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1 Introduction

This set of notes encapsulates most of the material I am teaching on the topic of quantum

algorithm, quantum programming and quantum compiling. The target is a student at

Master level in Computer Science, with some acquaintance with mathematics. Section 2

attempts at covering the mathematical knowledge necessary to follow.

As additional standard, published material, I can recommend:

• [KLM07] Kaye, Laflamme and Mosca, An Introduction to Quantum Computing, Ox-
ford University Press, 2007.

• [Mer07] Mermin, Quantum Computer Science - An Introduction, Cambridge Univer-

sity Press, 2007.

• [NC02] Nielsen and Chuang, Quantum Computation and Quantum Information,
Cambridge University press, whose last edition is 2010.

Regarding quantumprogramming, a framework that is nowubiquitous is Qiskit, a python

library developed by IBM. Their online documentation and tutorials are very exhaustive

and worth a look
1
.

Finally, MBQC and linear optics are maybe not standard yet. I can however recom-

mend the following readings:

• Kok et al.’s review on quantum computation with linear optics [KMN
+
07].

• Danos, Kashefi, Panangaden and Perdrix’s chapter on MBQC [DKPP09a]. Section

4.6 in this set of notes heavily relies on this document.

1https://docs.quantum.ibm.com/guides
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2 Mathematical Background

2.1 Notations

2.1.1 The set of natural numbers is N. Addition is written “+” and multiplication “·”.
When clear, we simply use concatenation for the multiplication. For instance, 2𝑛 is 2 · 𝑛.

2.1.2 The factorial 𝑛! is 1 · 2 · 3 · 4 · . . . · 𝑛. By convention 0! = 1.

2.1.3 We assume known the notion of real number . The set of reals is denoted with R.
For the record, we recall that real numbers form a field: the set R is equipped with

• An addition “+” and a null element “0”, also called zero.

• A multiplication “·” and a neutral element “1”

• An inverse operation written (−)−1
, or

1

− , defined on all non-zero real number.

2.1.4 Real intervals are written [𝑎, 𝑏] when both 𝑎 and 𝑏 are part of the interval, and

[𝑎, 𝑏), (𝑎, 𝑏] or (𝑎, 𝑏) when the right, or the left, or both ends of the interval are not in-

cluded. Following the standard notation, we use the placeholders −∞ and∞ to represent

unbounded intervals on the left or on the right.

2.1.5 We use the representation

√
𝑥 for the square root of 𝑥, and 𝑥𝑎 for 𝑥 to the power

𝑎. The exponent 𝑎 can be negative: in this case, we mean the power of the inverse of 𝑥.

For instance, 𝑥−2 = 1

𝑥2
.

2.1.6 The 2-elements Boolean algebra is written B. Its objects are 0 and 1, standing

respectively for “False” and “True”. The “and” operation (the conjunction) is denoted

with ∧, or simply as a product “·”, or by juxtaposition: 𝑥 ∧ 𝑦 = 𝑥 · 𝑦 = 𝑥𝑦. The “or” (the

disjunction) is written ∨. The “not” (the negation) is written ¬. The exclusive or (also

known as XOR) is written with ⊕.

2.2 Sums and series

Along this document we shall be using sums over finite and infinite sets of indices. In

this section, we summarize what should be known.

2.2.1 Sum symbol. Given a function 𝑓 : N→ R, and given 𝑖 ≤ 𝑗 ∈ N, we define

𝑗∑︁
𝑛=𝑖

𝑓 (𝑛) ≜ 𝑓 (𝑖) + 𝑓 (𝑖 + 1) + · · · + 𝑓 ( 𝑗).

Provided that the limit is well-defined, we define

∞∑︁
𝑛=𝑖

𝑓 (𝑛) ≜ 𝑓 (𝑖) + 𝑓 (𝑖 + 1) + · · · ≜ lim

𝑗→∞

𝑗∑︁
𝑛=𝑖

𝑓 (𝑛)

4
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∞∑︁
𝑛=0

1

𝑛2
=
𝜋2

6

(1)

∞∑︁
𝑛=0

1

𝑛!

𝑥𝑛 = 𝑒𝑥 (2)

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛)! 𝑥

2𝑛 = cos(𝑥) (3)

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛 + 1)!𝑥

2𝑛+1 = sin(𝑥) (4)

𝑛∑︁
𝑖=0

𝑎𝑖 =
1 − 𝑎𝑛+1

1 − 𝑎 (5)

∞∑︁
𝑖=0

𝑎𝑖 =
1

1 − 𝑎 (6)

Table 1: Values for a few known series. Eq. (1) is called the Basel problem. In Eqs. (2), (4)

and (3), 𝑥 is any real number. In Eq. (5), 𝑎 ≠ 1, while Eq. (6) holds whenever 0 ≤ 𝑎 < 1.

Such a limit is called a series. If the limit is defined, we say that the series is converging.
The series is absolutely converging if

∞∑︁
𝑛=𝑖

| 𝑓 (𝑛) |

is converging.

2.2.2 Lists of known series. Table 1 summarizes the values of few known series.

Series of the form of Eq. (6) are called geometric series. Maybe the most important one

for this course is Eq. (2) that we recall here:

∞∑︁
𝑛=0

1

𝑛!

𝑥𝑛 = 𝑒𝑥 .

2.3 Complex Numbers

WewriteC for the field of complex numbers. A complex number is of the form 𝛼 = 𝑎+𝑏 ·𝑖
with 𝑎 and 𝑏 reals and 𝑖 the imaginary number: a number such that 𝑖2 = −1.

2.3.1 Conjugate. The conjugate of a complex number 𝛼 = 𝑎 + 𝑏 · 𝑖 is defined as 𝛼 =

𝑎 − 𝑏 · 𝑖. The absolute value, or the norm of 𝛼 is the non-negative, real number

|𝛼 | =
√
𝑎2 + 𝑏2.

5
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The conjugate and the absolute value are related through the property |𝛼 |2 = 𝛼 ·𝛼. Indeed
𝛼 · 𝛼 = (𝑎 + 𝑏 · 𝑖) (𝑎 − 𝑏 · 𝑖)

= 𝑎2 + 𝑎𝑏 · 𝑖 − 𝑎𝑏 · 𝑖 + (𝑏 · 𝑖) (−𝑏 · 𝑖)
= 𝑎2 − 𝑖2 · 𝑏2

= 𝑎2 + 𝑏2

2.3.2 Radial Representation. Consider the complex number 𝛼 = 𝑎+𝑏 ·𝑖, and assume

𝛼 ≠ 0. One can rewrite it as

𝛼 =
|𝛼 |
|𝛼 | (𝑎 + 𝑏 · 𝑖)

= |𝛼 | ·
(
𝑎

|𝛼 | +
𝑏

|𝛼 | · 𝑖
)

We have (
𝑎

|𝛼 |

)
2

+
(
𝑏

|𝛼 |

)
2

=
𝑎2

|𝛼 |2 +
𝑏2

|𝛼 |2

=
𝑎2 + 𝑏2

|𝛼 |2
= 1

since |𝛼 |2 = 𝑎2 + 𝑏2
. So there exists an angle 𝜃 ∈ [0, 2𝜋) such that cos(𝜃) = 𝑎

|𝛼 | and

sin(𝜃) = 𝑏
|𝛼 | , meaning that

𝛼 = |𝛼 | · (cos(𝜃) + sin(𝜃) · 𝑖)
If 𝛼 ≠ 0, there is a unique such 𝜃.

Our complex number can then be written in a canonical form

𝛼 = 𝜌 (cos(𝜃) + sin(𝜃) · 𝑖),
with 𝜌 non-negative real number:

• 𝜌 is the amplitude of 𝛼,

• 𝜃 is the phase of 𝛼.

Complex numbers can then be represented in the complex plane using a radial represen-
tation as follows.

real axis = cos

imaginary axis = sin

𝜃

𝜌

𝜋
2

𝜋 ≡ −𝜋

3𝜋
2
≡ −𝜋

2

0 ≡ 2𝜋

𝛼

6



B. Valiron Intro to Quantum Course Notes v.2025.03.04

𝑒𝑖
𝜋
2 = 𝑖 (7)

𝑒𝑖𝜋 = −1 (8)

𝑒2𝑖𝜋 = 1 (9)

𝑒𝑖(𝜃+2𝜋) = 𝑒𝑖𝜃 (10)

𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏 (11)

𝑒𝑎 = 𝑒𝑎 (12)

𝑒𝑖𝜃 = 𝑒−𝑖𝜃 (13)

𝑒𝑎𝑏 = (𝑒𝑎)𝑏 (14)

Table 2: Equalities regarding exponentiation. 𝜃 is real, 𝑎 and 𝑏 are complex values.

2.3.3 Exponentiation. The number cos(𝜃)+𝑖·sin(𝜃) can also bewritten as 𝑒𝑖𝜃 . Indeed,
remember Table 1: Replacing 𝑥 with 𝑖𝜃 in Eq. (2), the definition of 𝑒𝑥 , we get

𝑒𝑖𝜃 =

∞∑︁
𝑛=0

(𝑖𝜃)𝑛
𝑛!

=

∞∑︁
𝑛=0

(𝑖𝜃)2𝑛
(2𝑛)! +

∞∑︁
𝑛=0

(𝑖𝜃)2𝑛+1
(2𝑛 + 1)! (splitting odd and even indices)

=

∞∑︁
𝑛=0

𝑖2𝑛𝜃2𝑛

(2𝑛)! +
∞∑︁
𝑛=0

𝑖2𝑛+1𝜃2𝑛+1

(2𝑛 + 1)! (developing)

=

∞∑︁
𝑛=0

(𝑖2)𝑛𝜃2𝑛

(2𝑛)! +
∞∑︁
𝑛=0

𝑖(𝑖2)𝑛𝜃2𝑛+1

(2𝑛 + 1)! (developing)

=

∞∑︁
𝑛=0

(−1)𝑛𝜃2𝑛

(2𝑛)! +
∞∑︁
𝑛=0

𝑖(−1)𝑛𝜃2𝑛+1

(2𝑛 + 1)! (since 𝑖2 = −1)

=

∞∑︁
𝑛=0

(−1)𝑛𝜃2𝑛

(2𝑛)! + 𝑖 ·
∞∑︁
𝑛=0

(−1)𝑛𝜃2𝑛+1

(2𝑛 + 1)! (factoring by 𝑖)

= cos(𝑥) + 𝑖 · sin(𝑥) (using Eqs. (3) and (4)).

2.4 Vector Space

2.4.1 In this course, we only consider vector spaces in finite dimension over complex

numbers.

2.4.2 Let 𝑋 be a finite set {𝑒0 . . . 𝑒𝑛−1}. Each 𝑒𝑖 is called a canonical basis element. A
(complex) vector space E with basis 𝑋 consists of vectors. The dimension of the vector

space is the number of canonical basis elements in 𝑋 . A vector 𝑣 can be regarded as a

mapping from the canonical basis elements in 𝑋 to complex values. From a computer

science point of view, one can regard this vector as an association table, or as a “Python

dictionnary”:

7
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𝑣 = {e0 : 𝛼0, . . . ,en−1 : 𝛼n−1}.

We say that 𝛼𝑖 is the coefficient of 𝑣 at coordinate 𝑒𝑖 , and we write 𝑣𝑒𝑖 = 𝛼𝑖 .

2.4.3 A vector can be represented as an array. This however requires an ordering of the
canonical basis vectors. Array-like notation are discussed later, in Sec. 2.6.8.

2.4.4 The vector space E is equipped with a sum and a multiplication by a scalar:

(+) : E × E −→ E
(·) : C × E −→ E

Their action is pointwise: if 𝑏 is a canonical basis element of E, (𝑣 + 𝑤)𝑏 = 𝑣𝑏 + 𝑤𝑏 and

(𝛼 · 𝑣)𝑏 = 𝛼 · (𝑣𝑏).

2.4.5 Ket-notation. A canonical basis element 𝑒𝑖 yields a particular vector written

|𝑒𝑖⟩ and called “ket-𝑒𝑖”: it is the vector of coefficient 1 at 𝑒𝑖 and 0 everywhere else:

|𝑒𝑖⟩ ≜ 𝑒 𝑗 ↦→
{

1 when 𝑗 = 𝑖

0 else

.

Using this convention, a vector 𝑣 ∈ E can be written as the linear combination

𝑛−1∑︁
𝑖=0

𝑣𝑒𝑖 · |𝑒𝑖⟩ ,

or, equivalently: ∑︁
𝑥∈𝑋

𝑣𝑥 · |𝑥⟩ .

Such combinations behave well with sum and scalar multiplication:(∑︁
𝑥∈𝑋

𝑣𝑥 · |𝑥⟩
)
+

(∑︁
𝑥∈𝑋

𝑤𝑥 · |𝑥⟩
)
=

∑︁
𝑥∈𝑋
(𝑣𝑥 + 𝑤𝑥) · |𝑥⟩ ,

𝛼 ·
(∑︁
𝑥∈𝑋

𝑣𝑥 · |𝑥⟩
)
=

∑︁
𝑥∈𝑋
(𝛼 · 𝑣𝑥) · |𝑥⟩ .

2.5 Scalar Product

2.5.1 Let E be a complex vector space as above. We define an operation acting on two

vectors

⟨− | −⟩ : E × E ↦−→ C

called a scalar product, defined as

⟨ 𝑢 | 𝑣 ⟩ ≜
∑︁
𝑥

𝑢𝑥𝑣𝑥 .

8
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The operation is linear on the right:

⟨ 𝑢 | 𝛼 · 𝑣 + 𝑤 ⟩ = 𝛼 · ⟨ 𝑢 | 𝑣 ⟩ + ⟨ 𝑢 | 𝑤 ⟩

but anti-linear on the left:

⟨ 𝛼 · 𝑢 + 𝑣 | 𝑤 ⟩ = 𝛼 · ⟨ 𝑢 | 𝑣 ⟩ + ⟨ 𝑣 | 𝑤 ⟩ .

In particular, it is anti-symmetric as follows:

⟨ 𝑢 | 𝑣 ⟩ = ⟨ 𝑣 | 𝑢 ⟩.

2.5.2 A (complex) Hilbert space is then a complex vector space equipped with such a

scalar product. From this scalar product one can define two notions: a notion of norm,

and a notion of orthogonality.

2.5.3 Norm. Given a Hilbert space E with basis 𝑋 and a vector 𝑣 ∈ E, we define ||𝑣 ||
as

√︁
⟨𝑣 |𝑣⟩. Since this is

√︁∑
𝑥 𝑣𝑥𝑣𝑥 =

√︁∑
𝑥 |𝑣𝑥 |2, this is always a non-negative real number.

The following properties hold.

||𝛼 · 𝑣 || = |𝛼 | · ||𝑣 ||,
||𝑣 + 𝑤 || ≤ ||𝑣 || + ||𝑤 ||,
||𝑥 || = 1 when 𝑥 ∈ 𝑋.

2.5.4 Orthogonality. Given a Hilbert space E with basis 𝑋 and two vectors 𝑣, 𝑤 ∈ E,
we say that 𝑣 is orthogonal to 𝑤, written 𝑣⊥𝑤, if ⟨𝑣 |𝑤⟩ = 0. By definition of the scalar

product, distinct canonical basis elements are pairwise orthogonal.

2.5.5 Orthonormal basis. In general, a basis for a vector space is a set of vectors

spanning the whole space. The elements of a basis are called basis elements. A basis is an

orthonormal basis if basis elements are each of norm 1, and pairwise orthogonal.

2.5.6 For the Hilbert space H , an example of non-canonical, orthonormal basis is the

set { |+⟩ , |−⟩ }, where

|+⟩ ≜ 1

√
2

( |0⟩ + |1⟩),

|−⟩ ≜ 1

√
2

( |0⟩ − |1⟩).

2.6 Kets and Bras

2.6.1 In quantum computation, the canonical basis elements are representing classical

values: a linear combination can then be seen as a “superposition” of classical values. As

we discussed in Sec. 2.4.5, a standard notation for making canonical basis elements out

of arbitrary classical values is the ket-notation

| ⟩ .

9



B. Valiron Intro to Quantum Course Notes v.2025.03.04

2.6.2 The two-dimensional Hilbert spaceH that we shall be considering in these notes

is built from the canonical basis set {0, 1}. A typical vector ofH is then

𝛼 · |0⟩ + 𝛽 · |1⟩ .

The chosen “0” and “1” stands for two classical, distinguished values, such as “False” and

“True” respectively. Their name is only a convention: one could have chosen any other

pair of names such as |T⟩ and |F⟩, |foo⟩ and |bar⟩... They should in particular not be

confused with the complex scalars 0 and 1. Similarly, |0⟩ is NOT the null element of the

vector space, so

|0⟩ ≠ 0.

2.6.3 You might have noticed the clash of notation between

⟨ 𝑢 | 𝑣 ⟩

and for instance

𝛼 · |0⟩ + 𝛽 · |1⟩ .
This is on purpose, and yields a pun: if the notation |−⟩ is called a “ket”, we call ⟨−|
a “bra”, which yield the standard name “braket” for ⟨−|−⟩ (yes, this notation is called

“braket” in English), so that

⟨ 𝑥 | 𝑦 ⟩ = ⟨𝑥 | · |𝑦⟩ ,
the “multiplication”, or the application of the function ⟨𝑥 | to the argument |𝑦⟩. If 𝑥 ∈ 𝑋

is a basis element for E, the notation ⟨𝑥 | stands for the linear operation

⟨𝑥 | : 𝑦 ↦−→ ⟨ 𝑥 | 𝑦 ⟩ =

{
1 if 𝑥 = 𝑦

0 else

.

By linearity, we then have ⟨𝑥 | 𝑢⟩ = ⟨𝑥 | · |𝑢⟩ for a general vector 𝑢 in E.

2.6.4 Duality bra-ket. for the vector space E of basis elements 𝑥 ∈ 𝑋 , the bras ⟨𝑥 | are
functionals: functions E → C. As such, they can be equipped with a sum and a (complex)

scalar multiplication. The functional 𝛼 ⟨𝑥 | + ⟨𝑦 | is the map

𝛼 ⟨𝑥 | + ⟨𝑦 | : 𝑢 ↦→ 𝛼 ⟨ 𝑥 | 𝑢 ⟩ + ⟨ 𝑦 | 𝑢 ⟩ ,

There is a strong duality: if 𝑢 =
∑

𝑥 𝛼𝑥 |𝑥⟩ and 𝑣 =
∑

𝑥 𝛽𝑥 · |𝑥⟩, then one can check that

⟨ 𝑢 | 𝑣 ⟩ =
(∑︁

𝑥

𝛼𝑥 · ⟨𝑥 |
) (∑︁

𝑥

𝛽𝑥 · |𝑥⟩
)
= 𝑢∗ · 𝑣

where 𝑢∗ =
∑

𝑥 𝛼𝑥 · ⟨𝑥 | is the dual, or conjugate transpose of 𝑢.

2.6.5 Notation. Vectors of the form

∑
𝑥∈𝑋 𝛼𝑥 · |𝑥⟩ will be written with greek letters

inside kets, such as |𝜙⟩, |𝜓⟩, etc. When using lower-case latin letters |𝑥⟩, |𝑦⟩, |𝑏⟩, |𝑐⟩, we
shall be referring to canonical basis elements. Functionals of the form

∑
𝑥∈𝑋 𝛼𝑥 · ⟨𝑥 | will

dually be written as ⟨𝜙|, ⟨𝜓 |, etc. We then have the property that

|𝜙⟩∗ = ⟨𝜙 | and ⟨𝜙 |∗ = |𝜙⟩ .

The application of a functional (i.e. a bra) to a vector (i.e. a ket) is always written as a

multiplication.

10
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2.6.6 Remark Bras and kets can contain more than letters and numbers: we use for

instance

|+⟩ ≜ 1

√
2

( |0⟩ + |1⟩), |−⟩ ≜ 1

√
2

( |0⟩ − |1⟩)

in 2.5.6 and

|+𝑖⟩ ≜ 1

√
2

( |0⟩ + 𝑖 |1⟩), |−𝑖⟩ ≜ 1

√
2

( |0⟩ − 𝑖 |1⟩)

in 3.2.10.

2.6.7 Beware! Do not forget to conjugate the complex coefficient when moving from

kets to bras and bras to kets.

2.6.8 Matrix-style representation. Bras, kets, and linear operations in general can

be represented in a matrix-style notation. For this to make sense, we need to order the
canonical basis elements of the vector spaces. For the Hilbert spaceH , the basis |0⟩,|1⟩ is
ordered in the lexicographic order . A ket is in this convention a column-vector as follow

|0⟩ =
(

1

0

)
, |1⟩ =

(
0

1

)
,

so that

𝛼 · |0⟩ + 𝛽 · |1⟩ =
( 𝛼
𝛽

)
.

A bra becomes a row-vector :

⟨0| = ( 1 0 ), ⟨1| = ( 0 1 ).

If |𝜙⟩ = 𝛼 · |0⟩ + 𝛽 · |1⟩ and |𝜓⟩ = 𝛾 · |0⟩ + 𝛿 · |1⟩, we can check that

⟨ 𝜙 | 𝜓 ⟩ = ( 𝛼 𝛽 ) ·
( 𝛾
𝛿

)
= 𝛼𝛾 + 𝛽𝛿.

The conjugate transpose of a column vector is a row vector and vis versa, as follows.( 𝛼
𝛽

)∗
= ( 𝛼 𝛽 ) , ( 𝛼 𝛽 )∗ =

(
𝛼

𝛽

)
.

2.6.9 With the matrix-style representation of 2.6.8, kets and bras can be combined in

arbitrary ways, as long as dimensions match. For instance,(
𝑎 𝑏

𝑐 𝑑

)
= 𝑎 |0⟩ ⟨0| + 𝑐 |1⟩ ⟨0| + 𝑏 |0⟩ ⟨1| + 𝑑 |1⟩ ⟨1| .

Multiplication by a ket-vector is then transparent. For instance:(
0 1

1 0

)
(𝛼 |0⟩ + 𝛽 |1⟩) = ( |0⟩ ⟨1| + |1⟩ ⟨0|) (𝛼 |0⟩ + 𝛽 |1⟩)

= 𝛼 |0⟩ ⟨1| |0⟩ + 𝛼 |1⟩ ⟨0| |0⟩ + 𝛽 |0⟩ ⟨1| |1⟩ + 𝛽 |1⟩ ⟨0| |1⟩
= 𝛼 |0⟩ ⟨1 | 0⟩ + 𝛼 |1⟩ ⟨0 | 0⟩ + 𝛽 |0⟩ ⟨1 | 1⟩ + 𝛽 |1⟩ ⟨0 | 1⟩
= 𝛼 ⟨1 | 0⟩ |0⟩ + 𝛼 ⟨0 | 0⟩ |1⟩ + 𝛽 ⟨1 | 1⟩ |0⟩ + 𝛽 ⟨0 | 1⟩ |1⟩
= 𝛼 · 0 · |0⟩ + 𝛼 · 1 · |1⟩ + 𝛽 · 1 · |0⟩ + 𝛽 · 0 · |1⟩
= 𝛼 |1⟩ + 𝛽 |0⟩

11
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2.7 Kronecker product

2.7.1 Consider two vector spaces E of canonical basis 𝐵 = {𝑒𝑖}𝑖 and F of canonical basis

𝐶 = { 𝑓 𝑗 } 𝑗 . We define a new vector space E ⊗ F using the canonical basis set 𝐵 ×𝐶, the
cartesian product of 𝐵 and 𝐶. The space E ⊗ F is called the Kronecker product of E and

F , or tensor of E and F . We could write the pair of 𝑒𝑖 and 𝑓 𝑗 in various manner such as

(𝑒𝑖, 𝑓 𝑗 ), 𝑒𝑖, 𝑓 𝑗 , 𝑒𝑖 𝑓 𝑗etc. We shall be usig simple concatenation when clear. A typical vector

of E ⊗ F is then of the form ∑︁
𝑖, 𝑗

𝛼𝑖, 𝑗 |𝑒𝑖 𝑓 𝑗 ⟩ .

2.7.2 The tensor notation is overloaded to vectors: it is used to represent the bilinear
map E × F → E ⊗ F defined as(∑︁

𝑖

𝛼𝑖 · |𝑒𝑖⟩
)
⊗

(∑︁
𝑗

𝛽 𝑗 · | 𝑓 𝑗 ⟩
)

=
∑︁
𝑖, 𝑗

𝛼𝑖𝛽 𝑗 · |𝑒𝑖 𝑓 𝑗 ⟩ .

It is bilinear in the sense that the following properties hold.

(𝛼 · |𝜙⟩ + |𝜓⟩) ⊗ 𝑤 = 𝛼 · ( |𝜙⟩ ⊗ 𝑤) + |𝜓⟩ ⊗ 𝑤, (15)

𝑤 ⊗ (𝛼 · |𝜙⟩ + |𝜓⟩) = 𝛼 · (𝑤 ⊗ |𝜙⟩) + 𝑤 ⊗ |𝜓⟩ , (16)

(𝛼 · |𝜙⟩) ⊗ |𝜓⟩ = 𝛼 · ( |𝜙⟩ ⊗ |𝜓⟩), (17)

|𝜙⟩ ⊗ (𝛼 · |𝜓⟩) = 𝛼 · ( |𝜙⟩ ⊗ |𝜓⟩), (18)

0 ⊗ |𝜙⟩ = 0. (19)

|𝜙⟩ ⊗ 0 = 0. (20)

2.7.3 As the vector space E ⊗F is “just” a vector space, the definitions of scalar product

and norm presented in Sec. 2.5 still hold. In particular, if

|𝜙⟩ =
∑︁
𝑖, 𝑗

𝛼𝑖, 𝑗 · |𝑒𝑖 𝑓 𝑗 ⟩ , |𝜓⟩ =
∑︁
𝑖, 𝑗

𝛽𝑖, 𝑗 · |𝑒𝑖 𝑓 𝑗 ⟩ ,

then

⟨ 𝜙 | 𝜓 ⟩ =
(∑︁
𝑖, 𝑗

𝛼𝑖, 𝑗 · |𝑒𝑖 𝑓 𝑗 ⟩
) (∑︁

𝑖, 𝑗

𝛽𝑖, 𝑗 · |𝑒𝑖 𝑓 𝑗 ⟩
)
=

∑︁
𝑖, 𝑗

𝛼𝑖, 𝑗 𝛽𝑖, 𝑗 ,

and

|| 𝜓 || =
√︄∑︁

𝑖, 𝑗

|𝛼𝑖, 𝑗 |2.

If instead |𝜙⟩ = ∑
𝑖 𝛼𝑖 · |𝑒𝑖⟩ and |𝜓⟩ =

∑
𝑗 𝛽 𝑗 · | 𝑓 𝑗 ⟩, one can then derive that

|| |𝜙⟩ ⊗ |𝜓⟩|| = || |𝜙⟩|| · || |𝜓⟩||,

and if moreover |𝜙′⟩ = ∑
𝑖 𝛼
′
𝑖
· |𝑒𝑖⟩ and |𝜓′⟩ =

∑
𝑗 𝛽
′
𝑗
· | 𝑓 𝑗 ⟩,

(⟨𝜙 | ⊗ ⟨𝜓 |) ( |𝜙′⟩ ⊗ |𝜓′⟩) = ⟨ 𝜙 | 𝜙′ ⟩ ⟨ 𝜓 | 𝜓′ ⟩ .
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2.7.4 Notation The notation of Sec. 2.7.1 is overloaded for arbitrary kets. For instance,

remember that |+⟩ = 1√
2

( |0⟩ + |1⟩): we write |+0⟩ for the vector

|+0⟩ = |+⟩ ⊗ |0⟩

=
1

√
2

( |0⟩ + |1⟩) ⊗ |0⟩

=
1

√
2

( |00⟩ + |10⟩).

