the eigenvector. We have

𝑄𝑃𝐸(𝑈𝑎) (|0...0⟩ ⊗ |𝜙𝑠⟩) = |𝑠/𝑟⟩ ⊗ |𝜙𝑠⟩
where by |𝑠/𝑟⟩ we mean the approximation of 𝑠/𝑟 over the corresponding number of
qubits. Then

𝑄𝑃𝐸(𝑈𝑎) (|0...0⟩ ⊗ 1
√𝑟

𝑟−1
∑
𝑠=0

|𝜙𝑠⟩) = 1
√𝑟

𝑟−1
∑
𝑠=0

𝑄𝑃𝐸(𝑈𝑎) (|0...0⟩ ⊗ |𝜙𝑠⟩)

= 1
√𝑟

𝑟−1
∑
𝑠=0

|𝑠/𝑟⟩ ⊗ |𝜙𝑠⟩

Measuring the first register, we get one of the 𝑠
𝑟 (for the sake of the discussion, assume

that the decomposition on 𝑛 bits is exact)
For instance, if 𝑟 = 4, there are exactly 4 elements in the sum: measuring, we get

0/4, 1/4, 2/4 and 3/4.
• On 2 bits, this is 00, 01, 10 and 11.
• On 3 bits, this is 000, 010, 100 and 110 (since 0.𝑥1𝑥2𝑥3 = 𝑥1

2 + 𝑥2
4 + 𝑥3

8)

If we were to perform many measurements (for 3 bits) and collecting the results, we
would get the following plot

nber of results

000 001 010 011 100 101 110 111

with equiprobable results 000, 010, 100 and 110. If the decomposition were not exact (for
instance when 𝑟 = 3), we would instead get a less precise plot with 3 peaks but not as
sharp. Possibly then 3 bits would not be enough to distinguish them, and we would need
to get to 5 or 6 bits of precision.

In any case, when the precision is high enough, one can “read out” the period 𝑟 of
𝑎 mod 𝑁 from the plot, if we were to run enough computation.

96

B. Valiron Intro to Quantum Course Notes v.2024.09.10

5.2.8 However, in a concrete use-case we cannot afford to perform enough computa-
tions to draw such a plot. Instead, Shor’s algorithm is run once, and then one retrieves
a possible estimate for 𝑠/𝑟 , one uses the algorithm of continued fractions.8 to get a pu-
tative value 𝑟 , and one tests whether this gives a factor of 𝑁 . If not, we start over. With
a high-enough probability, this succeeds.

5.3 HHL

5.3.1 A slightly more involved algorithm relying on QPE is HHL, initials of the author’s
names: Harrow, Hassidim, Lloyd [HHL09]. This algorithm solves a linear system of equa-
tion with a complexity arguably better than the one offered by classical algorithms.

5.3.2 The problem can be stated as follows. Consider an hermitian matrix 𝐴 and a

vector �⃗�: we want to solve the equation

𝐴 ⋅ 𝑥 = �⃗�.
Note that if 𝐴 were not hermitian, we can reduce the problem to the case where the
matrix is

(0 𝐴
𝐴∗ 0)

(see 5.4.1)

5.3.3 To make use of a quantum co-processor, the idea is to code the vectors �⃗� and 𝑥 as

the coefficients of a ket-vector. For instance assume that �⃗� is the vector

⎛
⎜⎜
⎝

𝑏0
𝑏1
𝑏2
𝑏3

⎞
⎟⎟
⎠
.

The vector is stored in a 2-qubit register as

|𝑏⟩ = 𝑏0 |00⟩ + 𝑏1 |01⟩ + 𝑏2 |10⟩ + 𝑏3 |11⟩

modulo some renormalization. In the rest, we assume that �⃗� is of norm 1.

5.3.4 Complexity-wise, the algorithm is better than classical ones in the following sense.
If

• 𝑁 is the size of the system

• 𝑠 is the number of non-zero elements in a line of 𝐴
• 𝜅 is the condition number of𝐴 (i.e. the ration between the largest and the smallest

eigenvalue of 𝐴)

8See e.g. https://en.wikipedia.org/wiki/Continued_fraction#Best_rational_approximations

97

B. Valiron Intro to Quantum Course Notes v.2024.09.10

• 𝜖 the allowed error

then the complexity are

• In the classical case: 𝒪(𝑁 𝑠𝜅 log(1/𝜖))
• In the quantum case: 𝒪 (log(𝑁)𝑠2𝜅2/𝜖) for HHL.

In summary, we get an exponential gain with respect to the size of the matrix. In theory.

5.3.5 General idea. Since the matrix𝐴 is hermitian, according to 1.9.4 it can be writ-
ten as

𝐴 =
𝑁−1
∑
𝑗=0

𝜆𝑗 |𝑢𝑗⟩ ⟨𝑢𝑗 |

with the 𝜆𝑗s being real numbers and {|𝑢𝑗⟩}𝑗 an orthonormal basis. Provided that none
of the 𝜆𝑗 are zero (which would make the condition number infinite), we can therefore
safely consider that 𝐴 admits an inverse, and in fact

𝐴−1 =
𝑁−1
∑
𝑗=0

𝜆−1𝑗 |𝑢𝑗⟩ ⟨𝑢𝑗 |

Now, |⃗𝑏⟩ can be decompose in the basis {|𝑢𝑗⟩}𝑗 . For instance,

|⃗𝑏⟩ =
𝑁−1
∑
𝑗=0

𝑏𝑗 |𝑢𝑗⟩

with 𝑏𝑗 ∈ ℂ. We can then write |𝑥⟩ as

|𝑥⟩ = 𝐴−1 |⃗𝑏⟩ =
𝑁−1
∑
𝑗=0

𝜆−1𝑗 𝑏𝑗 |𝑢𝑗⟩ .

5.3.6 Can we consider that we solve the problem? If this mathematical development
gives us a formal presentation of |𝑥⟩, it does not say how to compute the various pieces:
it only say that “they exist” and that when combined they give a solution |𝑥⟩ to the prob-
lem. The objective of the algorithm HHL is to provide a computational mean to attain
such a |𝑥⟩. It is however important to emphasize right away that HHL will not derive
the |𝑢𝑗⟩s, the 𝑏𝑖s and the 𝜆𝑗s. It will only rely on implicit mechanisms that manipulate
them, without having to spell them out. At the end of the computation, a register will
be set in state |𝑥⟩, solution to the problem. But everything will happen implicitely.

5.3.7 Structure of the circuit. We need two parameters, real values to calibrate the
system: 𝑡 and 𝐶 . Their mean will be explained later on. The structure of the circuit is as
follows.

98

B. Valiron Intro to Quantum Course Notes v.2024.09.10

|⃗𝑏⟩𝑏

|0⟩𝑒𝑖𝑔

|0⟩𝑖𝑛𝑣

register for 𝑏

register for 𝜆𝑗

register for inversion

QPE QPE−1

Inv

The register inv contains a single qubit. The register b contains 𝑛 bits, when 𝑁 = 2𝑛.
The size of the register eig depends on the desired precision.

The sub-circuit QPE stands for the quantum phase estimation as in 4.6.1, applied to
the unitary 𝑒𝑖𝑡𝐴. The parameter 𝑡 aims at ensuring that the eigenvalues of 𝑡𝐴 are “not too
large” and that QPE succeeds. The subcircuit Inv stands for any circuit implementing
the operation

Inv ∶ |0⟩𝑖𝑛𝑣 ⊗ |𝑟⟩𝑒𝑖𝑔 ⟼ (√1 − 𝐶2
𝑟2 |0⟩𝑖𝑛𝑣 + 𝐶

𝑟 |1⟩𝑖𝑛𝑣) ⊗ |𝑟⟩𝑒𝑖𝑔

where 𝐶 is chosen small enough so that

• this makes sense: we need 𝐶
𝑟 to be within 0 and 1 for the values of 𝑟 we care about

(see below).

• yet the amplitudes corresponding to the subspace |1⟩𝑖𝑛𝑣 are as large as possible
(so that Step 5 in 5.3.10 succeeds with the highest probability).