In general, |𝜙𝜓⟩ is |𝜙⟩ ⊗ |𝜓⟩.

2.8 Linear Maps

2.8.1 Given two vector spaces E and F with respective bases {𝑒𝑖}𝑖 and { 𝑓 𝑗 } 𝑗 , a linear
map (or linear operator) 𝑓 from E to F is a set-function from E to F such that

𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢) + 𝑓 (𝑣), 𝑓 (𝛼 · 𝑢) = 𝛼 · 𝑓 (𝑢).

2.8.2 A linear function from E to F is uniquely characterized by its action on the basis

elements. Using the ket-notation :

𝑓

(∑︁
𝑥

𝛼𝑥 · |𝑥⟩
)
=

∑︁
𝑥

𝛼𝑥 · 𝑓 ( |𝑥⟩).

2.8.3 Provided that the canonical basis is ordered, one can use matrices to represent

linear maps. In dimension 2, a matrix has the generic form

𝐴 =

(
𝑎11 𝑎12

𝑎21 𝑎22

)
.

In the coefficient 𝑎𝑖 𝑗 , the index 𝑖 stands for the line number while 𝑗 stands for the column

number. Provided that we use the lexicographic ordering on canonical basis states as in

Sec. 2.6.8, this matrix represents the linear mapH → H defined by

|0⟩ ↦→ 𝑎11 · |0⟩ + 𝑎21 · |1⟩ ,
|1⟩ ↦→ 𝑎12 · |0⟩ + 𝑎22 · |1⟩ .

2.8.4 If 𝐴 and 𝐵 are two 𝑛 × 𝑛 matrices and if 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are their respective coeffi-

cients on line 𝑖 and column 𝑗 , then the coefficient at position (𝑖, 𝑗) of the matrix 𝐴 · 𝐵 is∑
𝑘 𝑎𝑖𝑘𝑏𝑘 𝑗 . For instance, in dimension 2:(

𝑎11 𝑎12

𝑎21 𝑎22

)
·
(
𝑏11 𝑏12

𝑏21 𝑏22

)
=

(
𝑎11𝑏11 + 𝑎12𝑏21 ...

... ...

)
.

13
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2.8.5 The action of a linear operator on a vector becomes the matrix multiplication with

the corresponding vector. Indeed, a column vector is "just" a matrix with only one col-

umn, so (
𝑎11 𝑎12

𝑎21 𝑎22

) (
𝑣1

𝑣2

)
=

(
𝑎11𝑣1 + 𝑎12𝑣2

𝑎21𝑣1 + 𝑎22𝑣2

)
If 𝐴 is the matrix of a linear operation 𝑓 and 𝐵 the matrix of 𝑔, then

𝑓 (𝑔(𝑣)) = 𝐴 · (𝐵 · 𝑣) = (𝐴 · 𝐵) · 𝑣,

so 𝑓 ◦ 𝑔 corresponds to 𝐴 · 𝐵.

2.8.6 For instance, the linear map Had : H → H is defined using the kets introduced

in Sec. 2.5.6 as follows:

Had :

{
|0⟩ ↦→ |+⟩ = 1√

2

( |0⟩ + |1⟩),
|1⟩ ↦→ |−⟩ = 1√

2

( |0⟩ − |1⟩).

It can be represented with the matrix

1

1

1

−1

1√
2

|−⟩|+⟩

|0⟩ |1⟩

|0⟩

|1⟩

(21)

The first column is |+⟩, the output of the function at |0⟩, and the second column is |−⟩,
the output of the function at |1⟩.

2.8.7 The operation Had is called Hadamard. It can be written in a more compact way

as

|𝑥⟩ ↦→ 1

√
2

( |0⟩ + (−1)𝑥 |1⟩),

with the convention of Sec. 2.6.5 that 𝑥 is one of the basis-set element “0” or “1”. the

exponent (−1)𝑥 then assimilates 𝑥 to its “integer” value, and (−1)0 = 1 while (−1)1 = −1.

2.8.8 The application of the function to a vector corresponds to matrix-vector multipli-

cation. for instance, Had |0⟩ is

1

√
2

(
1 1

1 −1

) (
1

0

)
=

1

√
2

(
1

1

)
.
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2.8.9 Similarly, the composition of functions corresponds to matrix multiplication. One

can for instance check that Had◦Had is the identity. Using the definition from Sec. 2.8.7:

Had(Had |𝑥⟩) = Had( 1

√
2

( |0⟩ + (−1)𝑥 |1⟩))

=
1

√
2

(Had |0⟩ + (−1)𝑥Had |1⟩)

=
1

√
2

( 1

√
2

( |0⟩ + |1⟩) + (−1)𝑥 1

√
2

( |0⟩ − |1⟩))

=
1

2

( |0⟩ + |1⟩ + (−1)𝑥 |0⟩ − (−1)𝑥 |1⟩)

=
1

2

((1 + (−1)𝑥) |0⟩ + (1 − (−1)𝑥) |1⟩)

=

{
1

2
(2 · |0⟩ + 0 · |1⟩) if 𝑥 = 0,

1

2
(0 · |0⟩ + 2 · |1⟩) if 𝑥 = 1

= |𝑥⟩ .

One can then check that

1

√
2

(
1 1

1 −1

)
· 1

√
2

(
1 1

1 −1

)
=

(
1 0

0 1

)
.

2.8.10 As for column and row vectors, we can define a notion of conjugate transpose

for matrices: ©­­«
𝛼1,1 · · · 𝛼1,𝑛

...
. . .

...

𝛼𝑚,1 · · · 𝛼𝑚,𝑛

ª®®¬
∗

≜
©­­«
𝛼1,1 · · · 𝛼𝑚,1

...
. . .

...

𝛼1,𝑛 · · · 𝛼𝑚,𝑛

ª®®¬
2.8.11 We shall be using 𝐼 and Id for the identity map on vector spaces. This is obviously

a linear map.

2.8.12 The Kronecker product is also overloaded to functions, as follows. Given two

linear maps𝑈 : E → E and 𝑉 : F → F , we define the linear map

𝑈 ⊗ 𝑉 : E ⊗ F → E → F

by

(𝑈 ⊗ 𝑉) |𝑥𝑦⟩ ≜ (𝑈 |𝑥⟩) ⊗ (𝑉 |𝑦⟩).
Because of the linearity of the operation, function application and composition permutes

with the tensor as follows. Let |𝜙⟩ ∈ E, |𝜓⟩ ∈ F ,𝑈′ : E → E and 𝑉 ′ : F → F , then

(𝑈 ⊗ 𝑉) ( |𝜙⟩ ⊗ |𝜓⟩) = (𝑈 |𝜙⟩) ⊗ (𝑉 |𝜓⟩), (22)

(𝑈 ⊗ 𝑉) ◦ (𝑈′ ⊗ 𝑉 ′) = (𝑈 ◦𝑈′) ⊗ (𝑉 ◦𝑉 ′). (23)

2.8.13 The tensor symbol can be regarded as forming an impermeable, spacial separa-

tion between the left side and the right side.

“What’s on the left stays on the left;

what’s on the right stays on the right.”
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2.8.14 Note how the symbol “⊗” has been overloaded 3 times: for vector spaces (as in

“E ⊗ F ”), for vectors (as in “|𝜙⟩ ⊗ |𝜓⟩”), and for linear operations (as in “𝑈 ⊗ 𝑉”).

2.9 Hermitian and Unitary Maps

2.9.1 A linear map𝑈 : E → E is called unitary if

• it is invertible : there exists a linear map E → E written𝑈−1
such that𝑈−1 ◦𝑈 and

𝑈 ◦𝑈−1
are the identity,

• the inverse of𝑈 is its conjugate transpose: 𝑈−1 = 𝑈∗.

Unitary maps preserves norm and orthogonality: they can be regarded as rotations.

For instance, the map Hadamard from Sec. 2.8.6 is unitary. It sends the canonical ba-

sis { |0⟩ , |1⟩ } to the basis { |+⟩ , |−⟩ }.

2.9.2 If𝑈 is a unitary map, then

⟨𝜙 | 𝜓⟩ = ⟨𝑈𝜙 |𝑈𝜓⟩ .

2.9.3 If 𝑈 |𝜓⟩ = 𝜆 |𝜓⟩, we say that |𝜓⟩ is an eigenvector of 𝑈 and 𝜆 an eigenvalue In the

case where 𝑈 is unitary, 𝜆 is of the form 𝑒2𝑖𝜋𝜔
with 0 ≤ 𝜔 < 1 a real number, because 𝑈

preserves the norm, and thus |𝜆 | = 1. By abuse of language, we say that 𝜔 is the phase
of the eigenvalue.

2.9.4 A linear map 𝐻 : E → E is called Hermitian when 𝐻 = 𝐻∗. Equivalently:

• If (ℎ𝑖, 𝑗 )𝑖, 𝑗 is a matrix representation of 𝐻 in an orthonormal basis, then ℎ𝑖, 𝑗 = ℎ 𝑗 ,𝑖 .

• 𝐻 admits a set of eigenvectors {|𝑢 𝑗 ⟩} 𝑗 forming an orthonormal basis, and all of its

eigenvalues are real numbers.

With the convention in 2.6.9, the Hermitian operator can be written as

𝐻 =
∑︁
𝑗

𝜆 𝑗 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 | , (24)

when 𝜆 𝑗 is the eigenvalue corresponding to |𝑢 𝑗 ⟩. One can check that

𝐻 |𝑢 𝑗0⟩ =
∑︁
𝑗

𝜆 𝑗 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 | |𝑢 𝑗0⟩

= 𝜆 𝑗0 |𝑢 𝑗0⟩ ⟨𝑢 𝑗0 | |𝑢 𝑗0⟩ +
∑︁
𝑗≠ 𝑗0

𝜆 𝑗 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 | |𝑢 𝑗0⟩

= 𝜆 𝑗0 ⟨𝑢 𝑗0 | 𝑢 𝑗0⟩ |𝑢 𝑗0⟩ +
∑︁
𝑗≠ 𝑗0

𝜆 𝑗 ⟨𝑢 𝑗 | 𝑢 𝑗0⟩ |𝑢 𝑗 ⟩

= 𝜆 𝑗0 · 1 · |𝑢 𝑗0⟩ +
∑︁
𝑗≠ 𝑗0

𝜆 𝑗 · 0 · |𝑢 𝑗 ⟩

= 𝜆 𝑗0 |𝑢 𝑗0⟩

since the |𝑢 𝑗 ⟩s were picked pairwise distinct.
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2.9.5 The eigenvalues of a Hermitian matrix are all real numbers, and there is a finite

number of them. One of them is them minimal, the other maximal. In general, we talk

about extremal eigenvalues, and by abuse of notation we speak of minimal / maximal /

extremal eigenvectors to refer to the corresponing eigenvectors. Note that (say) minimal

eigenvector are not unique. For instance, the identity has many of them.

2.9.6 In the context of quantum computation, a Hermitian map is often called a Hamil-
tonian. Hamiltonian operators are used to model physical properties of a system such

as its energy. For the purpose of this course, we can safely stay at this (low) level of

understanding.

2.9.7 The set of Hermitian maps forms a real vector field: it is closed under addition and

(real) scalar multiplication.

2.9.8 Unitary and Hermitian operators are related through the exponential formula in

Eq (2): If 𝐻 is Hermitian, then

𝑒𝑖𝐻 =

∞∑︁
𝑘=0

1

𝑘!

𝐻𝑘

is unitary. Conversely, every unitary𝑈 can be written as 𝑒𝑖𝐻 for a Hermitian operator 𝐻.

2.9.9 Eigenvectors are preserved through exponentiation. Suppose that |𝜙⟩ is an eigen-

vector of the Hermitian 𝐻 with eigenvalue 𝜆, so 𝐻 |𝜙⟩ = 𝜆 |𝜙⟩. Then

(𝑒𝑖𝐻) |𝜙⟩ =
( ∞∑︁
𝑘=0

1

𝑘!

𝐻𝑘

)
|𝜙⟩

=

∞∑︁
𝑘=0

1

𝑘!

𝐻𝑘 |𝜙⟩

=

∞∑︁
𝑘=0

1

𝑘!

𝜆𝑘 |𝜙⟩

=

( ∞∑︁
𝑘=0

1

𝑘!

𝜆𝑘

)
|𝜙⟩

= 𝑒𝑖𝜆 |𝜙⟩ .

The eigenvalue of 𝑒𝑖𝐻 corresponding to |𝜙⟩ is 𝑒𝑖𝜆.

2.9.10 If 𝐴 and 𝐵 are Hermitian operators (or, in general, square matrices) such that

𝐴𝐵 = 𝐵𝐴, then

𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵.

2.9.11 For any 𝐴 and 𝐵 Hermitian operators (or, in general, square matrices) without

special conditions,

𝑒𝐴⊗𝐵 = 𝑒𝐴 ⊗ 𝑒𝐵.
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2.10 Exercices

2.10.1 Consider the vector |𝜙⟩ = 𝑖
3
|0⟩ + 2

√
2

3
|1⟩ inH .

1. Show that |𝜙⟩ is of norm 1.

2. Compute ⟨𝜙 |.

3. Compute ⟨𝜙 |+⟩ and ⟨−|𝜙⟩.

4. The vector |𝜙⟩ has been given in the basis {|0⟩ , |1⟩}. Write it in the basis {|+⟩ , |−⟩}.

5. Give an vector of norm 1 orthogonal to |𝜙⟩

2.10.2 Assume that 𝑥 is either 0 or 1. Show that

1

√
2

( |𝑥⟩ − |1 ⊕ 𝑥⟩) = (−1)𝑥 1

√
2

( |0⟩ − |1⟩).

The symbol “⊕” is the XOR bit operation.

2.10.3 Consider the set B ≜ {𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} and a bijection 𝜎 on the set B.
Let E be the Hilbert space generated by the set B, and𝑈 the linear map E → E defined

as

𝑈 : |𝑒𝑘⟩ ↦→ |𝜎(𝑒𝑘 )⟩ for 𝑘 = 0, . . . , 7

Show that this map is unitary.

2.10.4 Consider the setting of Exo 2.10.3. Let 𝜎 be the map sending 𝑒𝑘 to 3 · 𝑘 mod 8,

that is:

0 ↦→ 0 2 ↦→ 6 4 ↦→ 4 6 ↦→ 2

1 ↦→ 3 3 ↦→ 1 5 ↦→ 7 7 ↦→ 5

Write the matrix𝑈 corresponding to the unitary based on 𝜎 with the basis ordering

𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7.

What does it means when𝑈𝑚,𝑛 = 1?

2.10.5 Consider the ket vectors ofH ⊗ H

|Φ+⟩ = 1

√
2

( |00⟩ + |11⟩)

|Φ−⟩ = 1

√
2

( |00⟩ − |11⟩)

|Ψ+⟩ = 1

√
2

( |01⟩ + |10⟩)

|Ψ−⟩ = 1

√
2

( |01⟩ − |10⟩)

1. Show that these 4 vectors form an orthonormal basis
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2. Consider the ket vector

|𝜙⟩ = 2

√
5

|01⟩ + 𝑖
√

5

|10⟩

(a) Show that this is a vector of norm 1.

(b) Write it as a linear combination of |Φ+⟩, |Φ−⟩, |Ψ+⟩ and |Ψ−⟩.
(c) Compute ⟨ 𝜙 | Ψ+ ⟩.

2.10.6 Show that for every vector |𝜙⟩ inH , we have

|𝜙⟩ = ⟨0|𝜙⟩ · |0⟩ + ⟨1|𝜙⟩ · |1⟩

2.10.7 Consider the vectors |𝜙⟩ = 𝑖
3
|0⟩ + 2

√
2

3
|1⟩ and |𝜓⟩ = 1√

5

|0⟩ + 2√
5

|1⟩ inH .

1. Compute |𝜙⟩ ⊗ |𝜓⟩ in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}.

2. Compute |𝜙⟩ ⊗ |𝜓⟩ in the basis {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩}.

3. Give an orthonormal basis ofH ⊗ H for which |𝜙⟩ ⊗ |𝜓⟩ is one of the elements.

2.10.8 Consider the operation ⊙ acting on two bitstrings:

(𝑥1 . . . 𝑥𝑛) ⊙ (𝑦1 . . . 𝑦𝑛) = (𝑥1 ∧ 𝑦1) ⊕ . . . ⊕ (𝑥𝑛 ∧ 𝑦𝑛).

Show that Had
⊗𝑛

performs the action

|𝑥1 . . . 𝑥𝑛⟩ ↦−→
1

√
2

𝑛

∑︁
𝑦1...𝑦𝑛

(−1) (𝑥1...𝑥𝑛)⊙(𝑦1...𝑦𝑛) |𝑦1 . . . 𝑦𝑛⟩ .

2.10.9 Consider the linear maps (called Pauli maps)

𝑋 ≜
(

0 1

1 0

)
, 𝑍 ≜

(
1 0

0 −1

)
, 𝑌 ≜

(
0 −𝑖
𝑖 0

)
in the ordered basis {|0⟩ , |1⟩}. For each 𝐺 = 𝑋,𝑌, 𝑍 :

1. Show that 𝐺 is both unitary and hermitian

2. Give a map

√
𝐺 such

√
𝐺
√
𝐺 = 𝐺

3. If 𝜃 is a real number, compute 𝑒𝑖𝜃𝐺

2.10.10 A known result is that any Hermitian matrix of size 2
𝑛 × 2

𝑛
can be written as a

linear combination of tensors of Pauli matrices (and identity) with real coefficients. More

precisely, using the notations of Exo 2.10.9, any Hermitian matrix of dimension 2
𝑛 × 2

𝑛

can be written as ∑︁
𝐺1,...𝐺𝑛∈{𝑋,𝑌,𝑍,𝐼}

ℎ𝐺1,...,𝐺𝑛
· 𝐺1 ⊗ · · · ⊗ 𝐺𝑛

with ℎ𝐺1,...,𝐺𝑛
∈ R. This exercise focuses on the 4 × 4 case.
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1. Compute the 16 following 4 × 4 matrices

𝑋 ⊗ 𝑋, 𝑋 ⊗ 𝑌, 𝑋 ⊗ 𝑍, 𝑋 ⊗ 𝐼, 𝑌 ⊗ 𝑋, 𝑌 ⊗ 𝑌, 𝑌 ⊗ 𝑍, 𝑌 ⊗ 𝐼,

𝑍 ⊗ 𝑋, 𝑍 ⊗ 𝑌, 𝑍 ⊗ 𝑍, 𝑍 ⊗ 𝐼, 𝐼 ⊗ 𝑋, 𝐼 ⊗ 𝑌, 𝐼 ⊗ 𝑍, 𝐼 ⊗ 𝐼 .

2. Consider the following Hermitian matrix:

©­­­«
2 0 4 − 𝑖 0

0 5 3 0

4 + 𝑖 3 0 0

0 0 0 0

ª®®®¬
Write it as a linear decomposition of the 16 matrices in the first question, with real

coefficients.

2.10.11 Consider the following matrix.

𝑀 =

(
2 1

1 2

)
Questions:

1. Write 𝑀 as a linear combination of Pauli matrices (and identity)

2. Find the eigenvectors and eigenvectors of 𝑀

3. Write 𝑀 in the form of Eq.(24) in 2.9.4.

2.10.12 Using the notations of Exo 2.10.9, compute the following

Had · 𝑋 · Had Had · 𝑍 · Had Had · 𝑌 · Had

2.10.13 Using the notations of Exo 2.10.9, compute the following (𝜃 is a real number).

You might want to do Exo 2.10.12 beforehand.

Had · 𝑒𝑖𝜃𝑋 · Had Had · 𝑒𝑖𝜃𝑍 · Had Had · 𝑒𝑖𝜃𝑌 · Had

2.10.14 Using the notations of Exo 2.10.9, compute the following (𝜃 is a real number).

𝑒𝑖𝜃 (𝑍⊗𝑍) , 𝑒𝑖𝜃 (𝑋⊗𝑋) , 𝑒𝑖𝜃 (𝑋⊗𝑍) .

You might want to consider doing first Exos 2.10.9 and 2.10.13.
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2.10.15 Consider the matrices 𝑋,𝑌 and 𝑍 of Exo.2.10.9, together with Had defined in

2.8.6. Fill in the multiplication table starting with

\ 𝐼 𝑋 𝑌 𝑍 𝑋 · 𝑍 Had · · ·
𝐼

𝑋

𝑌

𝑍

𝑋 · 𝑍
Had Had · 𝑋
...

You will have to add more lines and columns. For instance, Had · 𝑋 is not in the list and

should be added. But beware for redundancy: we only want to add matrices not already

there (for instance, check Had · 𝑋 and 𝑍 · Had). Overall, how many (distinct) matrices

are obtained?

2.10.16 Consider the following two linear maps:

SWAP : |00⟩ ↦→ |00⟩ |01⟩ ↦→ |10⟩ |11⟩ ↦→ |11⟩ |10⟩ ↦→ |01⟩

CNOT : |00⟩ ↦→ |00⟩ |10⟩ ↦→ |11⟩ |01⟩ ↦→ |01⟩ |11⟩ ↦→ |10⟩

For each of the following linear maps acting onH⊗H , give all its possible representative

matrices depending on the orderings of the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} (and for each

matrix, give the corresponding ordering(s)).
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3 Qubit-based Computation

3.1 The Quantum Co-Processor Model

3.1.1 In the standard interpretation, a quantum computer is a standard, conventional

computer togetherwith a particular kind of coprocessor. Other, conventional coprocessor

includes: GPUs, FGPAs, TLS/SSL accelerators, etc. Inside the computer, the processor is

the part that actually runs a program; a co-processor is governed by the processor for

specific tasks (for instance, a GPU is used for fast matrix operations). A co-processor

typically has its own memory, and the operations available to the co-processor will be

performed on this local memory.

3.1.2 For our purpose, a typical use of a co-processor is then:

1. Allocate and initialize part of the memory local to the co-processor;

2. Perform some action;

3. Read the memory and free (de-allocate) some part of the memory.

These 3 actions are the primary requirements for a co-processor: we need to be able to

set up the memory, read it, and do something on it (ideally non-trivial).

3.1.3 The part of the memory that is being manipulated is modeled in term of register :
elementary units of data stored on the physical medium and that can be individually

addressed. A classical register can for instance hold a single bit, or a byte (i.e. an 8-bit

sequence), or 8 bytes (i.e. 64 bits), etc. By extension, an array of registers can itself be

seen as a register. For instance, an array of 64-bit integers can be described as a register.

In the storage of a bit, there are therefore three distinct levels of abstraction:

• Mathematical level: The Boolean algebra B = { 0, 1 };

• Computer science level: A register holding a bit of information, with a unique

identifier to programmatically address it (a pointer or a reference);

• Physics level: A bunch of transistors wired together, realizing a hardware imple-

mentation of the register.

If the word register can be used to refer to any of these levels, it is important to keep

the distinction in mind, in particular the fact that “register” refer to both a mathematical
value and a location.

3.1.4 Our quantum co-processor is designed with the philosophy presented in 3.1.1 and

3.1.2: it holds a quantum memory that can be initialized and read, while allowing one to

perfom a particular set of (usually) local operations. The memory consists of quantum
registers, and for the purpose of this set of notes, these holds the so-called quantum bit,
described in Section 3.2.
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Classical

host

Quantum

co-processor

Instructions:

−unitaries → quantum circuit

−measurements

Quantum

program

lives here
“just” holding

quantum memory
Results of

measurements

Figure 1: The coprocessor model.

3.2 One Quantum Bit

3.2.1 A quantum bit, or qubit, corresponds to a piece of quantum memory containing

an elementary unit of quantum information.

3.2.2 The easiest way to understand what is going on is to refer to what happens in the

classical setting. In the latter, to encode a bit of information, one chooses a medium, and

two states. These states have to be unequivocally distinguished, and they should be easy

to act upon (to encode computation). One such state then represents “True”, the other

“False”. Examples include:

• Coin, head/tail;

• Coin, steel or copper;

• Magnet, north or south facing up;

• Piece of paper, black or white color.

The choice is completely arbitrary and is purely conventional: The knowledge of which

states were chosen is mandatory to recover the information.

3.2.3 One follows the same strategy for quantum information. A quantum bit, the small-

est piece of quantum information, is encoded on an object governed by the law of quan-

tum mechanics, together with a choice of two states for this object. As for the classical

case, one should be able to

• distinguish the two states

• act upon the states: initialize, read, and otherwise modify the state.

Examples include:

• Photon, vertical and horizontal polarization;
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• Photon, position (wire A or wire B);

• Electron, spin up or spin down;

• Electron, orbital position;

• Atom, energy level.

3.2.4 Hilbert spaces form the framework for the mathematical formalism to represent

the state of a quantum system. For our purpose, such a state is a normalized vector in
a Hilbert space (up to global phase, see 3.2.5). A quantum bit is represented within the

two-dimensional Hilbert spaceH : the chosen two states are represented with |0⟩ and |1⟩
(called basis state). In this framework, distinguishability corresponds to orthogonality,
while the actions are modeled with unitary maps.

3.2.5 Global phase. Let us formalize the mathematical representation of a quantum

bit. Within the stateH , define the set of kets

𝑆1 =
{
𝛼 |0⟩ + 𝛽 |1⟩ ∈ H

�� |𝛼 |2 + |𝛽 |2 = 1

}
.

We say that two elements |𝜙⟩ , |𝜓⟩ ∈ 𝑆1 are related by a global phase if there exists an

angle 𝜃 such that |𝜓⟩ = 𝑒𝑖𝜃 |𝜙⟩. In this case, we write |𝜓⟩ ≡𝑝ℎ𝑎𝑠𝑒 |𝜙⟩.
States of quantum bits are equivalence classes under ≡𝑝ℎ𝑎𝑠𝑒 . In other words, the state

of a quantum bit (qubit) 𝑄 is a subset of 𝑆1 such that

• Elements of 𝑄 are pariwise related by a global phase: |𝜙⟩ , |𝜓⟩ ∈ 𝑄 implies that ∃𝜃
such that |𝜓⟩ = 𝑒𝑖𝜃 |𝜙⟩;

• 𝑄 is maximal: |𝜙⟩ ∈ 𝑄 implies that for every angle 𝜃, we have 𝑒𝑖𝜃 |𝜙⟩ ∈ 𝑄.

3.2.6 An element |𝜓⟩ ∈ 𝑄 is called a representative element of 𝑄. By abuse of notation,

when talking about a qubit, the equivalence class 𝑄 is identified with its representative

elements: we say that |𝜓⟩ ∈ 𝑄 is the state of a qubit instead of referring to 𝑄.

3.2.7 Quantum register Coming back to the discussion of 3.1.3, we can spell out the

3 abstraction levels for a quantum register holding a qubit:

• At the mathematical level: a normalized vector of H , modulo a global phase. At

this level, we only have a mathematical object, there is no information.

• At the computer science level: a way to programmatically refer to it (by some

pointer for instance), and the fact that |0⟩ and |1⟩ corresponds to the basis of infor-
mation.

• At the physics level: the choice of an object and a pair of orthogonal states: photon

and polarization, electron and spin, etc.
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𝜓

𝜃

x

z

y

|0⟩

|1⟩

|+⟩

|−⟩

|−𝑖⟩ |+𝑖⟩

Figure 2: Bloch sphere

3.2.8 Canonical representative. Consider a qubit 𝛼 |0⟩ + 𝛽 |1⟩. The two complex

numbers 𝛼 and 𝛽 can be written as 𝜌𝑎𝑒
𝑖𝜙𝑎

and 𝜌𝑏𝑒
𝑖𝜙𝑏

with 𝜌𝑎 and 𝜌𝑏 non-negative and

such that 𝜌2

𝑎 + 𝜌2

𝑏
= 1. So there exists an angle 𝜃 ∈ [0, 𝜋] such that 𝜌𝑎 = cos

(
𝜃
2

)
and

𝜌𝑏 = sin

(
𝜃
2

)
. Another representative element of the same qubit is 𝑒−𝑖𝜙𝛼 (𝛼 |0⟩ + 𝛽 |1⟩)

which is then cos

(
𝜃
2

)
|0⟩ + sin

(
𝜃
2

)
𝑒𝑖(𝜙𝛽−𝜙𝛼) |1⟩. We call this representative element the

canonical representative element.

3.2.9 Bloch sphere. Without loss of generality, a qubit can therefore be parameterized

by two angles 𝜃 ∈ [0, 𝜋] and 𝜓 ∈ [0, 2𝜋) as follows:

cos

(
𝜃

2

)
· |0⟩ + sin

(
𝜃

2

)
𝑒𝑖𝜓 · |1⟩ .

The angle 𝜓 is called the phase of the qubit. This gives a 3-D representation of a qubit

on the so-called Bloch sphere, shown in Figure 2. Apart from |0⟩ and |1⟩, the canonical
representative element is uniquely described by such a pair of angles. (𝜃, 𝜓).

3.2.10 On the Bloch sphere, two antipodal points correspond to two orthogonal kets,

i.e. to an orthonormal basis. The three axes 𝑥, 𝑦 and 𝑧 respectively corresponds to the

bases {|−⟩ , |+⟩}, {|−𝑖⟩ , |+𝑖⟩} and {|1⟩ , |0⟩}:

|+⟩ ≜ 1

√
2

( |0⟩ + |1⟩), |−⟩ ≜ 1

√
2

( |0⟩ − |1⟩),

|+𝑖⟩ ≜ 1

√
2

( |0⟩ + 𝑖 · |1⟩), |−𝑖⟩ ≜ 1

√
2

( |0⟩ − 𝑖 · |1⟩).

We find once again one of the orthonormal basis introduced in 2.5.6.
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3.3 Several Quantum Bits

3.3.1 A quantum memory usually contains more than one quantum bit: each quantum

bit is encoded as a physical object, while its mathematical description relies on H . The

quantum memory therefore consists of several such objects. The mathematical model of

the joint quantum system consisting of all of these objects has a state described by the

Kronecker product of the individual state spaces: If A and B are two quantum systems

whose state spaces are respectively ®𝐸 and ®𝐹, the state space of the joint system AB is

E ⊗ F , defined as in 2.7.1.

3.3.2 Let us recall what happens in the classical case. When considering 2 registers, each

holding a bit of information, the state of the joint system consisting of the 2 registers is

the product of the individual state spaces: B×B. If the state of the system is (0, 1), we can
for instance say that the second register is in state 1. The joint system is always separable.

3.3.3 Consider now a 2-qubit registers. This system has a state belonging to the tensor

spaceH ⊗ H . As discussed in 2.7.1, it is defined with the canonical basis elements

|00⟩ , |01⟩ , |10⟩ , |11⟩ .

The notation is scalable: the canonical basis forH ⊗ H ⊗ H is

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .

3.3.4 This notation is versatile. For instance, the following set of ket-vectors defines a

basis forH ⊗ H ⊗ H , called the SHIFT basis2:

|000⟩ , |111⟩ , |+01⟩ , |−01⟩ , |1+0⟩ , |1−0⟩ , |01+⟩ , |01−⟩ ,

where for example |01+⟩ stands for |0⟩ ⊗ |1⟩ ⊗ |+⟩ as discussed in 2.7.4. The kets |+⟩ and
|−⟩ were defined in 2.5.6.

3.3.5 The canonical basis ofH⊗𝑛 (i.e. the tensoring ofH 𝑛 times) is the set

{ |𝑏1 . . . 𝑏𝑛⟩ | 𝑏𝑖 ∈ {0, 1} },

the set of all bitstrings of size 𝑛. Note how the space H⊗𝑛 is of dimension 2
𝑛
. These

bitstrings can be seen as the binary representation of numbers between 0 and 2
𝑛 − 1:

when the dimension of the space is clear we will use

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 · |𝑖⟩

with |𝑖⟩ understood as the binary representation of 𝑖 on the correct bitstring size. By

convention, in this course the least significant bit is stored on the right: |011⟩ corresponds
to |3⟩. Note however that this is completely arbitrary: one could have done the opposite

(and QisKit indeed chooses the other—see 5.3.2 for a longer discussion).

2https://arxiv.org/abs/2202.00440
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3.3.6 Entanglement. In general, a vector ofH ⊗ H is of the form

𝛼 · |00⟩ + 𝛽 · |01⟩ + 𝛾 · |10⟩ + 𝛿 · |11⟩ .

One can wonder whether all such vector can be written as |𝜙⟩ ⊗ |𝜓⟩, for |𝜙⟩ , |𝜓⟩ ∈ H ,

as in the classical case discussed in 3.3.2: the answer is no.

• If it is possible, the vector is called separable;

• If it is not, the vector is called entangled.

An example of entangled state is

1

√
2

( |00⟩ + |11⟩).

It is called a Bell state, or an EPR pair3.

3.3.7 Bell basis. This state can be extended to a basis of entangled elements: the Bell
basis. It is defined as

|Φ+⟩ = 1

√
2

( |00⟩ + |11⟩)

|Φ−⟩ = 1

√
2

( |00⟩ − |11⟩)

|Ψ+⟩ = 1

√
2

( |01⟩ + |10⟩)

|Ψ−⟩ = 1

√
2

( |01⟩ − |10⟩)

3.3.8 Following the convention of 2.6.8 we keep the lexicographic order for writing the

basis, and this allows us to write kets as column vectors. Given two kets inH defined as

|𝜙1⟩ =
( 𝛼1

𝛽1

)
and |𝜙2⟩ =

( 𝛼2

𝛽2

)
, the tensor of |𝜙1⟩ with |𝜙2⟩ is the vector

©­­­«
𝛼1𝛼2

𝛼1𝛽2

𝛽1𝛼2

𝛽1𝛽2

ª®®®¬
← |00⟩
← |01⟩
← |10⟩
← |11⟩

It can be computed in a block-matrix manner as follows:

|𝜙1⟩ ⊗ |𝜙2⟩ =
(
𝛼1 |𝜙2⟩
𝛽1 |𝜙2⟩

)
=

©­­­«
𝛼1

(
𝛼2

𝛽2

)
𝛽1

(
𝛼2

𝛽2

) ª®®®¬ =

©­­­«
𝛼1𝛼2

𝛼1𝛽2

𝛽1𝛼2

𝛽1𝛽2

ª®®®¬
3
Named after Einstein, Podolsky and Rosen.
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3.4 The Quantum Circuit Model

3.4.1 In 3.1.3 and 3.2.7, we discussed how registers should be individually addressable,

and how one should be able to act on them. In the case of the quantum co-processor, all

of this is constrained by what can be realized at the physical level. In general, the physics

of the encoding objects allows one to perform two kinds of operations: unitaries on the

state space: the internal operations discussed in 3.1.2, and measurements—the reading of

the memory. We first focus on the internal operations: the unitaries.

3.4.2 By unitary operation, we literally mean the linear operations that have been de-

scribed in 2.9.1: Internal actions of the co-processor on the quantum memory are re-

stricted to unitary operations on the state space. Assume that the memory holds 𝑛 qubits

and that𝑈 is a unitary onH⊗𝑛. If the state of the memory is |𝜙⟩, applying the “action” of
𝑈 on the memory has the net effect of deterministicly changing the state of the memory

to 𝑈 |𝜙⟩. There are no side-effects in the sense that no classical information is leaked to

the classical computer (beside the information that the action has been performed), and

in the sense that the state of the memory after the action is uniquely determined by 𝑈

and by its state before the action.

3.4.3 Of course, in general the co-processor does not have access to arbitrary opera-

tions on all of the memory at once. As for a classical machine where only a finite set of

instructions is available, the quantum co-processor is limited to a finite set of unitary op-

erations, typically acting on one or two qubits at a time. Such operations are referred to

as quantum gates: elementary unitary gates that are considered not too costly in general.

The notion is flexible, and each algorithm might consider a slightly different set of gates.

One of the problem is to conciliate what it can do with what we want to do. 3.5 and 3.6

present standard gate-sets; we focus here on the technique to combine gates together.

3.4.4 Following the discussion of 3.4.2, the sequential action of the unitaries𝑈 followed

by 𝑉 then corresponds to the action 𝑉 ◦𝑈, the composition of 𝑉 and 𝑈. In this scheme,

a timed sequence of actions has the mathematical correspondance of successive compo-

sition of operators. With the caveat that “𝑈 then 𝑉 then 𝑊” corresponds to 𝑊 ◦ 𝑉 ◦ 𝑈
(note the reversal in the order).

3.4.5 The action consisting of not doing anything (such as the instruction no-op in as-

sembly) is still an action: it corresponds to the identity map: if the state of the system is

|𝜙⟩, it is still |𝜙⟩ after doing nothing. This representation plays well with the composition

of action presented in 3.4.4: doing nothing followed with𝑈 is literally the same thing as

doing𝑈, and this is acknowledged with the fact that𝑈 ◦ Id = 𝑈.

3.4.6 Consider two quantum systems A and B respectively described by the state spaces

E and F . We discussed in 3.3.1 that the joint system is described by E ⊗ F . Suppose
now that we perform a unitary 𝑈 on A and 𝑉 on B. The action on the E ⊗ F is the

unitary map 𝑈 ⊗ 𝑉 defined in 2.8.12. If we only perform 𝑈 on A (while not touching B),

overall action on the global system AB is 𝐴 ⊗ Id: the sub-system B is acted upon with

a trivial action, whose semantics is described in 3.4.5. Thanks to the properties of the
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𝑈1

𝑈2

𝑈3

𝑈4

𝑈5

Figure 3: An example of quantum circuit
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𝑈4
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𝑉2

𝑉3

𝑈8

𝑈6

𝑈7
𝑈1

𝑈3

𝑉1

𝑈4

𝑈5

𝑈2

𝑉2

𝑉3

𝑈8

𝑈6

𝑈7

Figure 4: Two equivalent circuits

tensor product, performing 𝑈 on A followed by 𝑉 on B is equivalent to performing first

𝑉 on B then 𝑈 on A. Indeed, the former is the operation (Id ⊗ 𝐵) ◦ (𝐴 ⊗ Id) while the
latter is (𝐴 ⊗ Id) ◦ (Id ⊗ 𝐵). Thanks to 2.8.13, we know that both actions are equal to

𝐴 ⊗ 𝐵.

3.4.7 A quantum memory consists of separately addressable quantum bits: each quan-

tum bit is a distinct subsystem, of state-spaceH . The global state-space of the memory is

the tensor product of all of these state-spaces. We then have two notion of sequentiality:

• timed sequentiality: as discussed in 3.4.4, this is represented with composition of

operations.

• spacial separation: as discussed in 3.4.6, this is represented with tensor of opera-
tions.

Following what can be done for Boolean circuits, we can design a notion of quantum
circuit.

• Wires are horizontal lines, representing the life-span of one qubit;

• Vertical juxtaposition of wires corresponds to the spacial separation of qubits. By

convention, the top wire is the first qubit in the list of qubits, the last wire is the

last qubit;

• Boxes on wires corresponds to actions. They can span over several wires to repre-

sent action on several qubits;

• Horizontal sequences of boxes correspond to the successive action of boxes.

3.4.8 An example of quantum circuit is shown in Fig. 3. There are two wires. The

circuit corresponds to the following sequence of actions: apply 𝑈1 on qubit 1; apply 𝑈2

on qubit 2; apply𝑈3 on qubits 1 and 2; apply simultaneously𝑈4 and𝑈5 on qubit 1 and 2

respectively.
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3.4.9 In the circuit of Fig. 3, we decided to place 𝑈1 before 𝑈2, and to place 𝑈4 and 𝑈5

simultaneously. Thanks 3.4.6, we know that this is completely arbitrary: boxes behave

as beads on a string, and one can freely “move” boxes along wires. The only limit being

that in general, one cannot make them go over one another. In particular, the two circuits

presented in Fig. 4 then corresponds to the same action on the quantum memory.

3.4.10 Suppose that 𝐴 and 𝐵 are two linear operations acting on H . Using the lexico-

graphic ordering of the basis, they can be represented with the matrices

𝐴 =

(
𝑎11 𝑎12

𝑎21 𝑎22

)
, 𝐵 =

(
𝑏11 𝑏12

𝑏21 𝑏22

)
Then 𝐴 ⊗ 𝐵 is defined as a block-matrix, in a same way as tensors of vectors in 3.3.8 as

follows

𝐴 ⊗ 𝐵 =

(
𝑎11𝐵 𝑎12𝐵

𝑎21𝐵 𝑎22𝐵

)
=

©­­­«
𝑎11

(
𝑏11 𝑏12

𝑏21 𝑏22

)
𝑎12

(
𝑏11 𝑏12

𝑏21 𝑏22

)
𝑎21

(
𝑏11 𝑏12

𝑏21 𝑏22

)
𝑎22

(
𝑏11 𝑏12

𝑏21 𝑏22

) ª®®®¬
=

©­­­«
𝑎11𝑏11 𝑎11𝑏12

𝑎11𝑏21 𝑎11𝑏22

𝑎12𝑏11 𝑎12𝑏12

𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12

𝑎21𝑏21 𝑎21𝑏22

𝑎22𝑏11 𝑎22𝑏12

𝑎22𝑏21 𝑎22𝑏22

ª®®®¬
The basis ordering is the lexicographic order used in 3.3.3: canonical basis elements are

listed as |00⟩ , |01⟩ , |10⟩ , |11⟩.

3.4.11 The order in the tensor product is important: performing Id ⊗ Had or Had ⊗ Id
on a 2-qubit system is not the same thing. This is reflected by corresponding matrices,

which are respectively

1

√
2

©­­­«
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

ª®®®¬ ,
1

√
2

©­­­«
1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

ª®®®¬ .
3.4.12 Not all 4×4 unitary matrix corresponds to a tensor of two 2×2 unitary matrices.

For instance, the operation

SWAP ≜

©­­­«
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®¬
|00⟩
|01⟩
|10⟩
|11⟩

|00⟩ |01⟩ |10⟩ |11⟩
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is unitary, but it cannot be written as𝑈 ⊗𝑉 with𝑈 and 𝑉 1-qubit operations. Written as

an operation on the canonical basis, corresponds to the function

|𝑥⟩ ⊗ |𝑦⟩ ↦−→ |𝑦⟩ ⊗ |𝑥⟩ .

We call it the swap operation.

3.4.13 The swap operation has the same effect as literally swapping the position of two

qubits. And indeed, one can show that

SWAP ◦ (𝑈 ⊗ Id) = Id ⊗ 𝑈.

3.4.14 Thanks to 3.4.13, the graphical representation of quantum circuits can be ex-

tended with a special representation for the swap operation: the crossing of wires, as

follows:

,

or, more compactly,

The first graphical representation is compatible with a series of equational properties

satisfied by quantum circuits equipped with swaps, such as

= .

3.4.15 The equational theory derived from the rules such as the one shown in 3.4.14

gives rise to what is called a PROP
4
. The bottom line is that

Wires can be shuffled as much as we want, the only constraint is that they

need to always stay from left to right.

Said otherwise, the spacial ordering of wires is irrelevant.

3.4.16 The fact that one cannot exchange two sequencial actions on the same wire

means that there is a notion of causality in the sequence of actions. Since the spacial

ordering of wires is irrelevant, this causality is somehow the only important information

to keep track of. The nice, planar circuit representation contains too much information:

we can instead use directed acyclic graphs (DAG) to represent circuit. The circuits of

Fig. 4 can then be represented in a unique manner by the DAG shown in Fig 5. If one has

to programmatically construct a circuit, a DAG might be more suitable than a sequence

of gates. This is for instance one of the possible circuit representation within the Python

library QisKit
5
.

4
The canonical reference is a paper from S. Lack, but it is a bit off topic

5
https://qiskit.org/documentation/stubs/qiskit.dagcircuit.DAGCircuit.html
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Figure 5: DAG representing a circuit

3.4.17 Consider a circuit 𝐶 implementing a unitary𝑈: the circuit is a sequence of gates

𝐺1, 𝐺2, . . . , 𝐺𝑘 . Because

(𝐴𝐵)−1 = 𝐵−1𝐴−1, (𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1,

the circuit 𝐶−1
defined with the reversed application of the inverse of the gates: 𝐺−1

𝑘
, . . . ,

𝐺−1

2
, 𝐺−1

1
implements𝑈−1

. Graphically:

©­­­«
𝑇

𝑈

𝑉 𝑊

ª®®®¬
−1

= 𝑈−1

𝑇−1

𝑊−1 𝑉−1

3.5 Quantum Gates on 1 Qubit

3.5.1 Any reasonnable set of quantum gates include the Pauli gates. These consists of
the three 1-qubit gates

𝑋 =

(
0 1

1 0

)
, 𝑌 =

(
0 −𝑖
𝑖 0

)
, 𝑍 =

(
1 0

0 −1

)
.

together with the identity. Each Pauli gate is equal to its conjugate transpose, and squar-

ing it yields the identity. The 𝑋 gate is also denoted NOT, since it flips |0⟩ and |1⟩. Its
action on canonical basis vectors is

𝑋 : |𝑥⟩ ↦−→ |¬𝑥⟩ .

It has a special graphical representation in circuit, as follows:

The Z-gate does not touch the canonical basis kets, but it adds a phase to |1⟩:

𝑍 : |𝑥⟩ ↦−→ (−1)𝑥 |𝑥⟩ .

3.5.2 S-gate. Another standard gate is the S gate, defined as

𝑆 =

(
1 0

0 𝑖

)
.

It is the square root of 𝑍 : 𝑆2 = 𝑍 .
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3.5.3 Hadamard gate. The Hadamard presented in 2.8.6 is also amongst the usual

quantum gates. It is written 𝐻, or Had. It is its own inverse: 𝐻2 = Id.

3.5.4 T-gate. By composing Pauli gates, 𝑆-gates and Hadamard gates one can only

reach a finite number of unitary matrices. To get an infinite set, we need to add a refined

phase-gate: the typical choice is the square root of 𝑆, the 𝑇-gate:

𝑇 =

(
1 0

0 𝑒𝑖𝜋/4

)
.

3.5.5 Theorem (Approximate Universality). Consider a unitary 𝑈 acting on H , and

an error 𝜀 > 0. There exists a sequence 𝐶 of gates 𝐻 and 𝑇 such that 𝐶 implements 𝑈

up to error 𝜀:

∀ |𝜓⟩ , || (𝑈 − 𝐶) |𝜓⟩|| ≤ 𝜀 · || |𝜓⟩||.
Moreover, this sequence of gates is “short” in the sense that there is a constant 𝑐 such

that the size of 𝐶 is in 𝑂 (log
𝑐 (1/𝜀)).

3.5.6 Th. 3.5.5 is a result known since 1995 with the now standard Solovay-Kitaev algo-
rithm, with 𝑐 = 3.97, followed in 2002 by an improvement with 𝑐 = 3+ 𝛿, for 𝛿 arbitrarily
small. Of course, as usual in this situation, the smallest 𝛿 is, the biggest the overhead.

Since the Solovay-Kitaev algorithm based on a geometric interpretation, the circuit syn-

thesis problem for 1-qubit gates has been greatly improved with algorithms relying on

the resolution of Diophantine equations. In the 2010’s, several competing groups devel-

opped more and more refined versions; the last paper of this academic jousting [RS16]

yields an optimal strategy with 𝑐 = 1. From a practical standpoint, it provides a very fast

and efficient procedure to approximate Z-rotations, i.e. unitaries of the form(
1 0

0 𝑒𝑖𝜃

)
For instance, for 𝜃 = 𝜋/128 and 𝜀 = 10

−10
, the procedure yields in a tenth of a second the

approximation

𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻

𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆

𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻

𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇

𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻𝑇𝐻.

If these optimized algorithms do not usually bring anything in the relative asymptotic

complexity of quantum and classical algorithms, they are crucial when discussing prac-

tical implementations.

3.5.7 Rotations If we want to perform an exact circuit synthesis of 1-qubit unitaries,
one strategy is to include the so-called rotations gates 𝑅𝑋 (𝜃), 𝑅𝑌 (𝜃) and 𝑅𝑍 (𝜃), parame-

terized by an angle 𝜃. These rotations respectively corresponds to rotations around the

𝑋 , 𝑌 and 𝑍 axis of the Bloch sphere. They are defined as follows: 3.2.9
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𝑅𝐺 (𝜃) ≜ 𝑒𝑖
𝜃
2
·𝐺 = cos

(
𝜃

2

)
· Id − 𝑖 sin

(
𝜃

2

)
· 𝐺,

for 𝐺 ∈ {𝑋,𝑌, 𝑍}. Matrix-wise, they can be written as

𝑅𝑋 (𝜃) =
(

cos(𝜃/2) −𝑖 sin(𝜃/2)
−𝑖 sin(𝜃/2) cos(𝜃/2)

)
𝑅𝑌 (𝜃) =

(
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

)
𝑅𝑍 (𝜃) =

(
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

)
3.5.8 The gate 𝑅𝑍 (𝜃) is defined with a global phase: it is customary to define an alter-

native version of the gate:

Ph(𝜃) ≜ 𝑅𝜃 ≜
(

1 0

0 𝑒𝑖𝜃

)
.

We then have 𝑇 = Ph(𝜋/4), 𝑆 = Ph(𝜋/2) and 𝑍 = Ph(𝜋).

3.5.9 Theorem (Parametrization of 1-qubit gates). The canonical form of a unitary

map𝑈 on 1 qubit is parametrized by 3 angles up to a global phase as follows:

𝑈 =

(
cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)

𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)

)
. (25)

Such a map𝑈 can be written as a product of rotation gates and a global phase as follows:(
cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)

𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)

)
= 𝑒𝑖(𝜙+𝜆)/2𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜆). (26)

3.5.10 Proof. To prove the decomposition of 𝑈 into the form of Eq. (25), one can first

note that the first column is the parametrization of a qubit state given in 3.2.9. The

second column is obtained by specifying the fact that it is supposed to be of norm 1, and

orthogonal to the first column.

For the proof of Eq. (26), we can simply unfold the definitions of the rotations, and

execute the matrix multiplications as follows.

𝑒𝑖(𝜙+𝜆)/2𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜆)

= 𝑒𝑖(𝜙+𝜆)/2
(
𝑒−𝑖𝜙/2 0

0 𝑒𝑖𝜙/2

) (
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

) (
𝑒−𝑖𝜆/2 0

0 𝑒𝑖𝜆/2

)
= 𝑒𝑖(𝜙+𝜆)/2

(
𝑒−𝑖𝜙/2 0

0 𝑒𝑖𝜙/2

) (
𝑒−𝑖𝜆/2 cos(𝜃/2) −𝑒𝑖𝜆/2 sin(𝜃/2)
𝑒−𝑖𝜆/2 sin(𝜃/2) 𝑒𝑖𝜆/2 cos(𝜃/2)

)
= 𝑒𝑖(𝜙+𝜆)/2

(
𝑒−𝑖(𝜆+𝜙)/2 cos(𝜃/2) −𝑒𝑖(𝜆−𝜙)/2 sin(𝜃/2)
𝑒𝑖(𝜙−𝜆)/2 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙)/2 cos(𝜃/2)

)
=

(
cos(𝜃/2) −𝑒𝑖𝜆 sin(𝜃/2)

𝑒𝑖𝜙 sin(𝜃/2) 𝑒𝑖(𝜆+𝜙) cos(𝜃/2)

)
,

which is the definition of𝑈. □

34



B. Valiron Intro to Quantum Course Notes v.2025.03.04

3.5.11 The global phase in Th. 3.5.9 is there to make sure that “things fall in the right

place”. From a computational point of view, it is invisible since quantum states are con-

sideredmodulo global phases. Note however that global phases in unitaries are important

to keep in mind when considering controlled gates (see 3.6.11 for a discussion).

3.6 Quantum Gates on Several Qubits

3.6.1 One-qubit operations are limited in the sense that from a basis ket they do not

make it possible to realize entangled states such as the EPR state. Although the SWAP 3.3.6

operation is a 2-qubit operations, it preserves separability: to get all possible states from 3.4.13

a basis state we need more. A strategy to get there—and to get more expressivity in

general— is to use controlled operations.

3.6.2 Notation To represent a bundle of 𝑛 wires, we shall use the notation

𝑛

3.6.3 If 𝐴 is a unitary on 𝑛 qubits, one can build a new unitary map called controlled
operation as follows. Pick 𝐴 : H⊗𝑛 → H⊗𝑛, and build the unitary 𝐶-𝐴 : H ⊗ H⊗𝑛 →
H ⊗ H⊗𝑛 by adding a control qubit:

𝐶-𝐴 :

{
|0⟩ ⊗ |𝑥⟩ ↦→ |0⟩ ⊗ |𝑥⟩
|1⟩ ⊗ |𝑥⟩ ↦→ |1⟩ ⊗ (𝐴 · |𝑥⟩) .

The map 𝐶-𝐴 admits a graphical notation as follows:

𝑛
𝐴

The bullet is placed on the control qubit. The vertical line is not a wire: it is there to

indicate which gate is being controlled by which wire.

3.6.4 The matrix corresponding to 𝐶-𝐴 is defined blockwise as follows:(
𝐼𝑑 0

0 𝐴

)
|0𝑥⟩
|1𝑥⟩

|0𝑥⟩ |1𝑥⟩
.

It preserves the two orthogonal subspaces |0⟩ ⊗ H⊗𝑛 and |1⟩ ⊗ H⊗𝑛: it does nothing on

the former while applying 𝐴 on the latter.

3.6.5 The control operation is compositional: 𝐶-(𝐴 ◦ 𝐵) is (𝐶-𝐴) ◦ (𝐶-𝐵), and 𝐶-𝐼 = 𝐼 .
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3.6.6 It is useful to be able to perform negative controls: controls where the action is

triggered in |0⟩ and not on |1⟩. The graphical notation is

𝑛
𝐴

The operation is

|0⟩ ⊗ |𝑥⟩ ↦→ |0⟩ ⊗ (𝐴 · |𝑥⟩)
|1⟩ ⊗ |𝑥⟩ ↦→ |1⟩ ⊗ |𝑥⟩ .

3.6.7 The gate CNOT, or 𝐶-𝑋 acts on 2 qubits as follows:

CNOT:

{
|0⟩ ⊗ |𝑥⟩ ↦→ |0⟩ ⊗ |𝑥⟩
|1⟩ ⊗ |𝑥⟩ ↦→ |1⟩ ⊗ |¬𝑥⟩ .

This can be written in a more compact way as

CNOT: |𝑥⟩ ⊗ |𝑦⟩ ↦→ |𝑥⟩ ⊗ |𝑦 ⊕ 𝑥⟩ .

The matrix of the CNOT gate is

©­­­«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬
|00⟩
|01⟩
|10⟩
|11⟩

|00⟩ |01⟩ |10⟩ |11⟩

Its graphical representation in a circuit is

3.6.8 One can also build the gate 𝐶-𝐶-𝑋 , also known as the Toffoli gate:

|𝑥𝑦⟩ ⊗ |𝑧⟩ ↦→ |𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦⟩ .

As a circuit, it is

3.6.9 The control of a gate 𝑅𝜃 has an internal symmetry: 𝐶-𝑅𝜃 sends every canonical 3.5.8

basis vector to itself, with a phase 𝑒𝑖𝜃 in the case |11⟩. The matrix is

©­­­«
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒𝑖𝜃

ª®®®¬ ,
and
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𝑅𝜃

=

𝑅𝜃
.

It sends |𝑥⟩ ⊗ |𝑦⟩ to (𝑒𝑖𝜃)𝑥𝑦 · |𝑥⟩ ⊗ |𝑦⟩.

3.6.10 A special case if the gate 𝐶-𝑍 , a controlled rotation of angle 𝜋. It has the special

diagrammatic notation

.

It sends |𝑥⟩ ⊗ |𝑦⟩ to (−1)𝑥𝑦 · |𝑥⟩ ⊗ |𝑦⟩.

3.6.11 Control and global phases In 3.5.11, we mentionned that global phases are

irrelevant for unitaries when applied on the whole state space. When the unitary cor-

respond to a subcircuit that might be controlled, the global phase is important. Indeed,

consider the circuit

𝑒𝑖𝜃
.

where the controlled gate applies a global phase to a qubit: |𝑥⟩ ↦→ 𝑒𝑖𝜃 |𝑥⟩. The circuit

performs the operation:

|0⟩ ⊗ |𝑥⟩ ↦→ |0⟩ ⊗ |𝑥⟩ ,
|1⟩ ⊗ |𝑥⟩ ↦→ 𝑒𝑖𝜃 |1⟩ ⊗ |𝑥⟩ .

That is, the global phase is only applied when the top qubit is in state |1⟩. The action of

this circuit is not equivalent to the identity: it is equivalent to a phase-gate on the top

qubit.

We shall come back to this point when controlling arbitrary unitaries in Th. 4.3.2

and 4.3.4.

3.7 Creating New Quantum Registers

3.7.1 In 3.1.2, we discussed how the co-processor implements three classes of actions. So

far, we discussed the internal actions, mathematically representedwith unitary operators.

In this section, we shall discuss the two other classes: allocation and initialization, and

deallocation and reading.

3.7.2 Initialization is the easiest to handle: if the memory has say 1 qubit in state |𝜙⟩,
adding a new qubit in state |0⟩ corresponds to changing the memory state to |𝜙⟩ ⊗ |0⟩.
Before the action, the memory state space was H , and after the action it is H ⊗ H .

Note that we arbitrarily decided to add the new qubit at the end, but we could have done

otherwise.
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3.7.3 Initialization as in 3.7.2 can be seen as a linear operation:

H → H ⊗ H
|𝑥⟩ ↦→ |𝑥⟩ ⊗ |0⟩ .

This map is clearly not unitary since it is not total: vectors of the form |𝜙⟩ ⊗ |1⟩ are not
in the image. However, it still preserves norm and orthogonality, and if we consider it as

a map fromH to the subspace H ⊗ |0⟩, it is unitary.

3.7.4 We say that we initialize auxiliary qubits, or ancillas. The circuit representation
for ancillas is as follows

|0⟩

This represents the operation of 3.7.3.

3.8 Reading Quantum Registers

3.8.1 Measurement. The last class of action is concerned with “poking the existing

memory state”: either by de-allocating part of it, or simply reading it. Any such operation

leaves the realm of unitary maps and need the notion ofmeasurement. It is moreover the

only way to get back classical data out of quantum data.

3.8.2 The measure of a qubit state 𝛼 · |0⟩ + 𝛽 · |1⟩, we obtain

• with prob. |𝛼 |2: the Boolean value “0”, and the qubit is now in state |0⟩

• with prob. |𝛽 |2: the Boolean value “1”, and the qubit is now in state |1⟩

The qubit state has been probabilistically projected on one of the canonical basis vector.

As vectors are normalized, the sum of probabilities is indeed equal to 1: we are sure to

get a result.

3.8.3 Note that measuring |0⟩ returns “0” with probability 1. Therefore, measuring twice

the same qubit returns twice the same result.

3.8.4 Since the state of a quantum bit is collapsed by the measurement, we can consider

that the qubit “disappeared” during the process: a so-called destructive measure. In this

case, we can consider that the qubit is turned into a bit. The circuit notation is extended

with a special gate for the measurement, and a special wire type for bit, represented with

a double line. Destructive measurements are represented with

while non-destructive are
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Here we consider that the gate “spits out” a bit on top. After the measurement gate, the

qubit is either |0⟩ or |1⟩ depending on the measured Boolean value. We can control on

bit wire: it means that the controlled gate is applied provided that the bit is in state 1 for

black bullet and in state 0 for white bullets.

3.8.5 Beware A circuit with a measurement is in general not invertible, and the pro-

cedure presented in 3.4.17 makes in general no sense with measurements.

3.8.6 For instance,

𝐻

implements the operation sending 𝛼 |0⟩ + 𝛽 |1⟩ to |0⟩ with probability |𝛼 |2 and |−⟩ with
probability |𝛽 |2. We know which state we are left with by reading the bit wire.

3.8.7 A qubit is never alone: it is part of a larger memory. The behavior in this general

situation is very similar to what happens for 1 qubit: the state of the system is projected. 3.8.2

More precisely, suppose that the memory consists of 𝑛 + 1 qubits and that we measure

the first qubit of the memory. The state space of the memory is H ⊗ H⊗𝑛. The state of
the memory can then be written as

|𝜙⟩ =
2
𝑛−1∑︁
𝑖=0

(
𝛼0,𝑖 · |0⟩ ⊗ |𝑖⟩ + 𝛽1,𝑖 · |1⟩ ⊗ |𝑖⟩

)
. (27)

Measuring the first qubit projects the state |𝜙⟩ to one of the two orthogonal subspaces

|0⟩ ⊗H and |1⟩ ⊗H . These subspaces respectively contains all of the vectors of the forms

|0⟩ ⊗ H ≜

{
2
𝑛−1∑︁
𝑖=0

𝛽𝑖 · |0⟩ ⊗ |𝑖⟩
}
,

|1⟩ ⊗ H ≜

{
2
𝑛−1∑︁
𝑖=0

𝛾𝑖 · |1⟩ ⊗ |𝑖⟩
}
.

Said otherwise, the vectors of |0⟩ ⊗H only have canonical basis kets starting with 0, and

the vectors of |1⟩ ⊗ H only have canonical basis kets starting with 1.

3.8.8 Measuring the first qubit of the quantummemory, the vector |𝜙⟩ in Eq. (27) is then
collapsed into either

|𝜙0⟩ =

2
𝑛−1∑︁
𝑖=0

𝛼0,𝑖

𝜌0

· |0⟩ ⊗ |𝑖⟩ = |0⟩ ⊗
(

2
𝑛−1∑︁
𝑖=0

𝛼0,𝑖

𝜌0

· |𝑖⟩
)

or

|𝜙1⟩ =

2
𝑛−1∑︁
𝑖=0

𝛽1,𝑖

𝜌1

· |1⟩ ⊗ |𝑖⟩ = |1⟩ ⊗
(

2
𝑛−1∑︁
𝑖=0

𝛽1,𝑖

𝜌1

· |𝑖⟩
)
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with

𝜌0 =

√√√
2
𝑛−1∑︁
𝑖=0

|𝛼0,𝑖 |2, 𝜌1 =

√√√
2
𝑛−1∑︁
𝑖=0

|𝛼1,𝑖 |2.

The collapse happens modulo renormalization: the adjunction of 𝜌0 and 𝜌1 ensures that

|𝜙0⟩ and |𝜙1⟩ are unit vectors. We can separate the state of the first qubit, and if we define

|𝜓0⟩ =
2
𝑛−1∑︁
𝑖=0

𝛼0,𝑖

𝜌0

· |𝑖⟩ , |𝜓1⟩ =
2
𝑛−1∑︁
𝑖=0

𝛽1,𝑖

𝜌1

· |𝑖⟩ ,

they are also normalized vectors, and

|𝜙⟩ = 𝜌0 · |0⟩ ⊗ |𝜓0⟩ + 𝜌1 · |1⟩ ⊗ |𝜓1⟩ . (28)

3.8.9 Having set up the framework in 3.8.8, we can now use the decomposition of Eq. 28

to describe the process of the measure of the first qubit:

• With probability 𝜌2

0
, the measurement returns the bit 0 and the memory state col-

lapses to |0⟩ ⊗ |𝜓0⟩;

• With probability 𝜌2

1
, the measurement returns the bit 1 and the memory state col-

lapses to |1⟩ ⊗ |𝜓1⟩.
In particular, if we perform a second measure of the same qubit, as for the case of 3.8.2

we get the same output bit with probability 1.

3.8.10 Let us consider the 2-qubit case, and measure the first qubit in

|𝜙⟩ = 𝛼 · |00⟩ + 𝛽 · |01⟩ + 𝛾 · |10⟩ + 𝛿 · |11⟩ .

The projection on the subspace |1⟩ ⊗ H is

𝛼 · |00⟩ + 𝛽 · |01⟩ ,

and the one on subspace |1⟩ ⊗ H is

𝛾 · |10⟩ + 𝛿 · |11⟩ .

If we write 𝜌0 =
√︁
|𝛼 |2 + |𝛽 |2 and 𝜌1 =

√︁
|𝛾 |2 + |𝛿 |2, the decomposition of Eq. (28) gives

|𝜙⟩ = 𝜌0 · |0⟩ ⊗
(
𝛼

𝜌0

· |0⟩ + 𝛽

𝜌0

· |1⟩
)
+ 𝜌1 · |1⟩ ⊗

(
𝛾

𝜌1

· |0⟩ + 𝛿

𝜌1

· |1⟩
)
.

We can check that we are in the situation of 3.8.8: |𝜌0 |2 + |𝜌0 |2 = 1, and each component

is normalized. According to 3.8.9, by measuring the first qubit we then obtain

• the bit 0 with probability |𝜌0 |2 = |𝛼 |2 + |𝛽 |2, and the state of the system is now

|0⟩ ⊗
(
𝛼

𝜌0

· |0⟩ + 𝛽

𝜌0

· |1⟩ ;

)
• the bit 1 with probability |𝜌1 |2 = |𝛾 |2 + |𝛿 |2, and the state of the system is now

|1⟩ ⊗
(
𝛾

𝜌1

· |0⟩ + 𝛿

𝜌1

· |1⟩
)
.
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3.8.11 We can then proceed and measure the second qubit. If we had measured 0 for the

first qubit, the state is

|0⟩ ⊗
(
𝛼

𝜌0

· |0⟩ + 𝛽

𝜌0

· |1⟩ ;

)
,

and measuring the second qubit yields

• the bit 0 with probability

��� 𝛼𝜌0

���2, and the state of the system is now |00⟩;

• the bit 1 with probability

��� 𝛽𝜌0

���2, and the state of the system is now |01⟩.

If we had instead measured 1 for the first qubit, the state is

|1⟩ ⊗
(
𝛾

𝜌1

· |0⟩ + 𝛿

𝜌1

· |1⟩
)
.

and measuring the second qubit yields

• the bit 0 with probability

��� 𝛾𝜌1

���2, and the state of the system is now |10⟩;

• the bit 1 with probability

��� 𝛿𝜌0

���2, and the state of the system is now |11⟩.

3.8.12 Combining the sequence of measurements, when a 2-qubit system is in state

|𝜙⟩ = 𝛼 · |00⟩ + 𝛽 · |01⟩ + 𝛾 · |10⟩ + 𝛿 · |11⟩ ,

measuring the first then the second qubit yields the values

• "00" with the state now at |00⟩ with probability |𝛼 |2;

• "01" with the state now at |01⟩ with probability |𝛽 |2;

• "10" with the state now at |10⟩ with probability |𝛾 |2;

• "11" with the state now at |11⟩ with probability |𝛿 |2.

3.8.13 Note one can measure qubits in an arbitrary order, this does not change the final

result.

3.8.14 In general, if we measure the whole state of a memory of 𝑛 qubits:

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 · |𝑖⟩ ,

we retrieve the bitstring corresponding to 𝑖 (as discussed in 3.3.5) with probability |𝛼𝑖 |2.
In this case, the memory state is collapsed to the canonical basis ket |𝑖⟩.
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3.8.15 Deferred measurements. The deferred measurement principle states that one
can always “push” the meassurements at the end of a circuit without changing its overall

behavior. The trick is to replace classically controlled gates with quantum controlled

gates. For instance:

𝐻

(29)

has the same effect as

𝐻

(30)

3.8.16 Example. Applied to the state |00⟩, the circuit (29) has the following effect:

|00⟩ ↦→ 1

√
2

|0⟩ ⊗ (|0⟩ + |1⟩) applying Had

=
1

√
2

( |00⟩ + |01⟩)

↦→
{
( |0⟩ , bit 0) with prob.

1/2
( |0⟩ , bit 1) with prob.

1/2 measuring

↦→
{
( |0⟩ , bit 0) with prob.

1/2
( |1⟩ , bit 1) with prob.

1/2 applying CNOT

Thus, overall, the qubit in in state |0⟩ or |1⟩ with probability
1

2
. The bit wire stores the

value of the qubit wire.

The circuit (30) has instead the effect:

|00⟩ ↦→ 1

√
2

|0⟩ ⊗ (|0⟩ + |1⟩) applying Had

=
1

√
2

( |00⟩ + |01⟩)

↦→ 1

√
2

( |00⟩ + |11⟩) applying CNOT

↦→
{
( |0⟩ , bit 0) with prob.

1/2
( |1⟩ , bit 1) with prob.

1/2 measuring.

We therefore get the same effect as the previous circuit.

3.8.17 Measuring in other bases The measurement presented in 3.8.2 “tests” a qubit

against the basis states |0⟩ and |1⟩. It can be spelled out with the scalar product: the

probability of getting |0⟩ while measuring |𝜙⟩ is

| ⟨0 | 𝜙⟩ |2.
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This turns out to be arbitrary, and it can in fact be done in any basis.
6
For instance, we

can measure a qubit against the basis {|+⟩ , |−⟩}: we get |+⟩ with probability

| ⟨+ | 𝜙⟩ |2. (31)

Of course, the bit returned by the measurement is not defined a priori and this has to be

specified in advanced.

3.8.18 One can always reduce the problem of the general measurement presented in

3.8.17 to the measure in the canonical basis. Consider the probability of Eq. (31): using

2.9.2 we can reduce it as follows:

| ⟨+ | 𝜙⟩ |2 = | ⟨Had+ |Had𝜙⟩ |2 = | ⟨0 |Had𝜙⟩ |2.

Measuring in the basis |+⟩ , |−⟩ can therefore be obtained by applying a Hadamard gate

followed with a measurement in the standard basis.

3.8.19 By abuse of language we say that we measure in the basis Had, referring to the

fact that the unitary can be regarded as an encoding of the basis (as in Eq (21) in 2.8.6).

3.8.20 Commutation of measure The permutation of unitary gates discussed in

3.4.9 extends to the case where we perform measurements: both

𝑈

and

𝑈

describe the same computation.

3.9 Discarding Quantum Registers

3.9.1 In regular programming languages, it makes sense to allocate and free (or discard)
memory on the fly. With quantum registers, discarding amounts to perform a destructive
measure and forget the result of the measurement. Discarding is represented in circuits

with a small symbol reminiscent of “ground”. In the following example, we discard the

second qubit after the application of a gate𝑈:

𝑉

𝑈

6
As a matter of fact, it can be formalized in the more general framework of POVM but this is out of the

scope of this document.
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3.9.2 In general, discarding a qubit generates a probabilistic distribution of states. For

instance, the circuit

|0⟩

|0⟩

𝐻

returns a memory with only one qubit (the upper wire), whose state is |0⟩ or |1⟩ with
probability

1/2.

3.9.3 Safely discarding a wire requires to make sure that it is not entangled with the rest

of the memory. As an example, one can make sure that it is in a canonical basis state.

Indeed, if we were to discard the first qubit, the measurement process behind the discard

operation would project the state of the memory on the subspaces |0⟩⊗H⊗𝑛 or |1⟩⊗H⊗𝑛.
If the first qubit is separated from the rest of the memory, in state |0⟩ or |1⟩, the projection
does not do anything beside focusing on the corresponding subspace: there is no loss of

information.

3.9.4 For instance, suppose that the input of the circuit

in in state ∑︁
𝑥

𝛼𝑥 |𝑥⟩ ⊗ |0⟩ =

(∑︁
𝑥

𝛼𝑥 |𝑥⟩
)
⊗ |0⟩ ,

then the output is ∑︁
𝑥

𝛼𝑥 |𝑥⟩ .

3.9.5 The canonical use-case for discard is for managing ancillas. A frequent situation is

when a unitary operation𝑈 on 𝑛 qubits might be cumbersome to implement with exactly

𝑛 wires, but easier if we allocare more “room”, that is, more wires. The operation 𝑈 is

then seen as a block of a larger unitary 𝑉 acting on H⊗𝑘 ⊗ H⊗𝑛. Assume 𝑘 = 2 for

simplicity. Then

𝑉 =

©­­­«
𝑈 0 0 0

0 𝑊01,01 𝑊01,10 𝑊01,11

0 𝑊10,01 𝑊10,10 𝑊10,11

0 𝑊11,01 𝑊11,10 𝑊11,11

ª®®®¬ (32)

for matrices𝑊𝑥𝑦,𝑧𝑡 acting onH⊗𝑛. In the block decomposition of 𝑉 , each column corre-

sponds to a possible value for the two auxilary qubits: |00⟩ corresponds to the column

with 𝑈, and the other columns are associated with |01⟩, |10⟩ and |11⟩. Said otherwise,

the action of 𝑉 on a canonical basis vector is

𝑉 :

{
|00⟩ ⊗ |𝑥⟩ ↦→ |0 · · · 0⟩ ⊗ (𝑈 |𝑥⟩)
|𝑦𝑧⟩ ⊗ |𝑥⟩ ↦→ |01⟩ ⊗ (𝑊01,𝑦𝑧 |𝑥⟩) + |10⟩ ⊗ (𝑊10,𝑦𝑧 |𝑥⟩) + |11⟩ ⊗ (𝑊11,𝑦𝑧 |𝑥⟩)

when 𝑦𝑧 ≠ 00. The circuit for𝑈 is then
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𝑛 𝑛

|0⟩

|0⟩ 𝑉

It is design so that the only column used in Eq. (32) is the most-left one, corresponding to

the case where the ancillas are |00⟩. The action of 𝑉 then return something of the form

|00⟩ ⊗ · · · , therefore making the ancillas qubits separated from the environment: we can

discard them without perturbating the global state of the memory. Globally, we recover

the action of𝑈, as desired.

3.9.6 The circuit presented in 3.9.5 can be inverted using the technique of 3.4.17. Indeed,

the inverse of 𝑉 is blockwise:

𝑉−1 =

(
𝑈−1

0

0 𝑊−1

)
where𝑊 is the block made out of the𝑊𝑥𝑦,𝑧𝑡 ’s. The ancillas are kept initialized at 0.

3.9.7 If 𝑉 were to set the ancilla back to some canonical basis state other than |0⟩, the
procedure of 3.9.5 would still work: we could still measure without perturbating the

global state. The inverse discussed in 3.9.6 would still be valid, modulo the fact that

ancillas would have to be set to the correct, non-𝑘𝑒𝑡0 value.

3.9.8 A standard case for an operation𝑈 described using a larger matrix 𝑉 as in 3.9.5 is

when the matrix𝑈 performs an action on the basis vectors, made of several subcomputa-

tions. We can store the subcomputations in ancilas qubits, building the final result step by

step. Once it is done, we then uncompute the ancillas by reversing the local operations.

As an example, consider the gate 𝐶-𝐶-𝐶-𝑋 , a flip gate controlled by 3 qubits. On

canonical basis vectors, it performs the operation

|𝑥⟩ ⊗ |𝑦⟩ ⊗ |𝑧⟩ ⊗ |𝑡⟩ ↦−→ |𝑥⟩ ⊗ |𝑦⟩ ⊗ |𝑧⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ .

This operation can be decomposed into two conjunctions: first 𝑥 with 𝑦, then 𝑥𝑦 with 𝑧.

Each conjunction can be realized with a Toffoli gate, and we can store the result of the

first conjunction inside an ancilla. The circuit is as follows.

|0⟩

𝑞1

𝑞2

𝑞3

𝑞4

create 𝑉 discard
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It acts on 3 qubits, therefore on the spaceH⊗3 ⊗ H , and consists of three parts:

create : H⊗3 ⊗ H → H⊗3 ⊗ |0⟩ ⊗ H ,

𝑉 : H⊗3 ⊗ H ⊗ H → H⊗3 ⊗ H ⊗ H ,

discard : H⊗3 ⊗ H ⊗ H → H⊗3 ⊗ H .

The operations create and 𝑉 composes since

H⊗3 ⊗ |0⟩ ⊗ H ⊆ (H⊗3 ⊗ |0⟩ ⊗ H) ⊕ (H⊗3 ⊗ |1⟩ ⊗ H) = H⊗3 ⊗ H ⊗ H .

In general, the behavior of discard is probabilistic, as the 3rd qubit is measure. However,

the state is not completely general: it is resulting from the function 𝑉 ◦ create; let us
compute its action on a basis canonical state:

|𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡⟩ ↦→ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡⟩ by create

↦→ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0 ⊕ 𝑥𝑦⟩ ⊗ |𝑡⟩ by 1st Toffoli

= |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦⟩ ⊗ |𝑡⟩
↦→ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ by 2nd Toffoli

↦→ |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑥𝑦 ⊕ 𝑥𝑦⟩ ⊗ |𝑧 ⊕ 𝑥𝑦𝑧⟩ by 3rd Toffoli

= |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .

For compactness, we omitted some of the tensors. This maps therefore only populates a

subspace of its co-domain:

𝑉 ◦ create : H⊗3 ⊗ H → H⊗3 ⊗ |0⟩ ⊗ H .

Whatever input |𝜙⟩ ∈ H⊗3 ⊗ H

|𝜙⟩ =
∑︁

𝑥,𝑦,𝑧,𝑡∈{0,1}
𝛼𝑥,𝑦,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡⟩ ,

the resulting state lives inH⊗3 ⊗ |0⟩ ⊗ H :

(𝑉 ◦ create) |𝜙⟩ =
∑︁

𝑥,𝑦,𝑧,𝑡∈{0,1}
𝛼𝑥,𝑦,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |0⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .

If we perform a destructive measurement, the projection will have no effect, and we

retrieve the vector ∑︁
𝑥,𝑦,𝑧,𝑡∈{0,1}

𝛼𝑥,𝑦,𝑧,𝑡 |𝑥⟩ |𝑦⟩ |𝑧⟩ ⊗ |𝑡 ⊕ 𝑥𝑦𝑧⟩ .

3.9.9 Although the ancilla is not written in the same place, the circuit of 3.9.8 follows

the specification given in 3.9.5: although we allocate and discard auxiliary registers, it

corresponds to a unitary operation.
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3.10 Cloning, Copy, Teleportation

3.10.1 Quantum information cannot be cloned: it is the so-called no-cloning theorem.

More precisely, one cannot physically realize the map

|𝜙⟩ ⊗ |0⟩ ↦−→ |𝜙⟩ ⊗ |𝜙⟩

what would work for all ket vectors. One way to understand it is by writing the ket |𝜙⟩
as a column vector: the map should therefore send

©­­­«
𝛼

0

𝛽

0

ª®®®¬ ↦−→
©­­­«
𝛼2

𝛼𝛽

𝛼𝛽

𝛽2

ª®®®¬ .
This operation is not linear: it cannot be synthetized with unitary maps. . .

3.10.2 If cloning is not possible, copying is possible. Consider the circuit

|0⟩

It sends a basis element |𝑥⟩ to |𝑥𝑥⟩. This is clearly not the same map as in 3.10.1: it sends

(
𝛼

𝛽

)
↦−→

©­­­«
𝛼

0

0

𝛽

ª®®®¬ .
It is a linear map: in ket-notation, it does

𝛼 |0⟩ + 𝛽 |1⟩ ↦−→ 𝛼 |00⟩ + 𝛽 |11⟩ .

3.10.3 Teleportation In 3.8.2 we said that because of the projection that happens,

some quantum information is lost when we perform a measurement. In particular, when

we measure the qubit 𝛼 |0⟩ + 𝛽 |1⟩, the coefficients 𝛼 and 𝛽 disappear. This turns out to

not be the case in general, and a non-intuitive effect can happen in the circuit presented

in Fig. 6.

3.10.4 The circuit is typically read as follows. In the left dashed boxed, an entangled pair

of qubits is built. The first qubit is sent to Alice, the other one to Bob. Alice has another

qubit (the top wire) whose state she want to send to Bob. Unfortunately, they only share

a classical communication channel! Thankfully, they can succeed: Alice performs the

middle dashed box with the measurement of both of her qubits, she sends the result to

Bob, and Bob uses the Boolean values he receives to execute a correction on his qubit: as

we shall see, the qubit is now in the same state Alice’s qubit was originally in. However,

note that we did not clone anything: Alice’s qubit has been measured, and his state is not

a canonical basis element.
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|𝜓⟩

|0⟩

|0⟩

𝐻 𝑏1

𝑏2

𝐻 𝑈𝑏1,𝑏2

Alice

Bob

A B C D

Figure 6: Scheme for Teleportation.

3.10.5 Let us develop the computation. Assume that |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. Consider each
layers in Fig. 6.

In (A).

|𝜓⟩ ⊗ |00⟩ 𝐻−→ |𝜓⟩ ⊗ |0⟩ ⊗ 1

√
2

( |0⟩ + |1⟩)

= |𝜓⟩ ⊗ 1

√
2

( |0⟩ ⊗ |0⟩ + |0⟩ ⊗ |1⟩)

𝐶𝑁𝑂𝑇−−−−−→ |𝜓⟩ ⊗ 1

√
2

( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

= |𝜓⟩ ⊗ 1

√
2

( |00⟩ + |11⟩)

= (𝛼 |0⟩ + 𝛽 |1⟩) ⊗ 1

√
2

( |00⟩ + |11⟩)

=
1

√
2

(𝛼 |000⟩ + 𝛼 |011⟩ + 𝛽 |100⟩ + 𝛽 |111⟩)

In (B).
1

√
2

(𝛼 |000⟩ + 𝛼 |011⟩ + 𝛽 |110⟩ + 𝛽 |101⟩)

In (C).

1

√
2

(
𝛼 1√

2

( |0⟩ + |1⟩) ⊗ |00⟩ + 𝛼 1√
2

( |0⟩ + |1⟩) |11⟩
+𝛽 1√

2

( |0⟩ − |1⟩) |10⟩ + 𝛽 1√
2

( |0⟩ − |1⟩) |01⟩

)
=

1

2

(𝛼 |000⟩ + 𝛼 |100⟩ + 𝛼 |011⟩ + 𝛼 |111⟩ + 𝛽 |010⟩ − 𝛽 |110⟩ + 𝛽 |001⟩ − 𝛽 |101⟩)

=
1

2

(
|00⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) + |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩)
+|10⟩ ⊗ (𝛼 |0⟩ − 𝛽 |1⟩) + |11⟩ ⊗ (𝛼 |1⟩ − 𝛽 |0⟩)

)
.

In (D). The two first qubits got measured. The system lives in H ⊗ H ⊗ H . The mea-

surement projects the system on one of |00⟩ ⊗ H , |01⟩ ⊗ H , |10⟩ ⊗ H and |11⟩ ⊗ H .