5.3.8 The operation Inv. If we define the angle 𝜃𝑟 as 2 arcsin(𝐶/𝑟), the action of Inv is
“just” a rotation 𝑅𝑦 (𝜃𝑟) parameterized by 𝑟 . In 4.2, instead of a rotation 𝑅𝑦 the action was 2.5.7

a bit-flip: we can suggest two methods to realize a circuit for Inv replacing the bit-flip
with suitable rotations.

Following the strategy in 4.2.6, if the eig register holds two qubits, and if we consider
that |𝑟0𝑟1⟩ corresponds to the real value 𝑟0

2 + 𝑟1
4 , the value 𝑟 can take 4 values: 0, 1/4, 1/2

and 3/4, corresponding respectively to the states |00⟩, |01⟩, |10⟩ and |11⟩. The circuit is
then

|𝑟0⟩
|𝑟1⟩

𝑅𝑦 (𝜃1/4) 𝑅𝑦 (𝜃1/2) 𝑅𝑦 (𝜃3/4)

The size of the circuit is however exponential on the size of the register eig. Of we can
afford auxiliary qubits, one can rely on the structure of the function 𝜃 to build a circuit
𝑉𝜃 as in 4.2.8, and instead produce a circuit of size polynomial on the size of the register
eig (albeit with a high overhead).

99

B. Valiron Intro to Quantum Course Notes v.2024.09.10

5.3.9 Beware! The problem is always the same: the encoding of natural numbers (or,
for that matter, real numbers) on bitstrings relies on seemingly arbitrary conventions
(see 4.3.2). When implementing an algorithm, one has to be careful about choosing the
same notation for all of its subparts. Here, we have to choose the same ones for QPE
and Inv.

5.3.10 Overview of the algorithm.

1. At first we have |0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |⃗𝑏⟩𝑏 = ∑𝑗 𝑏𝑗 |0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏
2. We apply QPE with the matrix

𝑈 = 𝑒𝑖𝐴𝑡 =
𝑁−1
∑
𝑗=0

𝑒𝑖𝜆𝑗 𝑡 |𝑢𝑗⟩ ⟨𝑢𝑗 | =
𝑁−1
∑
𝑗=0

𝑒2𝑖𝜋
𝜆𝑗 𝑡
2𝜋 |𝑢𝑗⟩ ⟨𝑢𝑗 |

(remember: QPE recovers the phase 𝜔 of an eigenvalue 𝑒2𝑖𝜋𝜔).
Note how we use here the calibration parameter 𝑡 . Its purpose is to adjust the
values 𝜆𝑗s to have them fit inside the register eig and minimizing the error.

Assuming that there are no precision error, we now have

∑
𝑗
𝑏𝑗 |0⟩𝑖𝑛𝑣 ⊗ |𝜆𝑗 𝑡2𝜋 ⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏

3. We then use the sub-circuit Inv discussed in 5.3.7 and whose action is

Inv∶ |0⟩𝑖𝑛𝑣 ⊗ |𝑟⟩𝑒𝑖𝑔 ↦ (√1 − 𝐶2
𝑟2 |0⟩𝑖𝑛𝑣 +

𝐶
𝑟 |1⟩𝑖𝑛𝑣) ⊗ |𝑟⟩𝑒𝑖𝑔

This uses the second calibration parameter: the value 𝑟 is potentially very small:
we need to renormalize to get to a number between 0 and 1.
In any case, after the action of Inv, we have

∑
𝑗
𝑏𝑗 (

√
1 − (2𝜋𝐶)2

(𝜆𝑗 𝑡)2
|0⟩𝑖𝑛𝑣 + 2𝜋𝐶

𝜆𝑗 𝑡
|1⟩𝑖𝑛𝑣) ⊗ |𝜆𝑗 𝑡2𝜋 ⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏

4. We then apply the inverse of the first QPE circuit: this uncomputes the |𝜆𝑗 𝑡⟩s. We
have

∑
𝑗
𝑏𝑗 (

√
1 − (2𝜋𝐶)2

(𝜆𝑗 𝑡)2
|0⟩𝑖𝑛𝑣 + 2𝜋𝐶

𝜆𝑗 𝑡
|1⟩𝑖𝑛𝑣) ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏

which is

∑
𝑗
𝑏𝑗
√
1 − (2𝜋𝐶)2

(𝜆𝑗 𝑡)2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏 +∑

𝑗
𝑏𝑗 2𝜋𝐶𝜆𝑗 𝑡

|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏

100

B. Valiron Intro to Quantum Course Notes v.2024.09.10

= ∑
𝑗
𝑏𝑗
√
1 − (2𝜋𝐶)2

(𝜆𝑗 𝑡)2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏 +

2𝜋𝐶
𝑡 ∑

𝑗

𝑏𝑗
𝜆𝑗

|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏

= ∑
𝑗
𝑏𝑗
√
1 − (2𝜋𝐶)2

(𝜆𝑗 𝑡)2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢𝑗⟩𝑏 +

2𝜋𝐶
𝑡 |1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗∑

𝑗

𝑏𝑗
𝜆𝑗

|𝑢𝑗⟩𝑏

5. We then measure the register inv in the canonical basis.

In the case where the result is 1, accounting for the renormalization factor

𝜂 = 𝑡
2𝜋𝐶

√
∑𝑗

𝑏2𝑗
𝜆2𝑗

we have

|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗∑
𝑗

𝜂𝑏𝑗
𝜆𝑗

|𝑢𝑗⟩𝑏 .

We therefore get the |𝑥⟩ in a state corresponding to 𝑥 , modulo the renormalization
factor 𝜂.

6. In case we are interested in 𝜂, this value can be recovered from the probability to
measure 1 in Step 5.

5.3.11 This algorithm follows a post-selection strategy: we only know if we succeed
after the measure of the register inv. If we get 0, we failed and we have to start over.

5.3.12 One remaining question is: what can we do with |𝑥⟩? The coefficients are not
classically available, and recovering them is costly. The HHL algorithm offers a use-case:
instead of trying to recover these coefficients, one might want to compute the scalar
product of 𝑥 with a third vector 𝑟 . This can be done with the quantum co-processor
without having to extract the coefficients of 𝑥…See the original paper [HHL09] for de-
tails.

5.3.13 An example. A working example is

𝐴 = (1 −1/3
−1/3 1)

and

�⃗� = (1
0)

The solution 𝑥 is

(9/8
3/8) .

To encode the problem we only need one single qubit for �⃗�, and its state is |⃗𝑏⟩𝑏 = |0⟩𝑏 .

101

B. Valiron Intro to Quantum Course Notes v.2024.09.10

For the parameters, we can choose 𝑡 = 2𝜋 3
8 et 𝐶 = 1

4 : the calculations add up. We
pick a register eig with two qubits, since

𝐴(1
1) = 2

3 (
1
1) and then 𝜆1 = 2/3.

𝐴(1
−1) = 4

3 (
1
−1) and then 𝜆2 = 4/3.

This means that 𝜆1𝑡
2𝜋 = 1/4 and 𝜆2𝑡

2𝜋 = 1/2. Therefore, with two bits one can store

each of these values in binary as 0.𝑏1𝑏2 ≡ 𝑏1
2 + 𝑏2

4 . Since 1/4 is 0.01 in binary and 1/2 is
0.10 in binary, the expected register states for eig are |01⟩ and |10⟩, fitting on two qubits.

If you follow my lecture, you might be asked to do a lab-session demonstrating how
the algorithm works on this contrived example.

5.4 Exercises

5.4.1 Recall 5.3.2: When 𝐴 is not Hermitian, show how one can recover a solution for

the equation 𝐴 ⋅ 𝑥 = �⃗� using HHL, by considering instead

(0 𝐴
𝐴∗ 0) .

102

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6 Algorithms for NISQ era

6.1 Variational Algorithms

6.1.1 In Shor’s algorithm, we build one single circuit, once for all. The circuit depends
on the size of the input (we would not use the same circuit to factor 15 and to factor
100970708303), but once te circuit is built, it is used over and over again without change,
until the algorithm succeeds. HHL or Grover are similar: a circuit is carefully crafted
and then used over and over.