Measuring, I then get with probability 1/4 two bits 𝑏1𝑏2 as follows:

• 00, and the state is now |00⟩ ⊗ (𝛼 |0⟩ + 𝛽 |1⟩),
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|0⟩

|0⟩ 𝐻 ⊕•
𝑋 𝑍

𝑏2
𝑏1

⊕• 𝐻

Alice

Bob(A) (B)
(C)

(D) (E)

Figure 7: Scheme for Dense Coding.

• 01, and the state is now |01⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩),

• 10, and the state is nowt |10⟩ ⊗ (𝛼 |0⟩ − 𝛽 |1⟩),

• 11, and the state is now |11⟩ ⊗ (𝛼 |1⟩ − 𝛽 |0⟩).

If Bob wants to get back |𝜓⟩, he needs to perform

𝑈00 = Id, 𝑈01 = 𝑋, 𝑈10 = 𝑍, 𝑈11 = 𝑍𝑋.

3.10.6 Discussion Note that the teleportation protocol does not refer to the localiza-

tion of Alice and Bob. The only constraint is for them to share an entangled pair of qubits.

But once this is done, they can go as far of each other as they want, the protocol will suc-

ceed. One could argue that the teleportation of the state is instantaneous, thus breaking

the physical law stating that information cannot move faster than the speed of light. But

there is no contradiction here: the state of the qubit is only modified when Bob receives

the results of the measures of Alics. These bits moves inside a classical channel, subject

to the law of physics, so nothing goes faster than the speed of light.

3.10.7 Recalling 3.8.18, Alice’s action consists in measuring its two qubits in the Bell
basis. 3.3.7

3.10.8 Dense Coding. The teleportation algorithm can be somehow “inverted”: in-

stead of sending a qubit through a classical channel, we can send two bits through a

quantum channel, encoded on one single qubit. The algorithm is presented in Fig. 7. The

gates 𝑋 and 𝑍 are fired by Alice whenever the corresponding bit is set to 1. Bob should

read the two bits at the end of the circuit in a non-probabilistic manner. See Exo. 3.11.12.

3.11 Exercices

3.11.1 Show that the set of vectors in 3.3.4 is indeed a basis.
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3.11.2 Consider the circuit

|𝑥⟩

|𝑦⟩

What does it compute? Give it in “function” form, and in matrix form (do not forget the

basis ordering used for the representation!). Lay out the details in a convincing way.

3.11.3 Consider the following circuits.

𝐻 𝐻

Give an argument to show that they do not describe the same unitary operation. You

might want to consider feeding the circuit with a well-chosen input state to ease the

computation.

3.11.4 Consider the following circuits.

𝐻 𝐻

𝐻 𝐻

𝐻 𝐻

For each of them, give a simpler, equivalent circuit, and the corresponding linear map in

function-style and in matrix form. Make sure to give the ordering of basis states you rely

on. You might want to recall Exo 2.10.12, but it is not necessary.

3.11.5 Consider the circuits

𝑋 𝑍

In each case, propose a new circuit where the gate 𝐶-𝑍 is on the far right, of the form:

Pauli
gates

3.11.6 Consider the circuit

𝑅𝑧 (−𝜃) 𝑅𝑧 (𝜃)

with 𝜃 a real number. Rewrite the circuit using only gates among CNOT and various 𝑅𝜃′ ,

for well-chosen values of 𝜃′.
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3.11.7 Consider the circuit

|𝑥⟩

|𝑦⟩ 𝑅𝜃

with 𝜃 a real number. What does it compute? Give it in “function” form, and in matrix

form (do not forget the basis ordering used for the representation!). Lay out the details

in a convincing way.

3.11.8 Consider the circuit

|𝑥⟩

|𝑦⟩

|0⟩ 𝑅𝜃

with 𝜃 a real number. What does it compute? Give it in “function” form, in (simpler)

circuit-form, and in matrix form (do not forget the basis ordering used for the represen-

tation!). Lay out the details in a convincing way.

3.11.9 Section 3.9.8 gives a procedure to generate a multi-controlled NOT gate from

Toffoli and ancillas. We want to realize a 𝐶4
-NOT gate (a NOT gate with 4 controls).

Give two circuits only consisting of Toffoli gates, making use of 3 ancillas for the first

circuit and only 2 ancillas for the other circuit.

3.11.10 Consider the circuit 3.5.7

𝑅𝑦 (𝜃1) 𝑅𝑦 (𝜃2)

1. Gives the corresponding matrices in the basis orderings ( |00⟩ , |01⟩ , |10⟩ , |11⟩) and
( |00⟩ , |10⟩ , |01⟩ , |11⟩).

2. Give a circuit made of multi-controlled 1-qubit gates and realizing the matrix

©­­­­­­­­­­­«

cos(𝜃1) 0 0 0 − sin(𝜃1) 0 0 0

0 cos(𝜃2) 0 0 0 − sin(𝜃2) 0 0

0 0 cos(𝜃3) 0 0 0 − sin(𝜃3) 0

0 0 0 cos(𝜃4) 0 0 0 − sin(𝜃4)
sin(𝜃1) 0 0 0 cos(𝜃1) 0 0 0

0 sin(𝜃2) 0 0 0 cos(𝜃2) 0 0

0 0 sin(𝜃3) 0 0 0 cos(𝜃3) 0

0 0 0 sin(𝜃4) 0 0 0 cos(𝜃4)

ª®®®®®®®®®®®¬
when written in the canonical basis ordering

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .

Explain why it works.
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3.11.11 Consider the teleportation algorithm of 3.10.3, where instead of teleporting a

separated qubit we teleport one of the two qubits of a Bell pair:

|0⟩

|0⟩

1√
2

( |00⟩ + |11⟩)
𝐻 𝑏1

𝑏2

𝐻 𝑋𝑏2 𝑍𝑏1

We use here the representation that we shall meet in 4.6.6: 𝑋𝑏2
stands for the gate 𝑋

when 𝑏2 is true, and the identity otherwise. Similarly for 𝑍𝑏1
: this is 𝑍 when 𝑏1 is true

and the identity when false.

Show that the output of this circuit is still a Bell pair, although on different qubits.

3.11.12 Spell out the details of the computation for the dense-coding algorithm in 3.10.8,

when the circuit is fed with an arbitrary pair of bits 𝑏1, 𝑏2.

52



B. Valiron Intro to Quantum Course Notes v.2025.03.04

4 Hardware Constraints and Circuit Synthesis

4.1 A bit of Complexity Theory

4.1.1 The notion of complexity refers to two related concepts: complexity of algorithms,

and complexity of problems. In this section, we focus on the former, and we briefly recall

what should be known about it in the context of quantum programming.

4.1.2 An algorithm is a mechanical procedure taking some input, and producing a re-

sult (possibly a simple “yes/no”) after a certain number of well-defined operations. The

complexity of the algorithm is an estimate of the amount of resources required when the

size of the inputs grows to infinity. The complexity can focus on the overall memory

footprint of the algorithm (space complexity), or on the number of operations required to

run it to completion (time complexity).
The “size of the input” is taken in a literal sense: if we were to store the input on a

regular storage device (USB key, hard-drive, etc), the input size is the number of bits it

takes to store it. For instance, storing a natural number 𝑁 in can be done in binary and

this requires log
2
(𝑁) bits.

The notion of “number of operations” is of course a moving target, as it depends on

the considered operations. In the conventional setting, one typically counts arithmetic

operations and memory accesses. In the quantum setting, one considers the interaction

with the quantum co-processor.

4.1.3 The complexity cares about the asymptotic behavior of the algorithm in a coarse

way: If 𝑓 (𝑥) is the quantity of resources required for processing an input of size 𝑥, we

say that 𝑓 (𝑥) is a big-O of 𝑔(𝑥) if there exists 𝑀 and 𝑥0 such that

∀𝑥 ≥ 𝑥0, 𝑓 (𝑥)𝑙𝑒𝑞𝑀 · 𝑔(𝑥).

We write 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)).
In general, we consider functions of several variables: the amount of resources might

be based on two parameters. For instance, an adder takes an input consisting of two

natural numbers 𝑀 and 𝑁 . The complexity of the adder depends on 𝑁 and 𝑀 (for an

adder, typically the complexity is 𝑂 (log
2
(𝑀) + log

2
(𝑁)).

4.1.4 The definition of big-O in 4.1.3 hides constants and smaller growth. This makes

it possible to write 𝑥 + 𝑐 = 𝑂 (𝑥) and 𝑐 · 𝑥 = 𝑂 (𝑥), when 𝑐 is a constant. We also

have 𝑥 + log(𝑥) = 𝑂 (𝑥) for instance. The definition permits overapproximation, such as

𝑥 = 𝑂 (𝑥2).
Such an approach makes the notion of “input size” and “amount of resources” some-

how canonical. For instance, maybe the integer 𝑁 requires log
2
(𝑁) + 4 bits in memory

to account for its type or other meta-data. Another, more involved example is when the

input is a graph with 𝑣 nodes and 𝑒 edges: the resources needed to store the graph will

grow in correlation with 𝑒 and 𝑣, but we can omit the fact that node and edge identifiers

are more than 1-bit long: as long as they are “small-enough” they won’t count in the

complexity, and we can focus on 𝑣 and 𝑒 for the big-O formula.
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4.1.5 The complexity of an algorithm gives some clue on howmuch useful it can be. For

instance, one can expect an algorithm with an exponential complexity (i.e. a complexity

of the form𝑂 (𝑒𝑥)) to scale badly for large input sizes. On the contrary, an algorithmwith

a logarithmic, a linear or a low-degree polynomial complexity should be better-behaved:

such complexities are the usual target for reasonnable amount of resources.

4.1.6 The complexity of an algorithm is however not the last word: the complexity is

in particular hiding constant terms that might end up being very large. Consider for

instance an algorithm running in logarithmic timewith, for an input of size 𝑥, the number

of operations being 10
40 + log(𝑥). This is 𝑂 (log(𝑥)), an arguably very good complexity.

In real-life though, even for very small 𝑥’s the algorithm requires a tantalizing amount

of time to complete.

4.1.7 If the example of 4.1.6 might look contrived, such large, hidden overheads are un-

fortunately someting rather common in the context of quantum algorithms. This is why

concrete resource estimation is very important to assess the effectiveness of a quantum

algorithm for a given task.

4.1.8 In the discussion so far, we are omitting an important fact: because of the poten-

tial use of measurement, quantum algorithms are probabilistic algorithms. We say that

a quantum algorithm has a complexity of 𝑂 ( 𝑓 (𝑥)) when it sucessfully completes with

probability at least
2/3 in 𝑂 ( 𝑓 (𝑥)).

Note that the probability
2/3 is somewhat arbitrary: any other high probability of

success can be attained in𝑂 ( 𝑓 (𝑥)) by executing the algorithm several times. For instance,

executing twice the algorithm makes a new algorithm succeeding with probability
8/9 in

𝑂 ( 𝑓 (𝑥)). We use the fact that 2 · 𝑓 (𝑥) = 𝑂 ( 𝑓 (𝑥)).

4.1.9 Finally, it is always good to keep in mind that the complexity of a quantum pro-

grammight be radically changed along the compilation process. Indeed, the chosen hard-

ware might require costly gate decompositions, various error correcting schemes and

complex qubit mapping, blowing up the overall cost of running the program.

4.2 Low-level gate-sets

4.2.1 As discussed in 3.1.4 and 3.4.3, on a quantum memory one cannot directly imple-

ment arbitrary unitaries: each quantum co-processor is limited to a particular gate-set.
These constrainsts can come from the physics of the implementation, but also from the

error correcting scheme, limiting what is possible. Typically, these gate-sets are chosen

so that any unitary operator can be synthetized, at least in an approximate manner.

4.2.2 Formally, we say that a gate-set 𝑆 is universal if for all 𝑛, for all unitary operator

𝑈, there exists a ciruit made out of gates from 𝑆 realizing 𝑈. We say that the gate-set is

appoximately universal if for all 𝑛, for all unitary operator 𝑈, for all error 𝜀 > 0, there

exists a circuit 𝐶 made out of gates of 𝑆 such that “𝐶 approximates𝑈 up to 𝜀”, i.e.

∀ |𝜓⟩ , || (𝑈 − 𝐶) |𝜓⟩|| ≤ 𝜀 · || |𝜓⟩||.
These two definition generalizes the 1-qubit case discussed in Sec. 3.5.5 and 3.5.7.
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4.2.3 In order to perform quantum computation, the main gate-set that is required for

every set-up is a set allowing one to implement Clifford operators. These are the op-

erations generated by the gates Had, 𝑆 and CNOT. It is not universal, and in fact it is

efficiently simulable on a classical machine.

Typical examples of universal gate sets extends Clifford gates with at least one non-

Clifford gates, as follows.

• CNOT + 1-qubit rotations. This is the typical gate-set that can be realized in the

context of linear optics or supraconducting qubits (the quantum co-processor of

IBM , Google, Rigetti, etc). The universality of this gate set is proved in Sec. 4.3.

• 𝑀𝑆 + 𝑅𝑧 + 𝑅𝑥 also form a universal gate set, with

𝑀𝑆(𝜃) =
©­­­«

cos(𝜃) 0 0 −𝑖 sin(𝜃)
0 cos(𝜃) −𝑖 sin(𝜃) 0

0 −𝑖 sin(𝜃) cos(𝜃) 0

−𝑖 sin(𝜃) 0 0 cos(𝜃)

ª®®®¬
This is the Mølmer-Sørensen gate, also written 𝑋𝑋 . Parameterized by an angle 𝜃,

this gate is used in the context of the ion-trap technology
7
.

• Control-Z and the family of gates 𝐽 (𝛼), defined by

𝐽 (𝜃) =
(

1 𝑒𝑖𝜃

1 −𝑒𝑖𝜃
)
.

This set of gates is in strong relation with MBQC (Measurement-Based Quantum
Computation), discussed in Sec. 4.6.

• Clifford+𝑇 . This is the typical gate-set for fault-tolerant quantum computation,

approximately universal. This is discussed in Sec. 4.3.19.

Some more exotic universal gate-set exists, based on the Toffoli gate. A first result due to

Kitaev [Kit97] shows that Toffoli, Had and 𝑆 are (approximately) universal. Maybe more

surprisingly, Toffoli and any 1-qubit basis change such as Had is also universal! [Shi03].

You might notice that none of these two gates contains coefficients with imaginary parts.

The encoding of a generic unitary operation then requires an extraneous wire to “store”

this imaginary part, but the encoding is efficient in the sense that one can turn a Clif-

ford+T circuit into a Toffoli+Had circuit in a polynomial manner.

4.2.4 Clifford needs “a bit of help” to get to universality. Instead of using additional

unitary gates such as Toffoli or 1-qubit gates, it is also possible to consider the use of

magic states [BK05]. These are typically 1-qubit registers, initialized in a non-canonical

basis state. The use of magic states requires measurements and the possibility to perform

some form of classical processing in the quantum co-processor. We discuss magic states

in Sec. 4.5.

7
see e.g. https://arxiv.org/abs/1603.07678
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4.3 Universality of CNOT and 1-qubit rotations

4.3.1 In 3.4.3, we discussed how quantum internal operations are unitaries acting on

the whole state space, while the quantum co-processor can only apply a handful of op-

erations. In this section, we shall see how one can realize any unitary operation on

any 𝑛-qubit states with only CNOT gates and 1-qubit rotations. The reader can refer to

arXiv:quant-ph/9503016 for a reference.

4.3.2 Theorem For all unitary 𝑈 on 1-qubit, there exists an angle 𝛼 and 3 1-qubit

unitaries 𝐴1, 𝐴2, 𝐴3 such that 𝐴1𝐴2𝐴3 = 𝐼 and𝑈 = 𝑒𝑖𝛼𝐴1𝑋𝐴2𝑋𝐴3.

4.3.3 Proof. According to Th. 3.5.9,𝑈 can be written as

𝑈 = 𝑒𝑖𝛼𝑅𝑧 (𝛽)𝑅𝑦 (𝛾)𝑅𝑧 (𝛿).

Define

𝐴1 = 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2),
𝐴2 = 𝑅𝑦 (−𝛾/2)𝑅𝑧 (−(𝛿 + 𝛽)/2),
𝐴3 = 𝑅𝑧 ((𝛿 − 𝛽)/2),

Then

𝐴1𝐴2𝐴3 = 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (−𝛾/2)𝑅𝑧 (−(𝛿 + 𝛽)/2)𝑅𝑧 ((𝛿 − 𝛽)/2)
= 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (−𝛾/2)𝑅𝑧 (−𝛽)
= 𝑅𝑧 (𝛽)𝑅𝑧 (−𝛽)
= 𝐼 .

Then, we can realize that 𝑋𝑋 = 𝐼 , and 𝑋𝑅𝑦 (𝛼)𝑋 = 𝑅𝑦 (−𝛼), and 𝑋𝑅𝑧 (𝛼)𝑋 = 𝑅𝑧 (−𝛼).
The following the hold:

𝐴1𝑋𝐴2𝑋𝐴3 = 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑋𝑅𝑦 (−𝛾/2)𝑅𝑧 (−(𝛿 + 𝛽)/2)𝑋𝑅𝑧 ((𝛿 − 𝛽)/2)
= 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑋𝑅𝑦 (−𝛾/2)𝑋𝑋𝑅𝑧 (−(𝛿 + 𝛽)/2)𝑋𝑅𝑧 ((𝛿 − 𝛽)/2)
= 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (𝛾/2)𝑋𝑅𝑧 (−(𝛿 + 𝛽)/2)𝑋𝑅𝑧 ((𝛿 − 𝛽)/2)
= 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾/2)𝑅𝑦 (𝛾/2)𝑅𝑧 ((𝛿 + 𝛽)/2)𝑅𝑧 ((𝛿 − 𝛽)/2)
= 𝑅𝑧 (𝛽)𝑅𝑦 (𝛾)𝑅𝑧 (𝛿),

closing the proof. □

4.3.4 Theorem Let 𝑈 be a 1-qubit unitary. The operation 𝐶-𝑈 can be realized with

only CNOT and 1-qubit gates.

4.3.5 Proof. Using Th. 4.3.2, one can decomposed 𝑈 into 𝑈 = 𝑒𝑖𝛼𝐴1𝑋𝐴2𝑋𝐴3. One can

write the circuit:

Ph(𝛼)

𝐴3 𝐴2 𝐴1
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with Ph(𝛼) defined as in Sec. 3.5.8. Indeed, when the control wire is |1⟩, we need to

perform𝑈, including the global phase. But this global phase should not be done with the

control qubit is |0⟩. This has already been discussed in 3.6.11. □

4.3.6 Theorem Consider an 𝑛-qubit unitary𝑈. There exists an 𝑛-qubit unitary𝑉 such

that 𝑉2 = 𝑈.

4.3.7 Proof. The existence of 𝑉 derives from the decomposition of 𝑈 as 𝑒𝑖𝐻 for some

hermitian matrix 𝐻 (see 2.9.8). One can then use 𝑉 = 𝑒𝑖𝐻/2, relying on 2.9.10. □

4.3.8 Theorem Let 𝑈 by an 𝑛-qubit unitary. The doubly-controlled gate 𝐶-𝐶-𝑈 can

be realized with only CNOT and simply-controlled 𝑛-qubit gates.

4.3.9 Proof. Let 𝑉 be defined as in Th. 4.3.6. A circuit realizing 𝐶-𝐶-𝑈 is

𝑛
𝑈

=

𝑛
𝑉 𝑉−1 𝑉

Indeed, the various cases for the controlling qubits are as follows:

• 00 → on ne fait rien

• 01 → on fait C-V et C-Vinv → identité

• 10 → d’abord C-Vinv puis C-V → identité

• 11 → C-V puis C-V : C-U

The operation𝑈 is then applied to the target qubit if and only if the control qubits are at

11. □

4.3.10 Theorem Let 𝑈 by a 1-qubit unitary. We can realize the multi-controlled gate

𝐶-𝐶-. . . -𝐶-𝑈 with only CNOT and 1-qubit gates.

4.3.11 Proof. Using repeatedly Th. 4.3.8 we decompose 𝐶-· · ·𝐶-𝑈 into CNOT-gates

and simply-controlled 1-qubit gates. We can conclude by using Th. 4.3.4 to decompose

each simply-controlled 1-qubit gates into CNOT and 1-qubit unitaries, to reach the re-

quired form. □

4.3.12 We are now almost ready to show that a 2
𝑛 × 2

𝑛
unitary matrix can be realized

(we say synthetized) with CNOT gates and 1-qubit unitaries. For this, we need a result

allowing us to relate arbitrary unitary matrices and multi-controlled gates. The result is

the following theorem, yielding Th. 4.3.15.
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4.3.13 Theorem (Cosine-Sine Decomposition). Let 𝑈 by any 𝑛 + 1-qubit unitary. One

can decompose𝑈 as (
𝐵1 0

0 𝐵2

) (
𝐶 −𝑆
𝑆 𝐶

) (
𝐴1 0

0 𝐴2

)
with 𝐴1, 𝐵1, 𝐴2 and 𝐵2 𝑛-qubit unitaries, and𝐶 and 𝑆 𝑛-qubit diagonals such that 𝑆2+𝐶2 =

Id.

4.3.14 Proof. See Appendix A.

4.3.15 Theorem. Any 𝑛 + 1-qubit unitary can be realized with multi-controlled, 1-

qubit unitaries.

4.3.16 Proof. The proof proceeds by induction on 𝑛. In the base case, 𝑛 = 1 and there is

nothing to fo. The inductive case makes use of the CS decomposition stated in Th. 4.3.13.

This decomposition can be drawn as the circuit:

𝑛

𝑅

𝐴2 𝐴1 𝐵2 𝐵1

where 𝑅 is a circuit realizing the matrix(
𝐶 −𝑆
𝑆 𝐶

)
.

This circuit can be built using the technique on 3.11.10: the matrix 𝐶 can be seen as a di-

agonal of Cosine functions, while thematrix 𝑆 contains the corresponding Sine functions.

This gives a multiplexor of multi-controlled 𝑅𝑦-rotations. □

4.3.17 Theorem. Given a unitary matrices on 𝑛 qubit, one can synthetize it with only

CNOT gates and 1-qubit rotations.

4.3.18 Proof. The proof consists in chaining the decompositions. First, using Th. 4.3.15

the matrices yields a circuits consisting of multi-controls of 1-qubit gates. Then, using

Th. 4.3.10 each of these multi-controls can be decomposed into CNOT and 1-qubit uni-

taries. Finally, each of these 1-qubit unitaries can be implemented with rotations using

Th. 3.5.9. □

4.3.19 Combining Th. 3.5.5 and 4.3.17, we can conclude that any 𝑛-qubit unitary can be

implemented up to arbitrary error with only CNOT, Hadamard and T-gates.

4.3.20 Discussion The proof in Sec. 4.3.18 gives a construction for a circuit imple-

menting an arbitrary unitary 2
𝑛 × 2

𝑛
-matrix. The size of the circuit is clearly exponential

on the number 𝑛 of qubits. Is there a way of constructing a non-exponentially-sized cir-

cuit? Without any constraints on 𝑈, this is bound to fail. One can count the number of

degrees of liberty for the system: the matrix contains 4
𝑛
complex numbers. Even if we
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factor out the unitarity constraints, we still need on the order of 4
𝑛
angles to describe all

of them. These angles are necessary: regardless of how we will handle them, they will

end up crawling inside rotation gates in the circuit.

4.4 Tradeoffs: a Case-Study

4.4.1 Given a unitary matrix 2
𝑛 × 2

𝑛
, if one question is to be able to implement it with

the available gate-set, the other is to be able to do it with a circuit of reasonnable size.

As discussed in 4.1.5, in computer science, “reasonnable” is defined as “polynomial in 𝑛”.

The strategy proposed in 4.3.18 is clearly not reasonnable with this definition.

In some situation, it is possible to do better when we can capitalize on the structure

of the unitary. In order to see how this can work in practice, we propose to study two

techniques to implement a multi-controlled 𝑅𝜃-gate (where we write 𝑅𝜃 in place of Ph(𝜃)
for compactness).

4.4.2 Exponentially large circuit Using Th. 4.3.4, note that we canwrite 𝑅𝜃 ≜ Ph(𝜃)
as

𝑒𝑖
𝜃
2 𝑅𝑧 (𝜃/2)𝑅𝑦 (0)𝑅𝑧 (𝜃/2).

From the proof of Th. 4.3.2, we set

𝐴1 = 𝑅𝑧 (𝜃/2), 𝐴2 = 𝑅𝑧 (−𝜃/2), 𝐴3 = Id,

so that

𝑅𝜃

=

𝑅𝜃/2

𝑅𝑧 (−𝜃/2) 𝑅𝑧 (𝜃/2)

Remember 3.11.6: the circuit can be written using rotations 𝑅𝜃/2 instead of 𝑅𝑧-gates, as

follows.

𝑅𝜃/2

𝑅∗
𝜃/2 𝑅𝜃/2

4.4.3 Let us now write a circuit for 𝐶-𝐶-𝑅𝜃 : using Th. 4.3.8 with𝑈 = 𝑅𝜃 , we get

𝑅𝜃

=

𝑅𝜃/2 𝑅∗
𝜃/2 𝑅𝜃/2
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Decomposing each 𝐶-𝑅𝜃/2 as the circuit of Sec. 4.4.2, we get:

𝑅𝜃/4

𝑅𝜃/4 𝑅∗
𝜃/4

𝑅∗
𝜃/4 𝑅𝜃/4 𝑅𝜃/4 𝑅∗

𝜃/4 𝑅∗
𝜃/4 𝑅𝜃/4

(33)

4.4.4 Let us now write a circuit for 𝐶-𝐶-𝐶-𝑅𝜃 : using Th. 4.3.8 with𝑈 = 𝐶-𝑅𝜃 , we get

𝑅𝜃

=

𝑅𝜃/2 𝑅∗
𝜃/2 𝑅𝜃/2

And each 𝐶-𝐶-𝑅𝜃/2 can itself be replaced with the circuit of Eq. (33).

4.4.5 The process can be iterated for synthetizing the multi-control gate 𝐶𝑛
-𝑅𝜃 with

only CNOT-gates and 𝑅-gates (and 𝑅∗-gates). Let us count how many of them we get:

we write 𝑁𝐺
𝑛 for the number of gates 𝐺 (and 𝐺∗) in 𝐶𝑛

-𝑅𝜃 .

• 𝑁CNOT

1
= 2, and 𝑁CNOT

𝑛+1 = 2 + 3𝑁CNOT

𝑛 . We deduce that 𝑁CNOT

𝑛 = 2

∑𝑛−1

𝑖=0
3
𝑖 = 3

𝑛 − 1.

• 𝑁𝑅
1
= 3, and 𝑁𝑅

𝑛+1 = 3𝑁𝑅
𝑛 . We deduce that in general 𝑁𝑅

𝑛 = 3
𝑛.

Furthermore, for 𝑛 controls the angle for the 𝑅-gate is always ±𝜃/2𝑛.

4.4.6 In any case, in this construction the size of the circuit is exponential on the number

of controls. Furthermore, there is no possibility to “compact” the circuit by parallelizing

the calls to 𝑅-gates, as they are all on the last line, interwined with CNOT-gates. If this

circuit is arguably not the smallest one, without any ancillas we are bound to have an

exponential number of rotation gates.

4.4.7 Polynomial-sized circuit If we can allocate ancillas, it is possible to do better

using the trick presented in Sec. 3.9.8. Indeed, the operation 𝐶𝑛
-𝑅𝜃 performs the opera-

tion

|𝑥1⟩ |𝑥2⟩ · · · |𝑥𝑛⟩ ⊗ |𝑧⟩ ↦−→ (𝑒𝑖𝜃)𝑥1𝑥2...𝑥𝑛 |𝑥1⟩ |𝑥2⟩ · · · |𝑥𝑛⟩ ⊗ |𝑧⟩
We can then first compute the product of the 𝑥𝑖’s, store it in an ancilla, perform a simple

𝐶-𝑅𝜃-gate, and undo the intermediate computations. An example for 𝐶-𝐶-𝐶-𝑅𝜃 is as
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follows.

|0⟩
|0⟩

𝑥1

𝑥2

𝑥3

𝑧 𝑅𝜃

In general, the gate 𝐶𝑛+1
-𝑅𝜃 with 𝑛 + 1 controls requires 𝑛 ancillas, 2𝑛 Toffoli gates and

one 𝐶-𝑅𝜃 gate. The former can be realized for instance with two Had-gates and the

circuit of Sec. 4.4.3, while the latter can be realized with the circuit of Sec. 4.4.2. We then

have a linear-sized, much more compact circuit. We can also note that the angles that

are required for the single-qubit rotation gates are at worst
𝜃/8: we are not working with

exponentially small angles, as discussed in Sec 4.4.5. But again, this assumes that we can

afford to use auxiliary registers.

4.4.8 Discussion We presented two concrete algorithms to synthetize 𝐶𝑛
-𝑅𝜃 gates:

these are of course not the only existing techniques. However, the main idea remains:

there is no silver bullet, and tradeoffs have to be decided upon, depending both on the

backend and on the targetted use-case. In particular, one can note the following three

tradeoffs

1. As discussed above, the reduction of the circuit size is typically correlated with an

increase in the pool of ancillas.

2. The more compact the circuit is, the more time it takes to synthetize it. If one needs
a steady stream of circuit generation on the fly, one might prefer a technique pro-

ducing slightly larger circuits but in a fast manner rather than a slower technique

producing more optimized circuits.

3. Informations on the structure of the unitary to synthetize might be capitalized upon

to produce a smaller circuit. An example of such as case is discussed in 5.2.1 with

the generation of oracles.

4.5 Quantum Computation with Magic States

4.5.1 If the low-level target is error corrected —such as with the surface code [Cle22]—
non-Clifford gatesmight not be directly implementable at the logical level. If non-Clifford

such as 𝑇-gates are not available, a solution consists in initializing the memory in a state

that contains the phases that the rotations would have brought. Rotation gates are then

not native, but instead built from these magic states [BK05], Clifford gates, and a bit of

classical processing. Such a rotation gate is then way more costly than Clifford gates,

requiring dedicated error correction and optimization scheme.
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4.5.2 A typical magic state is

|𝐴𝜃⟩ =
1

√
2

( |0⟩ + 𝑒𝑖𝜃 |1⟩).

If we have access to several copies of the magic states, it is possible to realize the rotation

𝑅𝜃 =

(
1 0

0 𝑒𝑖𝜃

)
.

The procedure is summarized by the circuit:

|0⟩

|𝜙⟩

|𝐴𝜃⟩

Meas

A B C D (34)

Suppose that |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. At each step, the state of the system is:

(A) |𝜙⟩ ⊗ |𝐴𝜃⟩ ⊗ |0⟩, that is
1

√
2

(𝛼 |000⟩ + 𝛼𝑒𝑖𝜃 |010⟩ + 𝛽 |100⟩ + 𝛽𝑒𝑖𝜃 |110⟩).

(B) The two CNOT-gates store in qubit 3 the parity respective of qubit 1 and 2: 0 for 00

and 11, and 1 for 01 and 10. The state becomes

1

√
2

(𝛼 |000⟩ + 𝛼𝑒𝑖𝜃 |011⟩ + 𝛽 |101⟩ + 𝛽𝑒𝑖𝜃 |110⟩).

(C) The measurement gives with probability
1

2
the states

(𝛼 |00⟩ + 𝛽𝑒𝑖𝜃 |11⟩) ⊗ |0⟩
when 0 is measured, and

(𝛼𝑒𝑖𝜃 |01⟩ + 𝛽 |10⟩) ⊗ |1⟩
when 1 is measured.

(D) The last CNOT-gate will unentangle the state of qubit 1 and 2: if we had measured

0 we would get

(𝛼 |0⟩ + 𝛽𝑒𝑖𝜃 |1⟩) ⊗ |0⟩ ⊗ |0⟩
and if we had measured 1 we would get

(𝛼𝑒𝑖𝜃 |0⟩ + 𝛽 |1⟩) ⊗ |1⟩ ⊗ |1⟩
that can be rewritten (by change of global phase) into

(𝛼 |0⟩ + 𝛽𝑒−𝑖𝜃 |1⟩) ⊗ |1⟩ ⊗ |1⟩ .
The two last qubits are now in a canonical basis state: they can be recycled and

reused without impacting the global state of the memory.
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The effect of the circuit is then

(𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |𝐴𝜃⟩ ⊗ |0⟩ ↦−→ (𝛼 |0⟩ + 𝛽𝑒±𝑖𝜃 |1⟩) ⊗ |1⟩ ⊗ |1⟩ ,

with the sign depending on the result of the measurement.

4.5.3 Because the sign measurement is probabilistic, if we repeat the process (each time

with a fresh magic state |𝐴𝜃⟩), we will get roughly the same number of 0 and 1 out of the

measurements —let us respectively denote these numbers with 𝑛0 and 𝑛1. The state is in

this case:

(𝛼 |0⟩ + 𝛽𝑒(𝑛0−𝑛1)𝑖𝜃 |1⟩).
Because of the statistic of the process, we will eventually meet a point in time where

𝑛0 = 1 + 𝑛1: the state of qubit 1 then corresponds to the application of the gate 𝑅𝜃 to |𝜙⟩.
We can stop there: we implemented the gate 𝑅𝜃 .

4.5.4 Of course, in general, the number of times needed to repeat the circuit is not

known: we have a repeat-until-success scenario. In order for this scheme to work, the

result of the measurement should not have to be sent to the classical host. Indeed, the

delay would be way too costly. In this setting, the co-processor therefore needs to have

some form of classical control: here, the possibility to perform some simple arithmetics,

and the possibility to repeat a piece of circuit.

4.5.5 The magic state presented in Sec. 4.5.2 is a very simple one. There are many other

proposals, possibly with simpler computational schemes. All of these schemes are how-

ever relying on the same underlying technique: repeat-until-success. See for instance

[BK05].

4.6 Measurement-Based Quantum Computation

4.6.1 In some situation, the problem is not with single-qubit rotations but with 2-qubit,

entangling gates such as CNOT or 𝐶-𝑍 . An example of such a situation is discussed for

the case of quantum linear optics in 4.9. In this situation, similarly to what has been done

in 4.5, we can possibly rely on something akin to magic states. In this situation, we talk

instead of graph states.

4.6.2 A graph state is a set of entangled qubits according to an (undirected) graph: each

node corresponds to a qubit initialized in state |+⟩, and each edge corresponds to a 𝐶-𝑍

between the two corresponding nodes. For instance, the graph
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corresponds to the state generated with the circuit

|+⟩

|+⟩

|+⟩

|+⟩

4.6.3 Provided that we have access to graph states, measurements in the basis 3.8.17

|+𝜃⟩ =
1

√
2

( |0⟩ + 𝑒𝑖𝜃 |1⟩)

|−𝜃⟩ =
1

√
2

( |0⟩ − 𝑒𝑖𝜃 |1⟩),

Pauli gates, general unitary operations can be realized. The computational model is called

MBQC: Measurement-based Quantum Computation. The Pauli gates are correction, pa-
rameterized by measurement results as in the Teleportation Algorithm. 3.10.3

4.6.4 To understand howMBQCworks, let us rewrite the Teleportation Algorithm using

graph states. Each CNOT in the circuit drawn in Figure 6 can be rewritten to obtain the 3.11.4

circuit

|𝜓⟩

|0⟩

|0⟩

𝐻 𝑏1

𝐻 𝐻 𝐻 𝐻 𝑏2

𝐻 𝑈𝑏1,𝑏2

Tidying up, and unfolding the definition of𝑈𝑏1,𝑏2
, we get

|𝜓⟩

|+⟩

|+⟩

|±⟩

𝑏1

|±⟩

𝑏2

𝑋𝑏2 𝑍𝑏1

where the annotation |±⟩ on the measurement gate means that the measure should hap-

pen in basis |+⟩ , |−⟩, and the notation𝐺𝑏
means that the gate𝐺 should be applied when-

ever 𝑏 is 1.
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4.6.5 The scheme in 4.6.4 is a seemingly sophisticated MBQC pattern computing. . . the

identity. One can follow the same idea to build a pattern for a non-trivial operation, as

follows.

|𝜓⟩

|+⟩

|±𝜃⟩

𝑏

𝑋𝑏

The measurement is defined in the basis |+𝜃⟩ , |−𝜃⟩ of 4.6.3. The bit 𝑏 is 1 whenever |+𝜃⟩
was measured.

If |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, the circuit computes the folling operation:

|𝜓⟩ ⊗ |+⟩ = 1

√
2

(𝛼 |0⟩ + 𝛽 |1⟩) ⊗ (|0⟩ + |1⟩)

=
1

√
2

(𝛼 |00⟩ + 𝛼 |01⟩ + 𝛽 |10⟩ + 𝛽 |11⟩)

𝐶-𝑍−−−→ 1

√
2

(𝛼 |00⟩ + 𝛼 |01⟩ + 𝛽 |10⟩ − 𝛽 |11⟩)

=
1

√
2

(𝛼 |00⟩ + 𝛼 |01⟩ + 𝛽 |10⟩ − 𝛽 |11⟩)

=
1

√
2

(𝛼 |0⟩ ⊗ |0⟩ + 𝛼 |0⟩ ⊗ |1⟩ + 𝛽 |1⟩ ⊗ |0⟩ − 𝛽 |1⟩ ⊗ |1⟩)

=
1

2

(
𝛼( |+𝜃⟩ + |−𝜃⟩) ⊗ |0⟩ + 𝛼( |+𝜃⟩ + |−𝜃⟩) ⊗ |1⟩

+ 𝛽𝑒−𝑖𝜃 ( |+𝜃⟩ − |−𝜃⟩) ⊗ |0⟩ − 𝛽𝑒−𝑖𝜃 ( |+𝜃⟩ − |−𝜃⟩) ⊗ |1⟩

)
=

1

2

(
|+𝜃⟩ ⊗ ((𝛼 + 𝛽𝑒−𝑖𝜃) |0⟩ + (𝛼 − 𝛽𝑒−𝑖𝜃) |1⟩)

+ |−𝜃⟩ ⊗ ((𝛼 − 𝛽𝑒−𝑖𝜃) |0⟩ + (𝛼 + 𝛽𝑒−𝑖𝜃) |1⟩)

)
Measuring in basis |+𝜃⟩ , |−𝜃⟩, we get

• either (𝛼 + 𝛽𝑒−𝑖𝜃) |0⟩ + (𝛼 − 𝛽𝑒−𝑖𝜃) |1⟩ when the result of measurement is 0,

• or (𝛼 − 𝛽𝑒−𝑖𝜃) |0⟩ + (𝛼 + 𝛽𝑒−𝑖𝜃) |1⟩ when the result of the measurement is 1.

In the latter case, the Pauli gate 𝑋 is used as a correction: we deterministically get

(𝛼 + 𝛽𝑒−𝑖𝜃) |0⟩ + (𝛼 − 𝛽𝑒−𝑖𝜃) |1⟩

at the end of the computation. The net effect of the pattern is then the unitary operation

𝐽 (−𝜃) =
(

1 𝑒−𝑖𝜃

1 −𝑒−𝑖𝜃
)
.

As discussed in 4.2.3, the gate 𝐽 (𝜃) and the gate 𝐶-𝑍 form a univeral gate-set: we can

realize any unitary operation with measurements, Pauli corrections and 𝐶-𝑍 .
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4.6.6 The language of MBQC can be described by the following instructions: 𝐸𝑖, 𝑗 , 𝑀
𝛼
𝑖
,

𝑡 [𝑀𝛼
𝑖
]𝑠, 𝑋 𝑠

𝑖
and 𝑍 𝑠

𝑖
. The indices 𝑖 and 𝑗 corresponds towire (or qubit) identifiers, and 𝑠 and

𝑡 are signals: boolean expressions built from the results of (previous) measurements. By

convention, wewrite 𝑠𝑖 for the result of themeasurement ofwire 𝑖. With these definitions,

the instructions stand for

• 𝐸𝑖, 𝑗 : a gate 𝐶-𝑍 on qubits 𝑖 and 𝑗 ;

• 𝑀𝛼
𝑖
: measurement of qubit 𝑖 in basis |±𝛼⟩;

• More generally
𝑡 [𝑀𝛼

𝑖
]𝑠, standing for 𝑀 (−1)𝑠𝛼+𝑡𝜋

𝛼 ;

• 𝑋 𝑠
𝑖
and 𝑍 𝑠

𝑖
: the corresponding Pauli gates on qubit 𝑖 whenever 𝑠 is 1.

Finally, a program, or pattern, is given by the tuple

(𝐼, 𝑂,𝑉, 𝐿)

where 𝑉 is a set of qubits, 𝐼 ⊆ 𝑉 is the set of inputs and 𝑂 ⊆ 𝑉 the set of outputs. The
sets 𝐼 and 𝑂 can intersect. The last element of the tuple is 𝐿: a list of instructions, read

by convention from right to left. Running a program consists in

1. initializing the qubits in 𝐼 with the input state,

2. initializing the qubits in 𝑉 \ 𝐼 in state |+⟩,

3. applying the instruction one at a time, from right to left, following the values of

the signals,

4. the output of the computation is read in 𝑂.

4.6.7 Numbering the wires from top to bottom, the teleportation pattern in 4.6.4 can be

written as the MBQC program

({1}, {3}, {1, 2, 3}, 𝑍 𝑠1

3
𝑋
𝑠2

3
𝑀0

1
𝑀0

2
𝐸1,2𝐸2,3).

This pattern simply teleport the state of wire 1 to wire 3. The pattern 4.6.5 is the program

({1}, {2}, {1, 2}, 𝑋 𝑠1

2
𝑀𝜃

1
𝐸1,2).

If wire 1 is originally in state |𝜓⟩, the state of the wire 3 is set to 𝐽 (−𝜃) |𝜓⟩ at the end of

the computation. In particular, realizing the Hadamard gate can be done with 𝜃 = 0. As

a last example, the (very simple) pattern

({1, 2}, {1, 2}, {1, 2}, 𝐸1,2)

realizes. . . a 𝐶-𝑍 : inputs and outputs are the same wires 1 and 2, and the action of the

pattern is a single 𝐶-𝑍 gate.

4.6.8 Not all sequences of instructions are valid. First, a measured wire cannot be reused

later on. For instance, 𝐸0,1𝑀
𝜃
0
is not valid (remember that instructions are read from right

to left): once wire 0 has been measured, one cannot apply a gate to it. Another constraint

is that a signal can only be used once emitted, so for instance 𝑀𝜃
0
𝑋
𝑠0

2
is not valid: the

signal 𝑠0 used in 𝑋
𝑠0

2
is only emitted later on, at the next instruction 𝑀𝜃

0
.
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4.6.9 Note that any (valid) MBQC pattern corresponds to a valid sequence of quantum

operations. However, because a pattern can contain measurements, it might or might not

represent a purely unitary operation.

4.6.10 A pattern in MBQC has an input and and output: they can be composed in a

natural way, remarking that the wire identifiers can be changed without modifying the

overall action of the pattern:

({1, 2}, {1, 2}, {1, 2}, 𝐸1,2) and ({5, 6}, {5, 6}, {5, 6}, 𝐸5,6)

both perform a 𝐶-𝑍 , the difference being that they do not act on the same set of wires.

This makes it possible to compose patterns in order to emulate the behavior of quantum

circuits, by “plugging” outputs to inputs. For instance composing patterns for Hadamard,

then 𝐶-𝑍 , then Hadamard yields a pattern for CNOT:

({2}, {4}, {2, 4}, 𝑋 𝑠2

4
𝑀0

2
𝐸2,4) ◦ ({2, 3}, {2, 3}, {2, 3}, 𝐸2,3) ◦ ({1}, {2}, {1, 2}, 𝑋 𝑠1

2
𝑀𝜃

1
𝐸1,2)

corresponds to a circuit whose overall input is {1, 3} and overall output is {3, 4}, where
qubit 1 is now qubit 4. The pattern is

({1, 3}, {3, 4}, {1, 2, 3, 4}, 𝑋 𝑠2

4
𝑀0

2
𝐸2,4𝐸2,3𝑋

𝑠1

2
𝑀𝜃

1
𝐸1,2)

and the corresponding circuit-like representation is

|+⟩

|+⟩

𝑞1

|±⟩
𝑠1

𝑞2 𝑋 𝑠1

|±⟩
𝑠2

𝑞3

𝑞4 𝑋 𝑠2

Had

C-Z Had

4.6.11 Equivalent Representation. It is not immediate to see that the pattern for

CNOT in 4.6.10 is formed from a graph state: Instructions 𝐸𝑖, 𝑗 appear mixed with mea-

surements and Pauli corrections. In order to recover a graph state, one has to realize that

𝐶-𝑍 and Pauli corrections commutes. From 3.11.5, we can derive the following equalities:

𝐸𝑖, 𝑗𝑋
𝑠
𝑖 = 𝑋 𝑠

𝑖 𝑍
𝑠
𝑗𝐸𝑖, 𝑗 , 𝐸𝑖, 𝑗𝑍

𝑠
𝑖 = 𝑍 𝑠

𝑖 𝐸𝑖, 𝑗 ,

𝐸𝑖, 𝑗𝑋
𝑠
𝑗 = 𝑋 𝑠

𝑗 𝑍
𝑠
𝑖 𝐸𝑖, 𝑗 , 𝐸𝑖, 𝑗𝑍

𝑠
𝑗 = 𝑍 𝑠

𝑗𝐸𝑖, 𝑗 .

We can also show that

𝑡 [𝑀𝜃
𝑖 ]𝑠𝑋𝑟

𝑖 = 𝑡 [𝑀𝜃
𝑖 ]𝑠+𝑟 , 𝑡 [𝑀𝜃

𝑖 ]𝑠𝑍𝑟
𝑖 = 𝑡+𝑟 [𝑀𝜃

𝑖 ]𝑠 .

Intuitively, an 𝑋 gate corresponds to a 𝜋 rotation and an 𝑍 gate a phase flip. Finally,

instructions acting on distinct wires commute, assuming that this does not break de-

pendencies on signals (as discussed in 4.6.8). For instance, 𝑋
𝑠𝑖
𝑗
𝑀𝜃

𝑖
is a valid pattern, but

although the measurement and the Pauli gate do not act on the same wires, they do not

commute since the action of 𝑋 depends on the result of the measurement. And in fact,

the pattern 𝑀𝜃
𝑖
𝑋
𝑠𝑖
𝑗
is not valid.
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4.6.12 Normal Form. Using the equivalence rules in 4.6.11, it is possible to show
8

that the instructions of any MBQC pattern can be factorized as follows.

• First, perform a series of entangling gates 𝐸𝑖, 𝑗 to generate a graph state;

• then, measure in some specific wire ordering, with angles that possibly changes

according to previous measurements;

• finally, apply (parameterized) 𝑋 and 𝑍 Pauli corrections.

For instance, the series of instructions in the pattern for CNOT discussed in 4.6.10 can be

factorized as

𝑋
𝑠2

4
𝑍
𝑠1

4
𝑍
𝑠1

3

0 [𝑀0

2
]𝑠1𝑀𝜃

1
𝐸2,4𝐸2,3𝐸1,2.

The corresponding graph is

2

1 4

3Inputs Outputs

4.7 Classical Computation in the Co-Processor

4.7.1 In order to implement the techniques presented in 4.5, the circuit model presented

in 3.4.7 has to be extended with classical registers, and operations to act on them. In this

extended model, the bit generated from a measurement gets stored in a classical register,

within the quantum co-processor. If the classical host needs the information, this bit

needs to be extracted from the co-processor.

4.7.2 A quantum programming framework offering such a model is QisKit, a Python

library developed by IBM
9
. An example of circuit mixing both quantum and classical

control is as follows.

1 # 2 qubits for the Bell pair

2 epr = QuantumRegister(2, name="epr")

3

4 # The qubit to teleport

5 phi = QuantumRegister(1, name="phi")

6

7 # Classical register for storing the results

8 c = ClassicalRegister(2, name="c")

9

10 # We build a quantum circuit with both registers.

11 # By default, everything is initialized to 0 and to |0>

12 qc = QuantumCircuit(phi, epr, c)

13

14 # Generating the Bell pair

8
See the very pedagogical presentation in [DKPP09b].

9
https://qiskit.org/
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15 qc.h(epr[0])

16 qc.cnot(epr[0],epr[1])

17 qc.barrier()

18

19 # Action of Alice

20 qc.cnot(phi, epr[0])

21 qc.h(phi)

22 qc.barrier()

23

24 # Mesure of all of register q, storing results in c.

25 # This is still part of the circuit

26 qc.measure(phi, c[0])

27 qc.measure(epr[0], c[1])

28 qc.barrier()

29

30 # Now, action of Bob

31 qc.x(epr[1]).c_if(c[1],1)

32 qc.z(epr[1]).c_if(c[0],1)

For legibility of the printed circuit, we added “barriers” to regroup pieces of circuits to-

gether. The resulting circuit, as shown by QisKit in ASCII art is as follows. At the end of

the circuit, the state of the qubit phi is in epr_1.

phi: H M

epr_0: H X M

epr_1: X X Z

c_0:

c_1:

4.7.3 A question is the classical power of the quantum co-processor: what are the op-

erations allowed on classical registers? We at least need to be able to apply quantum

gates conditionally on the value of a Boolean register. To realize the scheme presented in

Sec. 4.5, we also need (limited) arithmetic but also loops. For representing such a process,

the circuit notation starts to show its limits, and if this were a more expressive language

might be required. More generally, this question of where to place the limit between the

classical and the quantum host is at the core of the discussions on hybrid computation.

4.8 A Word on Hardware

4.8.1 Noise As discussed in 3.2.3, quantum information is encoded on the state of

objects governed by the laws of quantum physics. Such objects are subject to a physical

phenomenon called decoherence: due to an interaction with the environment, the state
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of the system evolves in uncontrolled ways. From a computer science point of view, this

amounts to noise and the introduction of errors in the stored information.

4.8.2 NISQ and LSQ Noisy hardware is the current state of quantum co-processors.

As of 2024, quantum memory holds at most a few hundred of noisy qubits: we are in

the realm of NISQ, Noisy Intermediate Scale Quantum Computation. If we are arguably

reaching the tipping point, the error rate and the (relatively) small memory size makes it

still impossible to run quantum error correcting schemes. Building (logical) stable qubits

for enabling large memory (dubbed LSQ: Large Scale Quantum) is still an active subject

of research, both in academic and industrial labs.

4.8.3 Topology For hardware (or some fault-tolerant scheme, such as surface code),

the quantum bits have a fixed location. In these cases, two-qubits operations can only be

performed on neighboring qubits: the notion of neighbors is described with a graph. We

say that there is a topology. For instance, the IBM co-processor “Montreal” has 26 qubits

arranged as follows:

The Rigetti co-processor “Aspen-M” is as follows:

In these two cases, the circles are the qubit locations, while the edges are where CNOT-

gates are allowed. Another example using the same technology is the Google coprocessor

“sycamore”, with one non-functionning qubit (the white one):
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Here, qubits are crosses, and the blue links are where 2-qubit operations are allowed.

4.8.4 The problem this poses is the mapping, or routing of qubits. That is: given a

(logical) circuits, to which physical qubit do we associate each wire? This question turns

out to be an NP-complete problem: the subgraph isomorphism problem. In general not

all circuits can be mapped on any given topology, and when not feasable the goal is

to rewrite the circuit into an equivalent one such that a mapping exists: this turns the

decision problem into an optimization problem.

4.8.5 For instance, consider the circuit

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

Wire 𝑞0 needs to be mapped to a physical qubit of arity 4: if it is somewhat possible for

Google Sycamore co-processor (modulo the fact that CNOT-gates are not native there), it

is not possible to do it directly for IBM’s Montreal and Rigetti’s Aspen-M co-processor, as

the largest possible arity is 3. To implement such a circuit, a solution consists in rewriting

the circuit with swaps (themselves implementable with CNOT-gates) to reduce the arity

of problematic gates.

4.8.6 The circuit presented in Sec. 4.8.5 can be rewritten as

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4
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with a swap between 𝑞3 and 𝑞4. We can now find a routing for e.g. IBM Montreal:

𝑞0 ↦→ 12, 𝑞1 ↦→ 15, 𝑞2 ↦→ 13, 𝑞3 ↦→ 10, 𝑞4 ↦→ 7.

At the end of the computation, the wires are found in the following locations:

𝑞0 ↦→ 12, 𝑞1 ↦→ 15, 𝑞2 ↦→ 13, 𝑞3 ↦→ 7, 𝑞4 ↦→ 10.

We can perform another swap if needed to place back 𝑞3 and 𝑞4 at their original locations

if needed.

4.8.7 In general, finding an optimal mapping or routing for a given circuit is an NP-

complete problem: for non-trivial circuits we have to rely on approximate solutions. Ex-

isting compilers such as t|ket⟩ from Quantinuum, QisKit from IBM or Myqlm from

Eviden implement state-of-the-art techniques for the mapping problem. Such tools can

also handle additional constraints such as specific costs to minimize.

4.9 Focus: Linear Optical Quantum Computation

4.9.1 This section focuses on a hardware implementation maybe easier to apprehend

than others: quantum linear optics. The idea consists in encoding information on the

state of photons.

4.9.2 Notion of Phase. According to quantum mechanics principles that are out of

the scope of this course, a photon is both a particle and a wave. A typical wave is a

periodic phenomenon looking like the following.

amplitude

period

direction

4.9.3 Relative Phase Two waves running in parallel might be shifted by a relative

phase. In the following diagrams, the dashed wave is shifted from the solid wave with. . .

• an angle of 𝜋/2
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• an angle of 𝜋

• an angle of 3𝜋/2

4.9.4 Global Phase In the context of 4.9.3, a global phasewould here correspond to an
horizontal shift of both waves at once. When we say that “global phase does not matter”

in quantum computation, this can be understood as: there is no canonical horizontal

position where to measure the amplitude of the wave. The only meaningful information

that can possibly be retrieved is a relative phase, or an amplitude.

4.9.5 Coherent Light. Formally, coherent light is described by coupled oscillating

electric and magnetic fields: a photon corresponds to an electromagnetic wave. It is com-

posed of two synchronous waves running through space on orthogonal planes. In the

following diagram, the x-axis is the direction of the light-wave, composed of a red wave

in the xy-plane and a blue wave in the xz-plane. Physically, one of them corresponds to

the electric part of the wave (say: the blue wave) and the other the magnetic part (so: the

red wave).

x

z

y

4.9.6 Polarization When the electric field (in 4.9.5: the blue wave) evolves according

to a particular orientation, we say that the photon is polarized.. Polarization is a two-

dimensional quantum property (the two dimensions orthogonal to the direction of the

wave): it can be vertical (denoted with |𝑉⟩), or horizontal (denoted with |𝐻⟩). In general,

the state of the system is a superposition of both: thewave admits a vertical projection (on

the 𝑧 axis) and an horizontal projection (on the 𝑦 axis), as shown in Figure 8. The phase

of these two projections is the relative phase between the |𝐻⟩ and the |𝑉⟩ coordinate,
and we retrieve the invariance under global phase. 3.2.8
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vertical polarization = |𝑉⟩ horizontal polarization = |𝐻⟩

cos(𝜃) · |𝐻⟩ + sin(𝜃) · |𝑉⟩ cos(𝜃) · |𝐻⟩ + sin(𝜃)𝑒𝑖𝜓 · |𝑉⟩

Figure 8: Encoding a qubit on the polarization of a photon.