6.1.2 Another class of algorithms are the variational algorithms. In such a model, the
circuit is updated each time we need to use it again. The idea is to refine the circuit
to get closer and closer to the solution to the problem. They can be regarded as opti-
mization techniques: instead of getting closer and closer to an optimal ket-vector (which
we cannot manipulate directly), the algorithm optimize a circuit computing the desired
ket-vector.

6.1.3 Variational algorithms are particularly well-suited for the NISQ regime of quan-
tum computation (Noisy Intermediate Scale Quantum, see 3.8.2): they usually do not re-
quire very large quantum memories, they are very flexible in term hardware, and they
are arguably resilient to noise.

6.2 VQE

6.2.1 Maybe the most typical variational algorithm is VQE , whose initials stand for
Variational Quantum Eigensolver. Its objective is to find the extreman eigenvectors of
an Hermitian matrix, and it perfectly embodies Feynman’s intuition: using a quantum 1.9.5

physical system to compute quantum properties [Fey82]. Indeed, Hermitian matrices
(or Hamiltonian) are typically used to encode properties of a physical systems, and the
extremal eigenvectors of such operators capture important informations. For non-trivial
systems, the number of dimensions of the state space quickly becomes daunting on
conventional computers.

6.2.2 Optimization problems can be reduced to the quest for an extremal eigenvector
in the following way. An optimization problem is typically under the form

Maximize / minimize 𝐶(𝑥) when 𝑥 belongs to some set 𝑆
with 𝐶 a cost function outputting real values.

In the discrete, finite case, one can always pick 𝑆 = {0..2𝑛 − 1} (with potentially a
dummy padding to match a power of two in size). The function 𝐶 then simply inputs
bitstrings of size 𝑛, using for instance big-endian notation (see 4.3.2).

If one builds a diagonal hermitian matrix as 1.9.4

𝐻𝐶 = ∑
𝑥

𝐶(𝑥) |𝑥⟩ ⟨𝑥| ,

we have 𝐻𝐶 |𝑥⟩ = 𝐶(𝑥) |𝑥⟩. So

103

B. Valiron Intro to Quantum Course Notes v.2024.09.10

• Minimizing 𝐶(𝑥) consists in finding the minimal eigenvalue of 𝐻𝐶 .

• Maximizing 𝐶(𝑥) consists in finding the maximal eigenvalue of 𝐻𝐶 , therefore the
minimal eigenvalue of −𝐻𝐶 : this is the same problem (up to a change in sign).

6.2.3 The kind of problem VQE can solve could be named QuantumMinEigen:

QuantumMinEigen
Input an hermitian matrix 𝐻
Output an eigenvector |𝜓 ⟩ with minimal eigenvalue

The algorithm is very simple: it is about solving an optimization problem in the state
space. We aim at minimizing the function

𝐹 ∶ { ℋ⊗𝑛 ⟶ ℝ
|𝜓⟩ ⟼ ⟨𝜓 | 𝐻 |𝜓 ⟩ (57)

In theory this is a regular function: one can use any procedure such as gradient descent
to solve it. In practice, it is not clear how to do this efficiently.

6.2.4 Claim. Assuming that 𝜆min is the minimal eigenvalue of 𝐻 , for all ket-vector |𝜓 ⟩
we have

⟨𝜓 | 𝐻 |𝜓 ⟩ ≥ 𝜆min.
The equality is attained when |𝜓 ⟩ = |𝜓min⟩.

6.2.5 Proof of 6.2.4. According to 1.9.4, one can rewrite 𝐻 as

𝐻 = ∑
𝑗
𝜆𝑗 ⋅ |𝜓𝑗⟩ ⟨𝜓𝑗 | ,

where the |𝜓𝑗⟩s form an orthonormal basis of eigenvectors. Among them, |𝜓min⟩ is a min-
imal one. For the sake of the discussion, assume that it is the only one. We then have

𝐻 = 𝜆min ⋅ |𝜓min⟩ ⟨𝜓min| + ∑
𝑗≠min

𝜆𝑗 ⋅ |𝜓𝑗⟩ ⟨𝜓𝑗 | .

We can also decompose |𝜓 ⟩ as
|𝜓 ⟩ = 𝛼 |𝜓min⟩ + 𝛽 |𝜓⊥min⟩

where |𝜓⊥min⟩ is of norm 1 and orthogonal to |𝜓min⟩ and |𝛼 |2+|𝛽|2 = 1. The ket-vector |𝜓⊥min⟩
can be written as

|𝜓⊥min⟩ = ∑
𝑗≠min

𝛾𝑗 |𝜓𝑗⟩

with
∑
𝑗≠min

|𝛾𝑗 |2 = 1. (58)

104

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Note how 𝐻 |𝜓⊥min⟩ is orthogonal to |𝜓min⟩. Let us compute:

⟨𝜓 | 𝐻 |𝜓 ⟩ = (𝛼 ⟨𝜓min| + 𝛽 ⟨𝜓⊥min|) 𝐻 (𝛼 |𝜓min⟩ + 𝛽 |𝜓⊥min⟩)
= |𝛼|2 ⟨𝜓min| 𝐻 |𝜓min⟩ + 𝛼𝛽 ⟨𝜓⊥min| 𝐻 |𝜓min⟩ + 𝛼𝛽 ⟨𝜓min| 𝐻 |𝜓⊥min⟩ + |𝛽|2 ⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩
= |𝛼|2𝜆min ⟨𝜓min| |𝜓min⟩ + 𝛼𝛽𝜆min ⟨𝜓⊥min| |𝜓min⟩ + 0 + |𝛽|2 ⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩
= |𝛼|2𝜆min + |𝛽|2 ⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩ .

Because of the minimality assumption, we have 𝜆min ≤ 𝜆𝑗 for all 𝑗 . We also have that

⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩ = ∑𝑗 |𝛾𝑗 |2 ⟨𝜓𝑗 | 𝐻 |𝜓𝑗⟩ = ∑𝑗 |𝛾𝑗 |2𝜆𝑗 .

Since 𝜆min ≤ 𝜆𝑗 , we derive that

𝜆min = 1 ∗ 𝜆min = (∑𝑗 |𝛾𝑗 |2) 𝜆min = ∑𝑗 |𝛾𝑗 |2𝜆min ⩽ ∑𝑗 |𝛾𝑗 |2𝜆𝑗 = ⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩ .

and thus
⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩ ⩾ 𝜆min.

Summarizing,

⟨𝜓 | 𝐻 |𝜓 ⟩ = |𝛼|2𝜆min + |𝛽|2 ⟨𝜓⊥min| 𝐻 |𝜓⊥min⟩ ⩾ |𝛼|2𝜆min + |𝛽|2𝜆min = (|𝛼|2 + |𝛽|2) 𝜆min = 𝜆min

which shows that ⟨𝜓 | 𝐻 |𝜓 ⟩ is always larger than 𝜆min. This inequality becomes an equal-
ity when |𝜓 ⟩ is the eigenvector |𝜓min⟩ since

⟨𝜓min| 𝐻 |𝜓min⟩ = 𝜆min ⟨𝜓min| |𝜓min⟩ = 𝜆min.

6.2.6 Sketch of the VQE algorithm. This is where we will use the quantum co-
processor. Instead of directly manipulating a ket-state |𝜓 ⟩ to move it towards |𝜓min⟩, the
idea consists in manipulating a set of (real) parameters instead, used to specify a circuit.
This circuit is then used to compute a candidate |𝜓 ⟩. The procedure is as follows:

𝜃 ∈ ℝ𝑝 build
some circuit

evaluate |𝜓 ⟩ estimate ⟨𝜓 | 𝐻 |𝜓 ⟩
The first part generates a circuit out of 𝑝 real parameters, the second part consists in
evaluating the circuit to get the candidate ket-vector |𝜓 ⟩, and the third part estimates
the desired scalar product. The goal of VQE is to make use of the quantum co-processor
for the two last operations.