4.9.7 Measuring Photon Properties For a photon, two properties can be easily mea-

sured. The first one is its existence at a particular location and at a particular time: this

is done with a light detector. Depending on its sensitivity, such a detector might also be

able to say how many photons were detected at once. The other easy property to mea-

sure is the polarization of a photon: this is done with a polarized glass followed with a

light detector. The polarized glass only let through photon polarized in one particular

orientation: depending on whether a photon was detected after the polarized medium,

we can deduce the polarization of the photon.

Apart from polarization and position, it is possible to consider other properties, such

as for instance crossing time (is the photon there at time 𝑡?), frequency (i.e. color), etc.

Polarization and position are however the easiest to manipulate, thanks to the already

existing linear optical devices (some of them described in 4.9.9 and 4.9.11).

4.9.8 Mathematical Formalism Compared to a qubit which is already a logical con-

struction, a photon is a physical object: we can consider only two distinct states, such

as its vertical and horizontal properties, but we can also be more general. For instance,

given two optical fibers (or modes) 𝐴 and 𝐵, a photon might be in four distinct states:

• horizontal polarization in mode 𝐴,

• vertical polarization in mode 𝐴,

• horizontal polarization in mode 𝐵,
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• vertical polarization in mode 𝐵.

4.9.9 Linear Optical Circuit In linear optical quantum computation (LOQC), the
equivalent of a quantum circuit is an optical circuit, built from horizontal wires and gates.

The wires are calledmodes, and they corresponds to optical fibers or optical paths in free

space in which photons evolve. Gates are linear optical components: typically beamsplit-

ters, polarizing beamsplittes, phase shifters and wave plates (and permutation). One can

also consider non-linear components such as sources and detectors. A source introduces a

fixed number of photons in the circuit, and a detector acts a measure: it detect incoming

photons.

4.9.10 Encoding Information Encoding a quantum bit requires a medium and two

orthogonal states. For photons, the natural choice involvesmode and/or polarization. For
instance, consider the setting of 4.9.8 with a single photon. Its state space is generated by

|𝐻𝐴⟩ , |𝐻𝐵⟩ , |𝑉𝐴⟩ , |𝑉𝐵⟩ .

where each basis ket corresponds to a particular pair of properties. For instance |𝐻𝐴⟩
means “the photon lies in wire 𝐴 and is horizontally polarized”. One can encode a two-

qubit system with the following strategy:

• qubit 1 uses the polarization of the photon: 0, 1 is for instance respectively 𝐻, 𝑉 .

• qubit 2 uses the mode of the photon: 0, 1 is for instance respectively 𝐴, 𝐵.

The state |01⟩ is then represented with |𝐻𝐵⟩: a horizontally polarized photon in wire 𝐵.

The Bell state
1√
2

( |00⟩ + |11⟩) is 1√
2

( |𝐻𝐴⟩ + |𝑉𝐵⟩): a photon which is in superposition:

horizontally polarized in wire 𝐴, and vertically polarized in wire 𝐵.

4.9.11 Action of Linear Optical Components The linear optical components men-

tionned in 4.9.9 act on polarization or on mode. Mathematically, the corresponding op-

eration is a linear, unitary map on the state space of the photon.

4.9.12 Polarizing beamsplitters As their name implies, they act on polarization.

They work on 2 wires, say 𝐴 and 𝐵. When horizontally polarized the photon stays on

the same mode and it changes mode when vertically polarized. Formally:

|𝐻𝐴⟩ ↦→ |𝐻𝐴⟩ , |𝐻𝐵⟩ ↦→ |𝐻𝐵⟩ , |𝑉𝐴⟩ ↦→ |𝑉𝐵⟩ , |𝑉𝐵⟩ ↦→ |𝑉𝐴⟩ .

The graphical representation is
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4.9.13 Beamsplitters Work on 2 wires. Parameterized by an angle 𝜃, they only act

on modes, not touching the polarization of the photon. Their action corresponds to a ro-

tation in the two-dimensional space of modes |𝐴⟩, |𝐵⟩. Several conventions exist. When

the basis is ordered as |𝐴⟩ , |𝐵⟩, the action can be Had-based, 𝑅𝑥-based or 𝑅𝑦-based, as

follows.(
cos(𝜃/2) sin(𝜃/2)
sin(𝜃/2) − cos(𝜃/2)

) (
cos(𝜃/2) 𝑖 sin(𝜃/2)
𝑖 sin(𝜃/2) cos(𝜃/2)

) (
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

)
Had-based 𝑅𝑥-based 𝑅𝑦-based

The graphical representation is

For non-symmetric gates, it is important to specify which wire corresponds to 𝐴 and

which wire corresponds to 𝐵.

4.9.14 Wave plates Acting on a single wire, they perform a (2x2) unitary operation

in the polarization space. For instance, a wave plate might perform a flip

|𝐻⟩ ↦→ |𝑉⟩ , |𝑉⟩ ↦→ |𝐻⟩ ,

or a Hadamard-like operation

|𝐻⟩ ↦→ 1

√
2

( |𝐻⟩ + |𝑉⟩), |𝑉⟩ ↦→ 1

√
2

( |𝐻⟩ − |𝑉⟩).

The representation is a greyed box as follows:

4.9.15 Phase shifters Acting on a single wire, they perform a global phase change

on the photon. In the context of 4.9.10, a phase shift on 𝐴 performs the action

|𝐻𝐴⟩ ↦→ 𝑒𝑖𝜃 |𝐻𝐴⟩ , |𝑉𝐴⟩ ↦→ 𝑒𝑖𝜃 |𝑉𝐴⟩ , |𝐻𝐵⟩ ↦→ |𝐻𝐵⟩ , |𝑉𝐵⟩ ↦→ |𝑉𝐵⟩ .

Note how it only changes the phase of the states corresponding to mode 𝐴. The repre-

sentation is a white box as follows:

4.9.16 Permutation This operation corresponds literally to a permutation of wires.

The states are changed accordingly. For instance, in the situation of 4.9.10, the permuta-

tion of 𝐴 and 𝐵 corresponds to the map

|𝐻𝐴⟩ ↦→ |𝐻𝐵⟩ , |𝑉𝐴⟩ ↦→ |𝑉𝐵⟩ , |𝐻𝐵⟩ ↦→ |𝐻𝐴⟩ , |𝑉𝐵⟩ ↦→ |𝑉𝐴⟩ .

It only modifies the mode of photons. The graphical representation is simply wire cross-

ing.
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4.9.17 Example In the encoding of 4.9.10, the following linear optical circuit gener-

ates the Bell-state
1√
2

( |00⟩ + |11⟩):

H

∅

Had

A

B

A source generates a photon horizontally polarized while 𝐵 does not emit anything. The

photon then goes through the Hadamard wave plate of 4.9.14: its state is then

1

√
2

( |𝐻𝐴⟩ + |𝑉𝐴⟩).

It finally goes through a polarizing beamsplitter, yielding the state

1

√
2

( |𝐻𝐴⟩ + |𝑉𝐵⟩)

as only vertically polarized photons have their mode changed.

4.9.18 Mode versus Polarization When encoding only one qubit, one can choose

either:

• Polarization: unitaries are realized with wave plates; or

• Two modes 𝐴 and 𝐵: unitaries are realized with beamsplitters and phase shifters.

Polarizing beamsplitters can be regarded as a way to go from one encoding to the other.

4.9.19 Mode-Only Encoding The setting of 4.9.10 cannot easily be extended: going

to 3 qubits would require to find more orthogonal properties. The easiest is to add more

modes. From 4.9.18 we can even drop polarization and only focus on modes. When 𝑛

wires are available, the state of a single photon is a vector in an 𝑛 dimensional Hilbert

space K described by (say) |𝑤1⟩, . . . , |𝑤𝑛⟩.
A linear optical circuit consisting of beamsplitters and phase shifters on these 𝑛wires

corresponds to a unitary operation on the Hilbert space K . Such circuits are universal
in the sense that every unitary matrix can be realized with a linear optical circuit. An

example of shape on 6 wires is as follows:
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4.9.20 According to 4.9.19, one can emulate a quantum circuit on 𝑛 qubits using a linear

optical circuit with 2
𝑛
wires and a single photon. For instance, 2 qubits can be encoded

as follows:

• photon on wire 𝑤1: state is |00⟩,

• photon on wire 𝑤2: state is |01⟩,

• photon on wire 𝑤3: state is |10⟩,

• photon on wire 𝑤4: state is |11⟩.

A CNOT-gate where the controlled qubit is the first one is a permutation of 𝑤2 and 𝑤4. If

instead the controlled qubit is the second qubit, this can be done instead with permuting

𝑤3 and 𝑤4.

4.9.21 Many photons With a single photon, a mode-only encoding is hardly scalable:

we need an exponential number of wires on the number of qubits. A simple generaliza-

tion is to consider several photons. In fact, in general, on a wire one might consider zero

photon, a single one, or several of them. For quantum computation, we need photons to

be indistinguishable so that they can interfere.

4.9.22 For simplicity, suppose that we have 4 modes. In a many-photon system, each

wire might hold an arbitrary number of photons. Because these photons are indistin-

guishable, the only meaningful information to retain is the photon number of the corre-
sponding wire. We use the notation

|𝑛1, 𝑛2, 𝑛3, 𝑛4⟩

for a many-photon state consisting of 𝑛1 photons in mode 1, 𝑛2 photons in mode 2, 𝑛3

photons in mode 3 and 𝑛4 photons in mode 4. Each 𝑛 can be any non-negative number:

the state |0, 1, 0, 0⟩ stands for instance for a single photon in mode 2.

4.9.23 The notation of 4.9.22 describes the basis elements of an infinite dimensional

Hilbert space called a Fock space. One can for instance consider the state

1

√
2

( |2, 0, 0, 0⟩ + |0, 0, 0, 2⟩),

representing the state where 2 photons are in superposition in mode 1 and in mode 4.

4.9.24 Formally, a Fock space is a direct product of the form

F (K) = C ⊕ K ⊕ K ⊗̄2 ⊕ K ⊗̄3 ⊕ · · ·

where K ⊗̄𝑘 is the 𝑘th symmetric tensor of K : the subspace of K⊗𝑘 where vectors are

invariant under the permutation of the underlying tensors.
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4.9.25 We can define a special bilinear operation to combine elements of the Fock space,

keeping track of the “amount” of permuted elements that are in fact equal. Define the

operation “•” as the commutative, associative and distributive operation such that

|1, 0, 0, 0⟩•𝑛1 • |0, 1, 0, 0⟩•𝑛2 • |0, 0, 1, 0⟩•𝑛3 • |0, 0, 0, 1⟩•𝑛4 =
√︁
𝑛1!𝑛2!𝑛3!𝑛4! |𝑛1, 𝑛2, 𝑛3, 𝑛4⟩ .

We can then derive

|0, 𝑛, 0, 0⟩ • |0, 𝑚, 0, 0⟩ ≜
√︂
(𝑛 + 𝑚)!
𝑛!𝑚!

|0, 𝑛 + 𝑚, 0, 0⟩ ,

where we “join” the photons that are in the same wire, and

|𝑛, 0, 0, 0⟩ • |0, 𝑚, 0, 0⟩ ≜ |𝑛, 𝑚, 0, 0⟩ ,

where we merge the informations on distinct wires.

4.9.26 The standard presentation uses the notion of creation operator : instead of us-

ing |𝑛1, . . . , 𝑛𝑘⟩ as primitive construction, one can use operators 𝑤̂
†
𝑖
, an operator whose

behavior are (when 𝑖 = 1):

𝑤̂
†
1
|𝑛1, 𝑛2, 𝑛3, 𝑛4⟩ =

√
𝑛1 + 1 |𝑛1 + 1, 𝑛2, 𝑛3, 𝑛4⟩ .

All the discussion can then be done on this operator instead of the ket construction.

4.9.27 Linear Optical Component on Many Photons The action of a linear opti-

cal component on several photons can be derived (linearly) from the action on 1 single

photon. To do so, we reuse the notation of 4.9.25. On 2 wires, if 𝑈 is a unitary map on

the space generated by |𝑤1⟩, |𝑤2⟩ as

𝑈 |𝑤1⟩ = 𝛼 |𝑤1⟩ + 𝛽 |𝑤2⟩ ,𝑈 |𝑤2⟩ = 𝛾 |𝑤1⟩ + 𝛿 |𝑤2⟩ ,

we can generalize the map𝑈 to the Fock space over these two wires by defining:

𝑈 |1, 0⟩ ≜ 𝛼 |1, 0⟩ + 𝛽 |0, 1⟩ , 𝑈 |0, 1⟩ ≜ 𝛾 |1, 0⟩ + 𝛿 |0, 1⟩ ,

which is the simple translation of𝑈 on 1 wire, and then

𝑈 ( |1, 0⟩•𝑛 • |0, 1⟩•𝑚) ≜ (𝑈 |1, 0⟩)•𝑚 • (𝑈 |0, 1⟩)•𝑛.

for the general case, relying on the distributivity of the bullet operator.

4.9.28 For instance, consider a Hadamard beamsplitter 𝑈 acting on two wires 𝑤1 and

𝑤2. Its action is

|𝑤1⟩ ↦→
1

√
2

( |𝑤1⟩ + |𝑤2⟩), |𝑤2⟩ ↦→
1

√
2

( |𝑤1⟩ − |𝑤2⟩).

Written with the Fock states |1, 0⟩ and |0, 1⟩, it is

|1, 0⟩ ↦→ 1

√
2

( |1, 0⟩ + |0, 1⟩), |0, 1⟩ ↦→ 1

√
2

( |1, 0⟩ − |0, 1⟩).
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On 2 photons, its action is on the subspace generated by |2, 0⟩, |1, 1⟩ and |0, 2⟩. When the

basis is ordered this way, its matrix is

1

2

©­«
1

√
2 1√

2 0 −
√

2

1 −
√

2 1

ª®¬ .
In particular:

𝑈 |1, 1⟩ = 𝑈 ( |1, 0⟩ • |0, 1⟩)
= (𝑈 |1, 0⟩) • (𝑈 |0, 1⟩)

=
1

2

( |1, 0⟩ − |0, 1⟩) • (|1, 0⟩ + |0, 1⟩)

=
1

2

( |1, 0⟩ • |1, 0⟩ − |0, 1⟩ • |1, 0⟩ + |1, 0⟩ • |0, 1⟩ − |0, 1⟩ • |0, 1⟩)

=
1

2

(
√

2 |2, 0⟩ − |1, 1⟩ + |1, 1⟩ −
√

2 |0, 2⟩)

=
1

2

(
√

2 |2, 0⟩ −
√

2 |0, 2⟩).

=
1

√
2

( |2, 0⟩ − |0, 2⟩).

This effect is known as the Hong-Ou-Mandel effect: when two photons are sent through

a Hadamard beamsplitter, one on each input wire, at the exit of the gate the two photons

are both on the same wire: in superposition, they are both on the top wire and both on

the bottom wire.

4.9.29 Dual Rail Encoding With many photons, a systematic approach for encoding

qubits is called dual rail: each qubit corresponds to one photon over two possible modes.

In the notation of 4.9.22: a logical |0⟩ is represented with the photon state |1, 0⟩ (one
photon in first wire, zero in the second wire); a logical |1⟩ is instead represented with

|0, 1⟩. For instance, a 3-qubit quantum circuit corresponds to a 6-mode linear optical

circuit. The 8 possible logical qubit-states |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩,
|111⟩ are represented by the 3-photons/6-modes states (written using the same order):

|1, 0, 1, 0, 1, 0⟩ , |1, 0, 1, 0, 0, 1⟩ , |1, 0, 0, 1, 1, 0⟩ , |1, 0, 0, 1, 0, 1⟩ ,
|0, 1, 1, 0, 1, 0⟩ , |0, 1, 1, 0, 0, 1⟩ , |0, 1, 0, 1, 1, 0⟩ , |0, 1, 0, 1, 0, 1⟩ .

Note that the Fock space contains many more states: they do not all correspond to a valid

logical 3-qubits state. We have for instance

|3, 0, 0, 0, 0, 0⟩ , |2, 1, 0, 0, 0, 0⟩ , |0, 1, 0, 3, 0, 0⟩ , |1, 1, 0, 0, 1, 0⟩ , etc,

carrying no logical meaning.

4.9.30 Realizing one-qubit gates on dual rail is as easy as using phase gates and beam-

splitters on the two wires corresponding to the target qubit. For two-qubit gates, this
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turns out to be much harder, and sometimes impossible. Consider for instance the two-

qubit gate CNOT. On dual rail, we need a 2-photons/4-modes linear optical circuit send-

ing

|1, 0, 1, 0⟩ ↦→ |1, 0, 1, 0⟩ ,
|1, 0, 0, 1⟩ ↦→ |1, 0, 0, 1⟩ ,
|0, 1, 1, 0⟩ ↦→ |0, 1, 0, 1⟩ ,
|0, 1, 0, 1⟩ ↦→ |0, 1, 1, 0⟩ .

The second photon should then change its course depending on the state of the first

photon. However, as we discussed in 4.9.27, with linear optical components the action

on the two photons cannot be correlated.

4.9.31 In order to build 2-qubit gates in dual rails, we thererefore have to rely on non-

deterministic gates: gates succeeding with some probability. The idea consists in using

auxiliary wires to extend the dimension of the state space, and consider the targetted

unitary as a sub-part of a larger unitary. The general strategy consists in post-selection:
at the end of the process, some or all of the wires are measured. The result of the mea-

surement says whether the process succeeded or not. The gate is said heralded if one can

decide on the success of the process by only measuring auxiliary wires.

4.9.32 An example of a post-selected 2-qubit gate on dual-rails is Ralph’s CNOT encod-

ing. The gate works with 6 modes, using 4 photons for 2 qubits and 2 auxiliary empty

modes (thus initialized without any photon). Ralph’s circuit implements the following

unitary in the canonical basis |𝑤1⟩ , |𝑤2⟩ , |𝑤3⟩ , |𝑤4⟩ , |𝑤5⟩ , |𝑤6⟩ :

𝑈 =
1

√
3

©­­­­­­­«

1 0 0 0

√
2 0

0 −1 1 1 0 0

0 1 1 0 0 1

0 1 0 1 0 −1√
2 0 0 0 −1 0

0 0 1 −1 0 −1

ª®®®®®®®¬
.

We then focus on the 2-photons/6-modes state-space: it can be splitted into the coinci-
dence subspace built from

|1, 0, 1, 0, 0, 0⟩ , |1, 0, 0, 1, 0, 0⟩ , |0, 1, 1, 0, 0, 0⟩ , |0, 1, 0, 1, 0, 0⟩ ,

corresponding to logical qubits and the remaining states:

|2, 0, 0, 0, 0, 0⟩ , |0, 2, 0, 0, 0, 0⟩ , |0, 0, 2, 0, 0, 0⟩ , |0, 0, 0, 2, 0, 0⟩ ,
|1, 0, 0, 0, 0, 1⟩ , |0, 1, 0, 0, 0, 1⟩ , |0, 0, 1, 0, 0, 1⟩ , |0, 0, 0, 1, 0, 1⟩ ,
|1, 0, 0, 0, 1, 0⟩ , |0, 1, 0, 0, 1, 0⟩ , |0, 0, 1, 0, 1, 0⟩ , |0, 0, 0, 1, 1, 0⟩ ,

|1, 1, 0, 0, 0, 0⟩ , |0, 0, 1, 1, 0, 0⟩ , |0, 0, 0, 0, 1, 1⟩ , |0, 0, 0, 0, 2, 0⟩ , |0, 0, 0, 0, 0, 2⟩ ,

that do not represent any computation. On the coincidence subspace, the unitary 𝑈

performs a logical CNOT with with probability
1

9
. In other words, it sends a normalized

vector

𝛼 |1, 0, 1, 0, 0, 0⟩ + 𝛽 |1, 0, 0, 1, 0, 0⟩ + 𝛾 |0, 1, 1, 0, 0, 0⟩ + 𝛿 |0, 1, 0, 1, 0, 0⟩
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of the coincidence subspace to

𝛼

3

|1, 0, 1, 0, 0, 0⟩ + 𝛽

3

|1, 0, 0, 1, 0, 0⟩ + 𝛾

3

|0, 1, 0, 1, 0, 0⟩ + 𝛿

3

|0, 1, 1, 0, 0, 0⟩) +
√

8

3

|𝜓⟩

where |𝜓⟩ is orthogonal to the coincidence subspace, thus containing only non-logical

states.

4.9.33 The limit of Ralph’s CNOT gate is that although the gate generates the correct

answer in some subspace, there is no way to project the state onto this subspace to get rid

of the non-computational part

√
8

3
|𝜓⟩ without measuring all of the modes (and therefore

loosing superposition of states).

4.9.34 An alternative strategy consists in using heralded states. This is the strategy

employed by Knill. They design a linear optical circuit on 6 modes and 4 photons: 2 dual-

rails qubits and two auxiliary mode (with one photon each). The logical, computational

subspace is generated by

|1, 0, 1, 0, 1, 1⟩ , |1, 0, 0, 1, 1, 1⟩ , |0, 1, 1, 0, 1, 1⟩ , |0, 1, 0, 1, 1, 1⟩ ,
and the gate acts in such a way that measuring only the two last modes determines the

success of the procedure. In other words, the coincidence subspace KKnill is now larger

than the logical subspace: it contains all basis elements where the two last modes are in

state |1, 1⟩: it is generated by

|2, 0, 0, 0, 1, 1⟩ , |0, 2, 0, 0, 1, 1⟩ , |0, 0, 2, 0, 1, 1⟩ , |0, 0, 0, 2, 1, 1⟩ ,
|1, 1, 0, 0, 1, 1⟩ , |0, 0, 1, 1, 1, 1⟩ ,

while the orthogonal subspace K⊥
Knill

is generated by all the possible vectors of the form

|★,★,★,★, 0, 0⟩ , |★,★,★,★, 0, 1⟩ , |★,★,★,★, 0, 2⟩ , |★,★,★,★, 1, 0⟩ , |★,★,★,★, 2, 0⟩ .

4.9.35 Knill’s gate is a 𝐶-𝑍 : it can be found in [Kni02]; we report it here for complete-

ness: ©­­­­­­­«
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It sends a normalized vector

𝛼 |1, 0, 1, 0, 1, 1⟩ + 𝛽 |1, 0, 0, 1, 1, 1⟩ + 𝛾 |0, 1, 1, 0, 1, 1⟩ + 𝛿 |0, 1, 0, 1, 1, 1⟩ ∈ KKnill

to√
2

3

√
3

(𝛼 |1, 0, 1, 0, 1, 1⟩ + 𝛽 |1, 0, 0, 1, 1, 1⟩ + 𝛾 |0, 1, 1, 0, 1, 1⟩ − 𝛿 |0, 1, 0, 1, 1, 1⟩) +
√

5

3

√
3

|𝜓⟩

where |𝜓⟩ ∈ K⊥
Knill

. When measuring the two last modes, getting 1, 1 ensures the state

got projected onto KKnill. We retrieve the supperposed state

𝛼 |1, 0, 1, 0, 1, 1⟩ + 𝛽 |1, 0, 0, 1, 1, 1⟩ + 𝛾 |0, 1, 1, 0, 1, 1⟩ − 𝛿 |0, 1, 0, 1, 1, 1⟩ :

a controlled 𝑍-gate was indeed applied.
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4.10 Exercises

The exercises are grouped according to the various themes of the section.

Complexity

4.10.1 Consider the following quantum algorithm for factoring a number 𝑁 :

• Allocate 𝑛 = log
2
(𝑁) qubits in state |0⟩

• Apply Hadamard on all of them

• Measure them and retrieve the corresponding bitstring

• This bitstring is the encoding of a natural number: test whether it is a factor of 𝑁

(with the usual, efficient Euler division)

• If it is not, start over.

This algorithm eventually succeeds. Questions:

1. What is the probability of success?

2. Howmany times should we iterate the process in order to reach a high probability?

3. Derive the complexity of this (probabilistic) algorithm.

Gate decomposition

4.10.2 Using the scheme of 4.4.3, propose a circuit for 𝐶-𝐶-𝑍 , using CNOT and 𝑇-gates.

Derive a circuit for the Toffoli gate.

Magic states

4.10.3 Consider the magic state |𝐴𝜋/4⟩ as defined in 4.5.2.

1. Inspired from the circuit in Eq (34), derive a deterministic procedure to implement

a 𝑇-gate, using a single measurement and a 𝑆-gate classically controlled on the

result of the measurement. Unlike the general case, for a 𝑇-gate there is no need to

perform repeat-until-success (when 𝑆 gates are natively available). We called such

a controlled gate a correction.

2. Deduce from 4.10.2 a deterministic procedure for realizing a Toffoli gate using only

magic states, measurements and Clifford gates. Draw the corresponding circuit,

and spell out the convention you use for attaching each correction gate to its mea-

surement result.

MBQC
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4.10.4 In the circuit of 4.6.10 presenting a MBQC pattern for CNOT, where are the con-

trol and target qubits?

4.10.5 Show that 𝐽 (𝜃) can be written as a composition of Had and 𝑅𝜃 . Derive an MBQC

pattern for 𝑅𝜃 .

4.10.6 First, solve 4.10.5. Then, using 4.4.2, write a circuit for 𝐶-𝑆 and derive an MBQC

pattern to implement it. Write it in normal form. What differs for 𝐶-𝑆∗?

4.10.7 First, solve 4.10.6. Using the decomposition described in 4.4.2, one can write

𝐶-𝐶-𝑍 with 𝐶-𝑆 and 𝐶-𝑆∗. Derive the graph state of an MBQC pattern realizing a Toffoli

gate.

Quantum Linear Optics

4.10.8 In the encoding of 4.9.10, remembering 4.9.17. How can we encode:

1. a CNOT where the control is qubit 1 and the target qubit 2?

2. a Hadamard on qubit 1?

3. a Hadamard on qubit 2?

4. a CNOT where the control is qubit 2 and the target qubit 1?

5. a SWAP gate?

4.10.9 Consider a system with a single photon that can take any mode between 𝑤0, 𝑤1,

. . . , 𝑤7. Each one of these modes corresponds to a logical 3-qubits state: 𝑤0 is |000⟩, 𝑤1

is |001⟩, etc. How would you encode. . .

1. a CNOT where the control is qubit 1 and the target qubit 2?

2. a CNOT where the control is qubit 2 and the target qubit 3?

3. a CNOT where the control is qubit 3 and the target qubit 1?

4. a Hadamard on qubit 1?

5. a Hadamard on qubit 2?

6. a Hadamard on qubit 3?

7. a SWAP between qubit 2 and 3?

8. a permutation of the qubits 1→ 2→ 3→ 1?

4.10.10 Consider a Hadamard beamsplitter on a 2-modes system as in 4.9.28. Give the

action of the gate on the possible 3-photons states

|3, 0⟩ , |2, 1⟩ , |1, 2⟩ , |0, 3⟩
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4.10.11 Consider Ralph’s CNOT encoding in 4.9.32. The gate works with 6 modes, using

4 photons for 2 qubits and 2 auxiliary empty modes (thus initialized without any photon).