6.2.7 Structure of the circuit. For VQE, the circuit is built from an ansatz : a circuit
typically consisting of rotations and 2-qubit gates, where the rotation are parameterized
by the array of real numbers 𝜃 . There is no choice a priori on the structure of the circuit.
We only need a circuit shape that can approximate well-enough the desired extremal
eigenvector. In the context of quantum chemistry, the ansatz can for instance capitalize
on the symmetry of the problem.

105

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6.2.8 Without any knowledge on the structure of the Hermitian, we are bound tochoose
a generic ansatz, entangling enough to reach enough of the state space. On 1 qubit: we
only need 3 angles (see 2.5.9). On more qubits, we need at least one entangling gate,
typically the CNOT gate, in order to reach states that are not necessarily separable. For 2.3.6

instance, on 3 qubits, one can consider a circuit shaped in layers, as follows.

𝑢(𝜃1, 𝜃2, 𝜃3)

𝑢(𝜃4, 𝜃5, 𝜃6)

𝑢(𝜃7, 𝜃8, 𝜃9)

𝑢(𝜃10, 𝜃11, 𝜃12)

𝑢(𝜃13, 𝜃14, 𝜃15)

𝑢(𝜃16, 𝜃17, 𝜃18)

|0⟩

|0⟩

|0⟩

…

Layer 1 Layer 2

(with 𝑢 a generic unitary parameterized by 3 angles.) As we increase the number of
layers, the ansatz becomes more and more expressive, but also more and more expensive
to compute and manipulate. Indeed, optimization techniques tend to perform poorly
with a large number of parameters: this problem is known as the Barren plateau.

In any case, the circuit computes a candidate state parameterized by an array of 𝜃 ’s.
We then have a purely classical set ℝ𝑝 for some 𝑝, representing angles, from which we
build a circuit that, when run on the quantum co-processor, generates the |𝜓 ⟩ we care
about.

6.2.9 Estimating the scalar product Running the circuit on a quantum co-processor
indeed produces a ket-vector |𝜓 ⟩, but it is hidden inside the quantum memory. Estimat-
ing ⟨𝜓 | 𝐻 |𝜓 ⟩ can be done using an estimation of the amplitudes of the various basis
vectors in |𝜓 ⟩.

In this course, we focus on the case of diagonal hermitian matrices. If |𝜓 ⟩ is
|𝜓 ⟩ = ∑

𝑗
𝛼𝑗 |𝑗⟩

then
⟨𝜓 | 𝐻 |𝜓 ⟩ = ∑

𝑗
|𝛼𝑗 |2𝐶(𝑗)

and this can be computed offline, on the classical device, using an estimate of the prob-
ability distribution coming from the measure of |𝜓 ⟩.

6.2.10 In details, running the VQE algorithm consists in choosing an ansatz and build-

ing a function 𝑓 ∶ 𝜃 ↦[some real] as follows:

• Using the ansatz and the parameters 𝜃 , generate a circuit.

• Run many times (say 𝑁 times) the circuit on |00… 0⟩, followed by a measure.

106

B. Valiron Intro to Quantum Course Notes v.2024.09.10

• This gives an estimation of the probability distribution that associate to each
𝑥1, … , 𝑥𝑛 the corresponding probability 𝑝𝑥 ∈ [0, 1].

• The output of 𝑓 is built as ∑𝑥 𝑝𝑥𝐶(𝑥).
The objective is to minimize the function 𝑓 : it is a purely classical function that can
be coded in any language (such as Python) and this can be done using any suitable
optimization library.

6.3 QAOA

6.3.1 Let us take a bit of a high-level view from VQE: we start from a Hermitian, but
the ansatz is completely blind to the structure of this Hermitian. The algorithm only
uses it at the very end to adjust the parameters. One can think that maybe making a
circuit shape specific to the problem could somehow speed up the algorithm: this is the
proposal of Farhi and his co-authors with QAOA [FGG14].

6.3.2 QAOA stands for Quantum Approximate Optimization Algorithm, and can be re-
garded as a specialized VQE for optimization problems. It essentially implements the
simulation of an adiabatic evolution.

6.3.3 How it works. We make use of 2 hermitians, both acting on our 𝑛 qubits. The
first one if 𝐵 = ∑𝑛

𝑖=1 𝜎 𝑖𝑋 , where 𝜎 𝑖𝑋 is the action of 𝑋 on qubit 𝑖, and the Hamiltonian
encoding the cost function: 𝐻𝐶 = ∑𝑥 𝐶(𝑥) |𝑥⟩ ⟨𝑥|. The shape of the algorithm is very
close to VQE:

• Start from a state |𝑠⟩ = 1
√2𝑛

∑𝑥1...𝑥𝑛 |𝑥1...𝑥𝑛⟩
– this is just a tower of Hadamard acting on |000...00⟩

• Generate |𝜓 ⟩ from a circuit parameterized by two arrays 𝛽 et 𝛾 , each of 𝑝 angles

– |𝜓 ⟩ = 𝑈𝛽𝑝𝑉𝛾𝑝𝑈𝛽𝑝−1𝑉𝛾𝑝−1 ...𝑈𝛽2𝑉𝛾2𝑈𝛽1𝑉𝛾1 |𝑠⟩
– with

∗ 𝑈𝜆 = 𝑒−𝑖𝜆𝐵
∗ 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶

|𝑠⟩ |𝜓 ⟩𝑉𝛾1 𝑈𝛽1 𝑉𝛾𝑝 𝑈𝛽𝑝

• Compute ⟨𝜓 | 𝐻𝐶 |𝜓 ⟩ as for VQE.

• This series of operations can be seen as a function that inputs two arrays (𝛽, 𝛾)
and that outputs a real numbers. As for VQE, we can optimize this function (here,
we will want to MAXIMIZE it).

Seen like that, QAOA is just an instance of VQE, with a circuit that is a bit more funky
than the one we used above. The question is: why do we have a good (better) chance to
get to the right vector if we perform a maximization?

107

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6.3.4 This raises two questions:

• Is there any proof for any speedup compared to classical methods?

– No

– Some theoretical results for p=1 et p=2, with error bounds

– No speedup shown up to date

– But not proof that there are none…

• Do we at least have a guarantee on the convergence towards a solution?

– Yes, for 𝑝 ”large enough”

– To understand how it works, we need a small sidestep.

6.3.5 Sidestep: adiabatic evolution. (Disclaimer: I am not physicists. There are a
lot of caveats in what I will say, but the intuition still stands.) A physical system is subject
to an Hamiltonian 𝐻 which in our case is nothing more than a hermitian matrix. This
Hamiltonian might evolve along time: 𝐻(𝑡). The evolution of a system |𝜓𝑡⟩ is described
by the Shrödinger equation

𝑑 |𝜓𝑡⟩
𝑑𝑡 = −𝑖 ⋅ 𝐻(𝑡) |𝜓𝑡⟩

Note: if 𝐻(𝑡) is constant with value 𝐻 , the solution with initial condition |𝜓0⟩ is…
|𝜓𝑡⟩ = 𝑒−𝑖𝑡𝐻 |𝜓0⟩

(and we find back the relationship between hermitian and unitary). In any case, the
adiabatic theorem states that

Adiabatic TheoRem

If 𝐻(𝑡) varies slow enough, and if the system is at t=0 at minimal en-
ergy level (i.e. its state is a minimal eigenvector of 𝐻(0)), then at each
𝑡 its energy level is minimal (i.e. its state is a minimal eigenvector of
𝐻(𝑡).

The “slow enough” has to do with the spectral gap: the distance between the two lowest
eigenvalues. Note that one can play the same game with the maximal eigenvalue by
instead considering −𝐻(𝑡) (which is also Hermitian!).

6.3.6 Link with QAOA. We start with

|𝜓0⟩ = |𝑠⟩ = 1
√2𝑛

∑
𝑥1...𝑥𝑛

|𝑥1...𝑥𝑛⟩ = 1
√2

(|0⟩ + |1⟩) ⊗ ... ⊗ 1
√2

(|0⟩ + |1⟩)

We want to get to the eigenvector of maximal eigenvalue for 𝐻𝐶 .

6.3.7 Question: is |𝑠⟩ the maximal eigenvalue for somebody?
→ 𝐵 = ∑𝑛

𝑖=1 𝜎 𝑖𝑋 (𝜎 𝑖𝑋 is the action of 𝑋 on qubit 𝑖)
And it has all of the required properties for the adiabatic theorem to hold.

108

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6.3.8 From the adiabatic theorem we can deduce that the interpolation:
𝐻(𝑡) = 𝑡

𝑇𝐻𝐶 + (1 − 𝑡
𝑇) 𝐵

with a large enough 𝑇 will slowly send |𝑠⟩ to the desired eigenvector
→ 𝐻(0) = 𝐵 et 𝐻(𝑇) = 𝐻𝐶
Remains to understand how to do this.

6.3.9 Instead of considering 𝐻(𝑡), we shall consider a piecewise constant approxima-
tion. To not move apart from the ”correct” function, we need small eough pieces.

𝑡

𝐻 (𝑡)

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5Δ1 Δ2 Δ3 Δ4 Δ50
On each timeslot Δ𝑖, the Hamiltonian is approximated as constant. One can then say
that (according to the Shrödinger equation)

|𝜓𝑡𝑖+1⟩ ≃ 𝑒−𝑖Δ𝑖𝐻(𝑡𝑖) |𝜓𝑡𝑖⟩
and then that if we consider the slicing of [0, 𝑇] into 𝑝 slides,

|𝜓𝑇 ⟩ = 𝑒−𝑖Δ𝑝𝐻(𝑡𝑝)...𝑒−𝑖Δ2𝐻(𝑡2)𝑒−𝑖Δ1𝐻(𝑡1) |𝑠⟩
is an approximation of the maximal eigenvector of 𝐻𝐶 . We almost have the form of the
QAOA circuit

6.3.10 To conclude, we need the Trotter-Suzuki formula of 4.7 stating that

𝑒𝛿(𝐴+𝐵) = 𝑒𝛿𝐴𝑒𝛿𝐵 + 𝑂 (𝛿2)

whenever 𝛿 is small. So 𝑒−𝑖Δ𝑝𝐻(𝑡𝑝) = 𝑒−𝑖Δ𝑝(𝛼𝐵+𝛽𝐻𝐶) ≃ 𝑒−𝑖Δ𝑝𝛼𝐵𝑒−𝑖Δ𝑝𝛽𝐻𝐶 since Δ𝑝 is
supposed to be small.

6.3.11 Let us summarize: for QAOA, we build

• |𝜓 ⟩ = 𝑈𝛽𝑝𝑉𝛾𝑝𝑈𝛽𝑝−1𝑉𝛾𝑝−1 ...𝑈𝛽2𝑉𝛾2𝑈𝛽1𝑉𝛾1 |𝑠⟩
with

• 𝑈𝜆 = 𝑒−𝑖𝜆𝐵

• 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶

109

B. Valiron Intro to Quantum Course Notes v.2024.09.10

From the adiabatic theorem, we have

|𝜓𝑇 ⟩ = 𝑒−𝑖Δ𝑝𝐻(𝑡𝑝)...𝑒−𝑖Δ2𝐻(𝑡2)𝑒−𝑖Δ1𝐻(𝑡1) |𝑠⟩

We can then replace each 𝑒−𝑖Δ𝑝𝐻(𝑡𝑝) with a product𝑈𝛼𝑉𝛽 . How to choose each of these
𝛼, 𝛽 , since we do not know which Δ𝑖 and 𝑡𝑖 are optimal? This is why we consider this as
an optimization problem: a gradient descent (for instance) will figure it out for us.

6.3.12 Summary. For QAOA, we only need to build a circuit

|𝑠⟩ |𝜓 ⟩𝑉𝛾1 𝑈𝛽1 𝑉𝛾𝑝 𝑈𝛽𝑝

with

• 𝑈𝜆 = 𝑒−𝑖𝜆𝐵 → this is just a tower of 𝑋 -rotations (𝑅𝑥 -gates) with angles 𝜆
• 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶 → well, this depends on 𝐶(𝑥) !

and then we minimize a function that

• Inputs 𝛽, 𝛾
• Realize and run the corresponding circuit many times

• Get a estimation of the probability distribution

• Compute and return (an estimate of) ⟨𝜓 | 𝐻𝐶 |𝜓 ⟩
Remains to know how to build 𝑒−𝑖𝜆𝐻𝐶 .

6.3.13 To build 𝑒−𝑖𝜆𝐻𝐶 , one can capitalize on the decomposition presented in 1.10.10:
𝐻𝐶 is written as a sum of (tensors of) Pauli matrices:

𝐻𝐶 = ∑
𝐺1,…𝐺𝑛∈{𝑋 ,𝑌 ,𝑍 ,𝐼 }

ℎ𝐺1,…,𝐺𝑛 ⋅ 𝐺1 ⊗⋯ ⊗ 𝐺𝑛

with ℎ𝐺1,…,𝐺𝑛 ∈ ℝ. Note that in the very specific case of QAOA, because𝐻𝐶 is a diagonal
matrix, so thematrices𝐺𝑖’s are only among 𝐼 and𝑍 . In any case, using the Trotter-Suzuki
decomposition of 4.7, we deduce that

𝑒−𝑖𝜆𝐻𝐶 ∼ ∏
𝐺1,…𝐺𝑛∈{𝑋 ,𝑌 ,𝑍 ,𝐼 }

𝑒−𝑖𝜆ℎ𝐺1,…,𝐺𝑛 ⋅𝐺1⊗⋯⊗𝐺𝑛 .

Realizing 𝑒−𝑖𝜆𝐻𝐶 is then reduced to the implementation of an exponential of (tensors of)
Pauli matrices (see for instance 1.10.13 and 2.11.3).

110

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6.3.14 If 𝐻𝐶 can necessary be written as a linear decomposition of (tensors of) Pauli
matrices, in the context of QAOA the function 𝐶 is in general given in a form that makes
it easy to generate the decomposition: a (real) polynomials of the 𝑥𝑖’s, seen as the values
0 and 1, as follows.

𝐶(𝑥1, … , 𝑥𝑛) = ∑
𝑘
ℎ𝑘 ⋅ 𝑥𝑑1,𝑘1 ⋯𝑥𝑑𝑛,𝑘𝑛 .

The trick to go from 𝐶 to 𝐻𝐶 is to change the 𝑥𝑗 ’s with linear functions

𝑋𝑗 ∶
ℋ⊗𝑛 → ℋ⊗𝑛

|𝑥1…𝑥𝑛⟩ → { |𝑥1…𝑥𝑛⟩ if 𝑥𝑗 = 1
0 else

and the multiplications with function composition. We then have:

𝐻𝐶 = ∑
𝑘
ℎ𝑘 ⋅ 𝑋 𝑑1,𝑘

1 ⋯𝑋 𝑑𝑛,𝑘𝑛

(where 𝑋 0𝑗 stands for the identity function). Now, note how one can encode each 𝑋𝑗 as

𝑋𝑗 = (𝐼 − 𝑍𝑗)/2
with 𝑍𝑗 = 𝐼 ⊗ ⋯ ⊗ 𝐼 ⊗ 𝑍 ⊗ 𝐼 ⊗ ⋯ ⊗ 𝐼 , the 𝑍 matrix acting on the 𝑗-th qubit. We have
our decomposition:

𝐻𝐶 = ∑
𝑘
ℎ𝑘 ⋅ ((𝐼 − 𝑍1)/2)𝑑1,𝑘 ⋯((𝐼 − 𝑍𝑛)/2)𝑑𝑛,𝑘

6.3.15 QAOApourMAXCUT. The problemwewant to solve is an optimization prob-
lem, defined as follows.

MAXCUT
Input a non-oriented graph 𝐺 = (𝑉 , 𝐸).
Output A CUT: a partition of 𝑉 into 𝑉0 ∪ 𝑉1 (and 𝑉0 ∩ 𝑉1 = ∅).
Constraint Minimize the number of edges going from 𝑉0 to 𝑉1.

6.3.16 Consider for instance the following graph.
a b

cd

• The cost of 𝑉0 = {𝑎, 𝑏}, 𝑉1 = {𝑐, 𝑑} is 2

• The cost of 𝑉0 = {𝑎, 𝑐}, 𝑉1 = {𝑏, 𝑑} is 4

• The cost of 𝑉0 = {𝑐} , 𝑉1 = {𝑎, 𝑏, 𝑑} is 2

The maximal cost one can get is 4, and one of the maxcut is 𝑉0 = {𝑎, 𝑐} , 𝑉1 = {𝑏, 𝑑}

111

B. Valiron Intro to Quantum Course Notes v.2024.09.10

6.3.17 Cuts as bitstrings In the case of MAXCUT, the cost function works over the
set of all possible cuts. A cut can be coded in a bitstring as follow. Assume 𝑉 = {0...𝑛−1}:
One can store in a boolean value 𝑥𝑖 the position of the node 𝑖 ∈ 𝑉 :

𝑖 ∈ 𝑉𝑥𝑖 .
Now, given a vector 𝑥0...𝑥𝑛−1, this vector stores where each node belongs to. For instance,
the max cut of 6.3.16 can be encoded as 0011 or 1100, assuming that 𝑎 = 0, 𝑏 = 1, 𝑐 = 2
and 𝑑 = 3.

6.3.18 TheHermitian of the cost function. In general, one canwrite a cost function

𝐶(𝑥) = ∑
(𝑖,𝑗)∈𝐸

𝑥𝑖(1 − 𝑥𝑗) + 𝑥𝑗(1 − 𝑥𝑖).

This function “counts” how many edges connect 𝑉0 and 𝑉1. The maximum cut is ob-
tained with the maximization of this function. According to 6.3.14, the corresponding
Hermitian is then

𝐻𝐶 = ∑
(𝑖,𝑗)∈𝐸

(14(1 − 𝑍𝑖)(1 + 𝑍𝑗) + 1
4(1 − 𝑍𝑗)(1 + 𝑍𝑖))

= 1
4 ∑
(𝑖,𝑗)∈𝐸

(1 − 𝑍𝑖 + 𝑍𝑗 − 𝑍𝑖𝑍𝑗 + 1 − 𝑍𝑗 + 𝑍𝑖 − 𝑍𝑗𝑍𝑖)

= 1
4 ∑
(𝑖,𝑗)∈𝐸

(2 − 2𝑍𝑖𝑍𝑗)

= 1
2 ∑
(𝑖,𝑗)∈𝐸

(1 − 𝑍𝑖𝑍𝑗)

All the terms in the sum commute: the unitary 𝑒𝑖𝜆𝐻𝐶 is then exactly

𝑒𝑖𝜆𝐻𝐶 = ∏𝑒𝜆𝑖(1−𝑍𝑖𝑍𝑗) = (some phase) ⋅∏𝑒−𝜆𝑖𝑍𝑖𝑍𝑗 .
For the corresponding circuit, see 1.10.13 and 2.11.3…

6.4 Exercises

6.4.1 MAXCUT Consider the following graph.
0 2

31
What are (or “is”) themaximum cuts here? What bitstrings do they correspond to? What
is the cost function, and the corresponding Hermitian 𝐻𝐶?

112

B. Valiron Intro to Quantum Course Notes v.2024.09.10

A Geometric series

Assume 𝑎 ≠ 1. Then we have

𝑁
∑
𝑛=0

𝑎𝑛 = 1 − 𝑎𝑁+1
1 − 𝑎 .

Indeed,

(1 − 𝑎) ⋅
𝑁
∑
𝑛=0

𝑎𝑛 = (
𝑁
∑
𝑛=0

𝑎𝑛) − 𝑎 ⋅ (
𝑁
∑
𝑛=0

𝑎𝑛)

= (
𝑁
∑
𝑛=0

𝑎𝑛) − (
𝑁
∑
𝑛=0

𝑎 ⋅ 𝑎𝑛)

= (
𝑁
∑
𝑛=0

𝑎𝑛) − (
𝑁
∑
𝑛=0

𝑎𝑛+1)

= (𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑁) − (𝑎1 + 𝑎2 + ⋯ + 𝑎𝑁 + 𝑎𝑁+1)
= 𝑎0 − 𝑎𝑁+1

= 1 − 𝑎𝑁+1.
Provided that 0 ≤ 𝑎 < 1, this sum converges as 𝑁 tends to infinity. The corresponding
geometric series then admits a closed form:

∞
∑
𝑛=0

𝑎𝑛 = 1
1 − 𝑎 .

B Exponential and Trigonometric Functions

The exponential function 𝑥 ↦ 𝑒𝑥 is defined as

𝑒𝑥 ≜
∞
∑
𝑛=0

𝑥𝑛
𝑛!

For all real number 𝑥 , the sum 𝑒𝑥 is absolutely converging. A formal argument is as
follows. For all 𝑥 , there exists a natural number 𝑁 such that 𝑥 < 𝑁 . When 𝑛 > 𝑁 + 1,
write 𝑛′ = 𝑛 − 𝑁 − 1 and 𝑥𝑛

𝑛! ≤ 𝑁 𝑛
𝑛!

𝑁
1 ⋅ … ⋅ 𝑁

𝑛 − 1 ⋅ 𝑁𝑛
𝑐𝑠𝑡 ⋅ 𝑁𝑁 ⋅ 𝑁

𝑁 + 1 ⋅ 𝑁
𝑁 + 2... ⋅

𝑁
𝑁 + 𝑛′ + 1

113

B. Valiron Intro to Quantum Course Notes v.2024.09.10

≤ 𝑐𝑠𝑡 ⋅ (𝑁
𝑁 + 1)

𝑛′

So 𝑒𝑥 can be bounded by

𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 + 𝑐𝑠𝑡 ⋅
∞
∑
𝑛′=0

(𝑁
𝑁 + 1)

𝑛′

Since 0 ≤ 𝑁/(𝑁 + 1) < 1, this is converging.

C Cosine-Sine Decomposition

The statement of Theorem 3.3.13 is as follows:

C.1 Statement
Let 𝑈 by any 𝑛 + 1-qubit unitary. One can decompose 𝑈 as

(𝐵1 0
0 𝐵2) (𝐶 −𝑆

𝑆 𝐶) (𝐴1 0
0 𝐴2

)

with𝐴, 𝐵, 𝐶 and 𝑆 𝑛-qubit unitaries, with 𝐶 and 𝑆 𝑛-qubit diagonals such that 𝑆2+𝐶2 =
Id.

C.2 Proof

C.2.1 Write 𝑈 blockwise with 𝑛-qubit-sized blocks:

𝑈 = (𝑈11 𝑈12
𝑈21 𝑈22)

Let 𝐵1𝐶𝐴1 = 𝑈11 be a diagonalization of 𝑈11: the matrices𝐴1 and 𝐵1 are unitary, and𝐷
is diagonal with real entries. Without loss of generality, we can assume the entries are
non-negative and in decreasing order (with the largest on the left). Because the columns
of the matrix 𝑈11 are pieces of columns of the unitary 𝑈 , their norms are less than 1: so
are the eigenvalues. The matrix 𝐶 can then be represented blockwise as

𝐶 = (
Id 0 0
0 𝐷 0
0 0 0

)

with 𝐷 diagonal with positive entries that are neither 0 nor 1.

C.2.2 Now, using QL and QR decompositions, choose 𝐵′2 and 𝐴′2 so to make 𝐵′2𝑈21𝐴′1
lower and 𝐵′1𝑈12𝐵′2 upper triangular. Without loss of generality, we can assume that the
former has non-negative real numbers on the diagonal, while the later has non-positive
ones. Define the matrix 𝐸 as

𝐸 = (𝐵′1 0
0 𝐵′2) (𝑈11 𝑈12

𝑈21 𝑈22) (𝐴′1 0
0 𝐴′2

) = (𝐶 𝐵′1𝑈12𝐴′2𝐵′2𝑈21𝐴′1 𝐵′2𝑈22𝐴′2
) . (59)

114

B. Valiron Intro to Quantum Course Notes v.2024.09.10

It is unitary and can then be written as blocks as follows:

𝐸 =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 𝑅1 𝑄1 𝑄2
0 𝐷 0 0 𝑅2 𝑄3
0 0 0 0 0 𝑅3
𝐿1 0 0 𝑁1 𝑁2 𝑁3
𝑃1 𝐿2 0 𝑁4 𝑁5 𝑁6
𝑃3 𝑃4 𝐿3 𝑁7 𝑁8 𝑁9

⎞
⎟
⎟
⎟
⎟
⎠

.

Unitarity imposes constraints from which we can explicit each block

C.2.3 Collapse of 1st block-row and 1st block-column . Each row in

Id 0 0 𝑅1 𝑄1 𝑄2
and each column in

Id
0
0
𝐿1
𝑃1
𝑃3

is of norm 1: this forces 𝑅1, 𝑄1, 𝑄2, 𝐿1, 𝑃1, 𝑃3 to be zero-matrices since one of the entries
is necessarily 1 (from the Id block).

C.2.4 Collapse of the last block-row. Consider the 3rd block of columns and the
last block of rows: 0

0
0
0
0

𝑃3 𝑃4 𝐿3 𝑁7 𝑁8 𝑁9
The matrix 𝐿3 is lower-triangular as follows:

𝐿3 =
⎛
⎜⎜
⎝

⋱ ⋮ ⋮ ⋮
⋯ 𝑙6 0 0
⋯ 𝑙5 𝑙4 0
⋯ 𝑙3 𝑙2 𝑙1

⎞
⎟⎟
⎠
.

Consider the column of 𝐸 ending with 𝑙1: all of its other entries are 0s. Since it is of
norm 1, 𝑙1 is 1. The last row of 𝐸 is also of norm 1: because one of its entry is 1, all other
entries are 0: the matrix 𝐿3 is

𝐿3 =
⎛
⎜⎜
⎝

⋱ ⋮ ⋮ ⋮
⋯ 𝑙6 0 0
⋯ 𝑙5 𝑙4 0
⋯ 0 0 1

⎞
⎟⎟
⎠
,

115

B. Valiron Intro to Quantum Course Notes v.2024.09.10

and the last lines of 𝑃3, 𝑃4, 𝑁7, 𝑁8 and 𝑁9 are all 0s.
A similar argument can now be used on the column of 𝐸 containing 𝑙4: we derive

that 𝑙4 is 1, and that the second-to-last line of 𝐸 contains zero everywhere except at the
position 𝑙4:

𝐿3 =
⎛
⎜⎜
⎝

⋱ ⋮ ⋮ ⋮
⋯ 𝑙6 0 0
⋯ 0 1 0
⋯ 0 0 1

⎞
⎟⎟
⎠
,

and the second-to-last lines of 𝑃3, 𝑃4, 𝑁7, 𝑁8 and 𝑁9 are all 0s. Working through all of
the rows of 𝐿3, we end up with

𝐿3 = Id, 𝑃3 = 0, 𝑃4 = 0, 𝑁7 = 0, 𝑁8 = 0, 𝑁9 = 0.
Using a symmetric argument, we can derive that

𝑅3 = −Id, 𝑄3 = 0, 𝑄2 = 0, 𝑁3 = 0, 𝑁6 = 0, 𝑁9 = 0
(For the −Id, remember that the matrix has non-positive coefficients on the diagonal).

C.2.5 So far, we simplified 𝐸 into

𝐸 =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 0 0 0
0 𝐷 0 0 𝑅2 0
0 0 0 0 0 −Id
0 0 0 𝑁1 𝑁2 0
0 𝐿2 0 𝑁4 𝑁5 0
0 0 Id 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

C.2.6 Instantiating 𝑅2. The next step is to instantiate 𝑅2 and 𝐿2. For this, consider
the second block of rows:

0 𝐷 0 0 𝑅2 0.
It is of the form

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

⋱ ⋮ ⋮ ⋮
⋯ 𝑐3 0 0
⋯ 0 𝑐2 0
⋯ 0 0 𝑐1

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

⋱ ⋮ ⋮ ⋮
⋯ 𝑟3 𝑧3 𝑧2
⋯ 0 𝑟2 𝑧1
⋯ 0 0 𝑟1

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

(60)

Because 𝐸 is unitary, the last row in Eq. (60) is of norm 1:

𝑐21 + 𝑟21 = 1.
Since 𝑐1 ≠ 1, we deduce 𝑟1 ≠ 0. Since the last and second-to-last are orthogonal, we
have 𝑟1𝑧1 = 0, so 𝑧1 = 0. The same argument on the last and third-to-last gives 𝑧2 = 0.
Proceeding similarly for all the remaining rows, we conclude that the last column of 𝑅2
is zero, except for its last element 𝑟1. Eq. (60) can then be rewritten

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

⋱ ⋮ ⋮ ⋮
⋯ 𝑐3 0 0
⋯ 0 𝑐2 0
⋯ 0 0 𝑐1

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

⋱ ⋮ ⋮ ⋮
⋯ 𝑟3 𝑧3 0
⋯ 0 𝑟2 0
⋯ 0 0 𝑟1

0 ⋯ 0
⋮ ⋮
⋮ ⋮
0 ⋯ 0

(61)

116

B. Valiron Intro to Quantum Course Notes v.2024.09.10

Using the same argument, focusing on the norm of the second-to-last row and the
fact that 𝑐2 ≠ 1, we deduce that 𝑟2 ≠ 0, and then that all elements in 𝑅2 above 𝑟2 are
null. We can proceed upwards, clearing all elements off diagonal: we deduce that 𝑅2 is
diagonal with non-zero entries, and that

𝐷2 + 𝑅22 = Id. (62)

C.2.7 Instantiating 𝐿2. Using a similar reasonning but with column in place of rows,
we can deduce that 𝐿2 is diagonal with non-zero entries, and that

𝐷2 + 𝐿22 = Id. (63)

Since all of the diagonal elementsof 𝑅2 are non-positive and ones of 𝐿2 are non-negative,
from Eq. (62) and (63) we derive that

𝑅2 = −𝐿2.

C.2.8 Let us define the diagonal matrix 𝐿2 with 𝑇 : we simplified 𝐸 into

𝐸 =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 0 0 0
0 𝐷 0 0 −𝑇 0
0 0 0 0 0 −Id
0 0 0 𝑁1 𝑁2 0
0 𝑇 0 𝑁4 𝑁5 0
0 0 Id 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

C.2.9 Collapsing 𝑁2 and 𝑁4. The next step is to show how 𝑁2 and 𝑁4 are zero-
matrices. To show 𝑁2 = 0, we consider the orthogonality of rows in

0 𝐷 0 0 −𝑇 0
with rows in

0 0 0 𝑁1 𝑁2 0
Computing the scalar product of row number 𝑖 in the latter with row number 𝑗 in the
former yields

𝑡𝑖𝑛𝑗,𝑖 = 0,
where 𝑛𝑗,𝑖 is the 𝑗, 𝑖-th element in 𝑁2 and 𝑡𝑖 the 𝑖th element on the diagonal of 𝑇 . Since
none of these diagonal elements are zero, 𝑡𝑖 ≠ 0, so 𝑛𝑗,𝑖 = 0. And this is true for all 𝑖, 𝑗 .
So 𝑁2 = 0.

We can follow the same argument with columns instead and derive that 𝑁4 = 0.

C.2.10 We then simplified 𝐸 into

𝐸 =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 0 0 0
0 𝐷 0 0 −𝑇 0
0 0 0 0 0 −Id
0 0 0 𝑁1 0 0
0 𝑇 0 0 𝑁5 0
0 0 Id 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

117

B. Valiron Intro to Quantum Course Notes v.2024.09.10

C.2.11 Instantiating 𝑁5. We can now whow how 𝑁5 is diagonal. First, consider the
scalar product of one the 𝑖th row in the block of rows

0 𝐷 0 0 −𝑇 0
and the 𝑖th row in the block of rows

0 𝑇 0 0 𝑁5 0. (64)

We get 𝑐𝑖𝑡𝑖− 𝑡𝑖𝑛𝑖,𝑖 = 0 : we deduce that 𝑛𝑖,𝑖 = 𝑐𝑖. The 𝑖th row in the block of rows of Eq. 64
has a norm of the form

𝑡2𝑖 + 𝑐2𝑖 +∑
𝑗≠𝑖

|𝑛𝑖,𝑗 |2,

supposed to be equal to 1. But since 𝑡2𝑖 +𝑐2𝑖 = 1, we deduce that all of the terms 𝑛𝑖,𝑗 with
𝑖 ≠ 𝑗 are zero: The matrix 𝑁5 is diagonal, it is in fact equal to 𝐷.

C.2.12 We then simplified 𝐸 into

𝐸 =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 0 0 0
0 𝐷 0 0 −𝑇 0
0 0 0 0 0 −Id
0 0 0 𝑁1 0 0
0 𝑇 0 0 𝐷 0
0 0 Id 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

C.2.13 Instantiating𝑁1. Remains to study𝑁1. For this, consider the fact that 𝐸∗𝐸 =
𝐸𝐸∗ = Id. Blockwise, this means 𝑁1𝑁 ∗1 = 𝑁 ∗1 𝑁1 = Id.

So if instead of 𝐴′2 we had chosen

𝐴″2 = 𝐴′2 (
−𝑁 ∗1 0 0
0 Id 0
0 0 Id

)

Then we would have gotten instead some other 𝐸′

𝐸′ =
⎛
⎜
⎜
⎜
⎜
⎝

Id 0 0 0 0 0
0 𝐷 0 0 −𝑇 0
0 0 0 0 0 −Id
0 0 0 𝐼 0 0
0 𝑇 0 0 𝐶 0
0 0 Id 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

,

of the required form.

118

B. Valiron Intro to Quantum Course Notes v.2024.09.10

References

[BK05] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal
clifford gates and noisy ancillas. Physical Review A, 71:022316, Feb 2005.

[Cle22] AndrewN. Cleland. An introduction to the surface code. SciPost Physics Lecture
Notes, 49, 2022. Part of the Quantum Information Machines Session 113 of the
Les Houches School, July 2019.

[Fey82] Richard P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(7-8):467–488, 1982.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. Technical Report MIT-CTP/4610, MIT, 2014.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical Review Letters, 103:150502, 2009.

[Kit97] Alexei Kitaev. Quantum computations: Algorithms and error correction. Rus-
sian Mathematical Surveys, 52(6):1191, 1997.

[RS16] Neil J. Ross and Peter Selinger. Optimal ancilla-free Clifford+T approxima-
tion of Z-rotations. Quantum Information and Computation, 16(11&12):901–
953, 2016.

[Shi03] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do univer-
sal quantum computing. Quantum Information and Computation, 3(1):84––92,
2003.

[Sho97] PeterW. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

119

Index

absolute value, 4
absolutely converging, 3
adder, 76
adiabatic theorem, 108
amplitude, 5
Amplitude Amplification, 79
ancillas, 38
ansatz, 69, 105
approximate universality, 53
array, 7
auxiliary qubits, 38

Barren plateau, 106
base 2, 74
Basel problem, 4
basis, 8
basis elements, 8
basis state, 23
Bell basis, 27, 49
Bell state, 27
Bernstein-Vazirani, 92
big-endian, 74
big-O, 52
bilinear map, 11
bitstrings, 74
blackbox, 89
Bloch sphere, 24

canonical basis element, 6
canonical representative element, 24
carry, 77
causality, 31
circuit synthesis, 33
classical problem, 68
Clifford, 54
CNOT, 36
coefficient, 7, 13
complex numbers, 4
complex plane, 5
complexity, 52
compute, 72
conjugate, 4
conjugate transpose, 9
control qubit, 35

controlled operation, 35
converging, 3
copy, 72
copying, 47
Cosine-Sine Decomposition, 57
cost function, 103

decoherence, 64
deferred measurement, 42
dense coding, 49
destructive measure, 38
dimension, 6
discard, 43
dual, 9

eigenvalue, 15
eigenvector, 15
encoding, 74
entangled, 27
EPR pair, 27
errors, 64
extremal, 16

family of quantum circuits, 68
field, 3
functionals, 9

garbage qubits, 72
gate-set, 53
geometric series, 4, 113
global phase, 23
Grover, 79

H, 33
Had, 33
Hadamard, 14, 33
half-adder, 77
Hamiltonian, 16, 103
Hermitian, 16
HHL, 97
Hilbert space, 8

imaginary, 4
instance, 68
internal operations, 28

120

B. Valiron Intro to Quantum Course Notes v.2024.09.10

inverse, 32

joint quantum system, 25

ket, 7
ket-notation, 9
Kronecker product, 11, 25

least significant bit, 74
lexicographic order, 10
linear map, 12
little-endian, 75
LSQ, 64

magic state, 61
magic states, 54
majority function, 71
mapping, 65, 66
maximal, 16
MBQC, 54
measurement, 28, 38
Measurement-based Computation, 54
minimal, 16
multiplexor, 57

negative controls, 36
NISQ, 64, 103
no-cloning theorem, 47
noise, 64
norm, 4

operator, 12
optimization problem, 111
oracle, 70, 79
oracle-based, 89
orthogonal, 8
orthogonality, 23
orthonormal basis, 8

parametrization, 34
Pauli, 19, 32
phase, 5, 15, 24
pointer, 21
polynomial reduction, 93
post-selection, 101

QAOA, 107
QFT, 82, 85
QPE, 85
quantum algorithm, 68

quantum bit, 21, 22
quantum circuit, 29
Quantum Fourier Transform, 82, 85
quantum gates, 28
quantum memory, 21
Quantum Phase Estimation, 85
quantum registers, 21
qubit, 22

radial representation, 5
real number, 3
reasonnable, 53
reference, 21
register, 21
repeat-until-success, 62
representative element, 23
ripple-carry adder, 77
rotations gates, 33
routing, 65, 66

S, 32
scalar product, 8
separable, 26, 27
series, 3
SHIFT basis, 26
Solovay-Kitaev algorithm, 33
space complexity, 52
spectral gap, 108
subgraph isomorphism problem, 65
surface code, 60
swap, 31
synthesis, 57

T, 33
teleportation, 47
tensor, 11
time complexity, 52
Toffoli, 36
topology, 64
tradeoffs, 60
Trotter-Suzuki, 88, 109

uncompute, 72
unequivocally distinguished, 22
unitary, 15, 28
universality, 53

variational, 103
variational algorithms, 69

121

B. Valiron Intro to Quantum Course Notes v.2024.09.10

vector space, 6
vectors, 6
VQE, 103

X, 32

Y, 32

Z, 32
zero, 3

122

	Mathematical Background
	Notations
	Sums and series
	Complex Numbers
	Vector Space
	Scalar Product
	Kets and Bras
	Kronecker product
	Linear Maps
	Hermitian and Unitary Maps
	Exercices

	Qubit-based Computation
	The Quantum Co-Processor Model
	One Quantum Bit
	Several Quantum Bits
	The Quantum Circuit Model
	Quantum Gates on 1 Qubit
	Quantum Gates on Several Qubits
	Creating New Quantum Registers
	Reading Quantum Registers
	Discarding Quantum Registers
	Cloning, Copy, Teleportation
	Exercices

	Hardware Constraints and Circuit Synthesis
	A bit of Complexity Theory
	Low-level gate-sets
	Universality of CNOT and 1-qubit rotations
	Tradeoffs: a Case-Study
	Quantum Computation with Magic States
	Measurement-Based Quantum Computation
	Classical Computation in the Co-Processor
	A Word on Hardware
	Exercises

	Structure of Quantum Algorithms
	High-Level View
	Oracles
	Encoding Natural Numbers
	Amplitude Amplification
	Quantum Fourier Transform
	Phase Estimation
	Trotterization
	Exercises

	Algorithms for LSQ era
	Simple Oracle-Based Algorithms
	Shor
	HHL
	Exercises

	Algorithms for NISQ era
	Variational Algorithms
	VQE
	QAOA
	Exercises

	Geometric series
	Exponential and Trigonometric Functions
	Cosine-Sine Decomposition
	Statement
	Proof

	References
	Index