The coincidence subspace is built from

|1, 0, 1, 0, 0, 0⟩ , |1, 0, 0, 1, 0, 0⟩ , |0, 1, 1, 0, 0, 0⟩ , |0, 1, 0, 1, 0, 0⟩ ,

and corresponds to logical qubits.

Questions.

1. Compute the projection on the coincidence subspace for the application of the gate

to each of these vectors. Check that we indeed get a CNOT, and retrieve the prob-

ability of success.

2. In the same basis, what is a Hadamard gate on qubit 1? on qubit 2?

3. In the same basis, what is a SWAP between qubit 1 and qubit 2?

4. Consider the matrix:

𝑉 =
1

√
3

©­­­­­­­­«

1 0 0 0

√
2 0

0 −1

√
2 0 0 0

0

√
2 1 0 0 0

0 0 0 1 0

√
2√

2 0 0 0 −1 0

0 0 0

√
2 0 −1

ª®®®®®®®®¬
.

acting on the mode-space |𝑤1⟩ , |𝑤2⟩ , |𝑤3⟩ , |𝑤4⟩ , |𝑤5⟩ , |𝑤6⟩ . What is its behavior

on the logical encoding of 2 qubits in Ralph’s coincidence basis?

85



B. Valiron Intro to Quantum Course Notes v.2025.03.04

5 Structure of Quantum Algorithms

5.1 High-Level View

5.1.1 As any algorithm, the role of a quantum algorithm is to solve a regular, classical
problem. Such a problem typically consists in

• An instance: a list of classical information: a graph, an integer, a matrix, etc. These
can be given as datastructure: an nsigned integer on 64 bits, an array of floating

point numbers, etc, or as a function: for constructing the neighbors of a node in a

graph, for computing the coefficient of a matrix given a pair of indices, etc.

• A question, whose answer might be yes or no, or an object to construct.

Given a problem, an algorithm inputs an instance and outputs an answer to the question.

The critical point is that the output should indeed answer the question: this requires a

mathematical analysis of the algorithm and its adequacy with the problem.

5.1.2 A quantum algorithm can be regarded as a regular algorithm which makes use of

a quantum co-processor to build an answer to the question. The general structure of a

quantum algorithm as found in the litterature is as follows:

1. Input a problem instance.

2. From this instance, specify a bunch of quantum registers, and build a quantum

circuit made of quantum (unitary) gates. Among the registers, one of them is meant

to be measured at the end.

3. Send the circuit to the quantum co-processor, and measure the specified register:

This gives back a bitstring.

4. Perform some post-processing using the bitstring. There are two cases:

(a) A solution to the problem instance was found! Exit with success.

(b) No solution was found: Loop back at Step (3).

The measurement is probabilistic: the algorithm is designed in such a way that we even-

tually branch out in (4a) with high enough probability. In such an algorithm, if the circuit

depends on the problem instance, once it is built it is used over and over until a solution

is found. The algorithm somehow builds its very own faulty soothsayer. Since it is faulty,
several queries might be needed to eventually get a correct solution.

5.1.3 Note how the general structure presented in 5.1.2 generates a distinct circuit for

every problem instance. If your algorithm aims at finding a specific node a graph, two

different graphs will give two different circuits. Similarly, if you aim at factoring 15 or

110210873687 surely you wouldn’t use the same circuit either. A quantum algorihm is

therefore not describing one quantum circuit but a family of quantum circuits.
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5.1.4 The situation presented in 5.1.2 is very simple: given a problem instance the cir-

cuit is defined once for all. A slightly more general procedure is found in variational
algorithms. There, instead of constructing one circuit, the algorithm constructs a circuit

parameterized by angles: some gates, such as rotation gates, can be changed specified at

run-time. For instance, the following circuit is parameterized by three angles 𝜃1, 𝜃2, 𝜃3:

|0⟩

|0⟩

𝑅𝑦 (𝜃1)

𝑅𝑧 (𝜃2) 𝑅𝑦 (𝜃3)

When the angles are not decided yet, we just have a shape, or a structure of circuit. Such

a circuit-shape is called an ansatz.

5.1.5 The interaction with the quantum coprocessor is relatively simple for both 5.1.2

and 5.1.4: a circuit is flushed to the quantum memory, followed by a measurement, and a

complete reset. The quantummemory between calls to the co-processor is not preserved.

More exotic algorithms require such a preservation between calls: the stream of gates

sent to the co-processor is not a circuit built once for all, but is instead based on the

result of intermediary measurements. More than a fixed structure, the circuit comes as a

trace of (classical) execution.

5.1.6 In the rest of this section, we shall look at typical subroutines used in the design

of quantum algorithms.

5.2 Oracles

5.2.1 As discussed in 5.1.3, a quantum circuit should somehow contain a description of

the problem instance. As the problem instance is typically encoded on a regular, conven-

tional memory made of bits, such description can typically be defined using a classical,

conventional function acting on bitstrings. We are therefore given a Boolean function

𝑓 : B𝑛 → B𝑚
, and we need to make it available to the quantum co-processor. Of course,

this has to be done with the use of unitary operations.

5.2.2 If the function 𝑓 is reversible, then 𝑛 = 𝑚 and we can rely on 2.10.3 to identify 𝑓

with the action of a unitary map on basis vectors. For instance, consider the operation

𝑥 000 001 010 011 100 101 110 111

𝑓 (𝑥) 001 010 011 100 101 110 111 000

You can easily convince yourself that this function is a bijection on bitstrings of size 3 as

it corresponds to single digit increment modulo 8. This operation can be generalized to

the unitary operation

|000⟩ ↦→ |001⟩ |001⟩ ↦→ |010⟩ |010⟩ ↦→ |011⟩ |011⟩ ↦→ |100⟩
|100⟩ ↦→ |101⟩ |101⟩ ↦→ |110⟩ |110⟩ ↦→ |111⟩ |111⟩ ↦→ |000⟩ .
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With the standard basis in lexicographic ordering, the corresponding matrix is

©­­­­­­­­­­­«

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

ª®®®®®®®®®®®¬
Referring again to 2.10.3, we can claim that thismatrix is unitary. Fromwhatwe discussed

in Ch. 4, we know that we can implement this operation on a quantum co-processor.

5.2.3 In general, the function 𝑓 of 5.2.1 might not be reversible: we cannot identify it

with a unitary.

Without loss of generality, one can assume that 𝑚 = 1. Indeed, if 𝑚 > 1, the function

𝑓 can be regarded as a family of functions ( 𝑓1, . . . , 𝑓𝑚), all of codomain B. Therefore
assuming 𝑚 = 1, as the function 𝑓 is usually not invertible the standard way to do this is

to instead implement

˜𝑓 :B𝑛 × B→ B𝑛 × B
(𝑥, 𝑦) ↦→ (𝑥, 𝑦 ⊕ 𝑓 (𝑥)).

This function is invertible, as

˜𝑓 ( ˜𝑓 (𝑥, 𝑦)) = ˜𝑓 (𝑥, 𝑦 ⊕ 𝑓 (𝑥)) = (𝑥, 𝑦 ⊕ 𝑓 (𝑥) ⊕ 𝑓 (𝑥)) = (𝑥, 𝑦)

since 𝑧 ⊕ 𝑧 = 0 for all 𝑧, and 𝑧 ⊕ 0 = 𝑧 for all 𝑧. This function being invertible, the unitary

𝑈 𝑓 : H⊗𝑛 ⊗ H → H⊗𝑛 ⊗ H

defined by

𝑛|𝑥⟩
𝑈 𝑓

|𝑥⟩

|𝑦⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 (𝑥 )

Note that𝑈 𝑓 is indeed a unitary, it sends a basis vector to a basis vector,

5.2.4 In general, such a box is called an oracle: it captures the (classical) structure of

the problem instance. For instance, it can correspond to an arithmetic operation, or the

neighboring relation for a graph, etc.

5.2.5 From 4.3, we know that regardless of its internal structure, the unitary 𝑈 𝑓 is re-

alizable using CNOT and 1-qubit rotations. The procedure however requires in general

to perform Cosine-Sine decompositions. In the case of𝑈 𝑓 , we can rely on the fact that it

was built from the classical, boolean function 𝑓 .
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5.2.6 In the most general situation, 𝑓 is given as a truth table. As an example, consider

the function 𝑓 : B3 → B defined as follows.

𝑥1𝑥2𝑥3 000 001 010 011 100 101 110 111

𝑓 (𝑥1, 𝑥2, 𝑥3) 0 0 0 1 0 1 1 1

Given the truth table, a simple way to build the circuit𝑈 𝑓 is to add one multi-control for

each value entry yielding 1, as follows.

|𝑥1⟩

|𝑥2⟩

|𝑥3⟩

|𝑦⟩

000 001 010 011 100 101 110 111

As you can easily see, this is not optimal in general: the size of the circuit is typically

exponential on the number of inputs of 𝑓 .

5.2.7 This function is themajority function: 𝑓 (𝑥1𝑥2𝑥3) is 0 if there are more 0’s than 1 in

𝑥1𝑥2𝑥3, and 1 otherwise. Instead of a truth table, the function can be described with the

formula:

𝑓 (𝑥1, 𝑥2, 𝑥3) = (𝑥1𝑥2) ⊕ (𝑥2𝑥3) ⊕ (𝑥3𝑥1).
Compared to the circuit presented in 5.2.6, we can then do better with only 3 Toffoli gates:

|𝑥1⟩

|𝑥2⟩

|𝑥3⟩

|𝑦⟩

(35)

The idea behind this circuit is akin to what was described in 4.4.7: subformulas are com-

puted and their results are stored for use later on. For the circuit of Eq. 35 we did not

have to use auxiliary wires, but in general we can: this is the topic of 5.2.8.

5.2.8 If the Boolean function 𝑓 is given as a boolean formula made of conjunctions and

negations, using ancillas one can build a circuit of size linear to the size of the formula.

The idea is that

• Conjunctions: implementable with Toffolis;

• Negations: implementable with 𝑋-gates and CNOT-gates;

• Composition: corresponds to circuit composition.
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The procedure follows the description given in 4.4.7: we first compute the final result

using a sub-circuit 𝑉 𝑓 , aggregating subcomputations in ancillas (these are called garbage
qubits), we copy the result to the dedicated register, andwe finally uncompute the ancillas:

| 𝑓 (®𝑥)⟩

| ®𝑥⟩

𝑉 𝑓

| ®𝑥⟩

𝑉−1

𝑓

| ®𝑥⟩

|0⟩ garbage |0⟩

|0⟩ |0⟩

|𝑦⟩ |𝑦 ⊕ 𝑓 (®𝑥)⟩

(36)

5.2.9 The operator𝑉 𝑓 has a strict specification: the input qubits should be left untouched

(when in canonical basis state), the last wire should contain the result (when fed with |0⟩),
while the middle qubits (the garbage qubits) store the subcomputations. In particular, the

circuit 𝑉 𝑓 sends canonical basis states to canonical basis states.

5.2.10 The construction presented in 5.2.8 is using the trick discussed in 3.9.8: we tem-

porarily work inside a larger space to have more rooms, in this case to be able to store

intermediary computations. If 𝑉 𝑓 is sending

| ®𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ↦−→ |®𝑥⟩ ⊗ | 𝑓garbage(®𝑥)⟩ ⊗ | 𝑓 (𝑣𝑒𝑐𝑥)⟩

then the sequence of operations given in Eq. 36 is doing the following:∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ |𝑦⟩

↦→
∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |𝑦⟩ (ancilla allocation)

↦→
∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ | 𝑓garbage(®𝑥)⟩ ⊗ | 𝑓 (®𝑥)⟩ ⊗ |𝑦⟩ (applying 𝑉 𝑓 )

↦→
∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ | 𝑓garbage(®𝑥)⟩ ⊗ | 𝑓 (®𝑥)⟩ ⊗ |𝑦 ⊕ 𝑓 (®𝑥)⟩ (CNOT-gate)

↦→
∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |𝑦 ⊕ 𝑓 (®𝑥)⟩ (applying 𝑉−1

𝑓 )

The middles qubits are back to |0⟩, so there are not entangled with the rest of the system:

if we discard them, following the discussion of 3.9, the result is deterministic and yield

with probability 1 ∑︁
®𝑥,𝑦

𝛼®𝑥,𝑦 · |®𝑥⟩ ⊗ |𝑦 ⊕ 𝑓 (®𝑥)⟩

which is precisely the behavior expected for𝑈 𝑓 .

5.2.11 One can build the circuit for the operator 𝑉 𝑓 is built inductively on the structure

of 𝑓 , as follows:
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• If 𝑓 is the conjunction: 𝑓 (𝑥, 𝑦) = 𝑥 ∧ 𝑦 = 𝑥𝑦, we build 𝑉 𝑓 with a Toffoli gate:

|𝑥⟩ |𝑥⟩

|𝑦⟩ |𝑦⟩

|0⟩ |𝑥𝑦⟩

It leaves the inputs untouched, while storing the 𝑓 (𝑥, 𝑦) in the last wire if it was

initialized with |0⟩.

• If 𝑓 is the negation: 𝑓 (𝑥) = ¬𝑥 = 1 ⊕ 𝑥, we can builf 𝑉 𝑓 with a CNOT-gate:

|𝑥⟩ |𝑥⟩

|0⟩ |𝑦 ⊕ 1 ⊕ 𝑥⟩

Note that we could have used a simple 𝑋-gate, but this would have modified the

input qubit, therefore breaking the specification.

• Finally, if 𝑓 is a composition of sub-formulas, such as 𝑓 (𝑥) = 𝑔(ℎ(𝑥), 𝑘 (𝑥)), one
can build 𝑉 𝑓 out of 𝑉𝑔, and 𝑉ℎ and 𝑉𝑘 :

𝑛𝑥 | ®𝑥⟩ subcomp.

𝑛𝑘

|𝑘 ( ®𝑥 ) ⟩

𝑛ℎ |ℎ ( ®𝑥 ) ⟩

|𝑘 ( ®𝑥 ) ⟩

𝑛 𝑓

| ®𝑥⟩ |®𝑥⟩

|0⟩ subcomp.

|0⟩ subcomp.

|0⟩ |ℎ(®𝑥)⟩

|0⟩ |𝑘 (®𝑥)⟩

|0⟩ subcomp.

|0⟩ |𝑔(ℎ(®𝑥), 𝑘 (®𝑥))⟩

𝑉𝑘

𝑉ℎ

𝑉𝑔

(37)

The first wires are set back to | ®𝑥⟩, the last wire contains the result, while the middle

wires contains all of the sub-computations, including the two values 𝑔(®𝑥) and 𝑘 (®𝑥)
computed along the composition.

5.2.12 Note how in Eq.(37) the input | ®𝑥⟩ is used twice for 𝑉ℎ and 𝑉𝑘 . This is why, in

general, using this method one cannot use an 𝑋-gate to realize the negation: one has to

keep keep the original value around. One can use another strategy to produce a more

compact circuit, but this circuit construction is however efficient in the sense that the

number of gates and auxiliary wires is linear on the size of the formula describing 𝑓 .
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5.2.13 Instead of a basis change, the operation 𝑈 𝑓 can also be regarded as a phase-flip,

as follows:

𝑈 𝑓 | ®𝑥⟩ ⊗ |−⟩ = 𝑈 𝑓

1

√
2

| ®𝑥⟩ ⊗ (|0⟩ − |1⟩)

= 𝑈 𝑓

1

√
2

( |®𝑥⟩ ⊗ |0⟩ − |®𝑥⟩ ⊗ |1⟩)

=
1

√
2

(𝑈 𝑓 ( |®𝑥⟩ ⊗ |0⟩) −𝑈 𝑓 ( |®𝑥⟩ ⊗ |1⟩))

=
1

√
2

( |®𝑥⟩ ⊗ | 𝑓 (®𝑥)⟩ − |®𝑥⟩ ⊗ |1 ⊕ 𝑓 (®𝑥)⟩)

=
1

√
2

| ®𝑥⟩ ⊗ (| 𝑓 (®𝑥)⟩ − |1 ⊕ 𝑓 (®𝑥)⟩)

= (−1) 𝑓 (®𝑥) 1

√
2

| ®𝑥⟩ ⊗ (|0⟩ − |1⟩) (From 2.10.2)

= (−1) 𝑓 (®𝑥) | ®𝑥⟩ ⊗ |−⟩ .

5.3 Encoding Natural Numbers

5.3.1 A typical classical function to turn into a unitary consists in an arithmetic opera-

tion such as

𝑓𝑎,𝑁 : {0 . . . 𝑁 − 1} −→ {0 . . . 𝑁 − 1}
𝑥 ↦−→ 𝑎 · 𝑥 mod 𝑁

for 𝑎 and 𝑁 natural numbers. If 𝑎 and 𝑁 are co-prime, the function is a bijection (this

function is the oracle for Shor’s algorithm, see 6.2). For instance, 𝑓5,8 consists in the map

𝑥 0 1 2 3 4 5 6 7

𝑓5,8(𝑥) 0 5 2 7 4 1 6 3

The map 𝑓5,8 is a bijection of {0, . . . , 7}: we are in the setting of 2.10.4 (where the map

was 𝑓3,8) and 5.2.2: the function can be regarded as a unitary on a 8-dimensional Hilbert

space. However, the map acts on numbers whereas the discussion in 5.2 is based on

Boolean values: we need a bit encoding of numbers as bitstrings.

5.3.2 A natural number 𝑥 can be decomposed in base 2 as

𝑥 =

𝑁−1∑︁
𝑘=0

𝑏𝑘 · 2𝑘

for some number 𝑁 and some Boolean values 𝑏0, . . . 𝑏𝑁−1. We say that 𝑏0 is the least
significant bit. The Boolean values 𝑏𝑘 ’s are enough to recover the number 𝑥, provided

that we choose the ordering of the bits in the list. There are two canonical ones, that we

can refer to as

• big-endian: the number 𝑥 is representedwith a list startingwith themost significant

bits:

𝑏𝑁−1, . . . , 𝑏1, 𝑏0.
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This is the mathematical representation (used in base 10 for instance), and used in

most paper and textbooks in quantum computation.

• little-endian: the number 𝑥 is represented with a list starting with the least signifi-
cant bit:

𝑏0, 𝑏1, . . . , 𝑏𝑁−1.

This is useful if the number is stored in an array: 𝑏0 is then literally 𝑏[0]. This
convention is used in QisKit for instance.

5.3.3 Beware In summary, there are at least two difficulties to look for when debug-

ging quantum programs:

• conflicting ordering for binary representations;

• conflicting basis ordering for matrix and vector representations.

5.3.4 The domain and codomain of the map 𝑓5,8 in 5.3.1 can be encoded on bitstrings of

size 3. As discussed in 5.3.2, we can for instance decide on big-endian, so that 3 is rep-

resented by 011. The lexicographic ordering of the canonical basis on H⊗3
then exactly

corresponds to the natural number ordering, and the matrix for 𝑓5,8 can be constructed

in the same way as in 2.10.4:

©­­­­­­­­­­­«

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

ª®®®®®®®®®®®¬
This matrix corresponds to the map 𝑓5,8 acting on

{|𝑒0⟩ , |𝑒1⟩ , |𝑒2⟩ , |𝑒3⟩ , |𝑒4⟩ , |𝑒5⟩ , |𝑒6⟩ , |𝑒7⟩
as in 2.10.3, but also as the corresponding action onH ⊗H ⊗H with the basis ordering

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ .
It performs the action:

|000⟩ ↦→ |000⟩ |010⟩ ↦→ |010⟩ |100⟩ ↦→ |100⟩ |110⟩ ↦→ |110⟩
|001⟩ ↦→ |101⟩ |011⟩ ↦→ |111⟩ |101⟩ ↦→ |001⟩ |111⟩ ↦→ |011⟩

5.3.5 For the case of 5.3.4, it is possible to infer a circuit “by hand” by realizing that the

map can be factored into

|𝑥⟩ ⊗ |01⟩ ↦→ |̸ 𝑥⟩ ⊗ |01⟩ |𝑥⟩ ⊗ |11⟩ ↦→ |̸ 𝑥⟩ ⊗ |11⟩
and identity otherwise. A circuit implementing the action is therefore
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5.3.6 Example: Reversible Adder The oracle in 5.3.1 is reversible: it was therefore

possible to build a circuit without ancillas as for instance shown in 5.3.5. In general

however, the classical function we care about is not reversible: we therefore need a more

sophisticated circuit. We discuss here how to encode an adder : a function inputting two

numbers 𝑎 and 𝑏 and outputting 𝑎 + 𝑏.

5.3.7 There are still several design choices for arithmetic on a bitstring encoding.

• We want a circuit: an encoding of our numbers as bitstrings. But which numbers?

Integers (signed integers), natural numbers (unsigned integers)? On which range?

Is it the same range for 𝑎 and for 𝑏?

• How do we treat overflows? Is the range of the output expanded by one bit to take

care of it, or do we consider arithmetic modulo instead?

• There are two “standard” ways to turn addition into a reversible operation. One

can first turn the adder into a reversible function as in 5.2.3:

(𝑎, 𝑏, 𝑧) ↦→ (𝑎, 𝑏, 𝑧 ⊕ (𝑎 + 𝑏)) (38)

where it is understood that 𝑛 is a bitstring encoding of the number 𝑛. Of course,

we still need to characterize the size of each bitstring, and the actual behavior of

the “+” operator (signed, unsigned, etc).
The procedure shown in Eq. (38) does not modify the input registers 𝑎 and 𝑏 but

requires an additional register 𝑧. If one does not need to retain the input register,

for the addition one can follow a possibly more compact strategy and store the

output in one of the registers:

(𝑎, 𝑏) ↦→ (𝑎, 𝑎 + 𝑏). (39)

Of course, this only makes sense if the register 𝑏 is not used later on.

5.3.8 Consider an adder for numbers coded on bitstrings of size 2: 𝑎 = 𝑎1𝑎0 and 𝑏 = 𝑏1𝑏0

(with 𝑎𝑘s and 𝑏𝑘s Boolean values). We have

𝑎 = 𝑎1 · 2 + 𝑎0, 𝑏 = 𝑏1 · 2 + 𝑏0.

With a bit of thinking one can show that

𝑎 + 𝑏 = (𝑎1𝑏1 ⊕ 𝑎0𝑏0𝑎1 ⊕ 𝑎0𝑏0𝑏1) · 22 + (𝑎1 ⊕ 𝑏1 ⊕ 𝑎0𝑏0) · 2 + (𝑎0 ⊕ 𝑏0) (40)

The operator𝑈add as in 5.2.3 can be realized with the circuit
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𝑎1

𝑎0

𝑏1

𝑏0

𝑠2

𝑠1

𝑠0

The answer is read in register 𝑠: we have 𝑎 + 𝑏 = 𝑠2𝑠1𝑠0.

5.3.9 The circuit presented in 5.3.8 was built “by hand”. In order to go further, we have

to program the adder. The simplest method is the ripple-carry adder procedure—the pro-
cedure followed when perfoming addition “by hand” on a sheet of paper. There are two

cases:

• Base case: adding 𝑎0 and 𝑏0, yieling a result 𝑠0 and a carry 𝑐0. This is a half-adder ,
and the formulas are

𝑠0 = 𝑎0 ⊕ 𝑏0, 𝑐0 = 𝑎0𝑏0. (41)

• Inductive case: adding 𝑎𝑘+1, 𝑏𝑘+1 and the carry 𝑐𝑘 from the layer below, yielding a

result 𝑠𝑘+1 and a new carry 𝑐𝑘+1. This is a full-adder, and the formulas are

𝑠𝑘+1 = 𝑎𝑘 ⊕ 𝑏𝑘 ⊕ 𝑐𝑘 , 𝑐𝑘+1 = 𝑎𝑘𝑏𝑘 ⊕ 𝑐𝑘𝑎𝑘 ⊕ 𝑐𝑘𝑏𝑘 . (42)

Unsurprisingly, from these formulas we can recover Eq. (40). Such a construction makes

what is called a ripple-carry adder . The 2-bit adder of 5.3.8 can then be written in pseudo-
code as

s0,c0 = HA(a0,b0)

s1,c1 = FA(c0,a1,b1)

return (c1,s1,s0)

where HA is a function coding the half-adder and FA is a function coding the full-adder.

One can easily extend the procedure to any number of bits by chaining together addi-

tional full-adders.

Using the procedure described in 5.2.8, assuming 𝑉𝐻𝐴 and 𝑉𝐹𝐴 don’t require any an-

cillas, we can write a reversible 2-bits adder as follows.
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𝑎0 𝑎0 𝑎0

𝑏0 𝑏0 𝑏0

0 𝑠0 0

0 𝑐0 𝑐0 𝑐0 0

𝑎1 𝑎1 𝑎1

𝑏1 𝑏1 𝑏1

0 𝑠1 0

0 𝑐1 0

0 𝑠0

0 𝑠1

0 𝑐1

𝑉𝐻𝐴 𝑉−1

𝐻𝐴

𝑉𝐹𝐴 𝑉−1

𝐹𝐴

5.3.10 In term of circuit size, it is possible to show that 𝑉𝐻𝐴 = 2 · CNOT + 𝐶2
-𝑋 and

𝑉𝐹𝐴 = 3 ·CNOT+3 ·𝐶2
-𝑋 . For 𝑛-bits integers, the ripple-carry procedure yields a sumber

of gates of

𝑛 · 𝑉𝐻𝐴 + 𝑛 · 𝑉𝐹𝐴 + (𝑛 + 1) · CNOT = (6𝑛 + 1) · CNOT + (4𝑛) · 𝐶2
-𝑋.

For the “naive” procedure of 5.3.8, we have for 2-bits integers: 4 · CNOT + 4 · 𝐶2
-𝑋 .

Compared to the ripple-carry adder, the computation 𝑎0𝑏0 is performed 2 times. For 𝑛-

bits integers, we will also need 𝐶3
-𝑋 , 𝐶4

-𝑋 , . . .𝐶𝑛
-𝑋 , and all sub-computations would be

repeated several times. It in fact corresponds to unfolding Eqs (41) and (42): we can see

that we would end up with a quadratic number of gates.

A last strategy to generate 𝑈add would consists in using the decompositon summa-

rized in 4.3.17. As discussed in 4.3.20, the size of the generated circuit would then be of

the order of 4
𝑁
, where 𝑁 is the size of the matrix. In our case, 𝑁 = 3𝑛 + 1 (3 registers

of size 𝑛 and an additional wubit to store the final carry). The circuit is therefore of size

𝑂 (4 · 64
𝑛).

In summary, we are back to the trade-off discussion in 4.4. The ripple-carry produces

a linear-sized circuit but with ancillas. It is possible to get rid of the ancillas, but at

the expense of a circuit of larger size. However, in this particular case, the unitary is

not arbitrary: we can rely on its internal structure to dodge an exponential asymptotic

complexity.

5.4 Amplitude Amplification

5.4.1 A typical situation met in the design of quantum algorithms is the case where the

quantum memory is the superposed state

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩ ⊗ | 𝑓 (𝑖)⟩

living in the space ®𝐻⊗𝑛 ⊗ H , where 𝑓 : B𝑛 → B states whether 𝑖 is a solution to the

problem.
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5.4.2 For instance, consider the problem SqareNat:

• Input: a natural number 𝑁 , with the promise that it is a square;

• Output: the square-root of 𝑁 : the non-negative number 𝑎 such that 𝑎2 = 𝑁 .

We can define 𝑓 as follow: it inputs a bitstring ®𝑥 and reads it as the binary representation
of a number 𝑗 . The value 𝑓 (®𝑥) is then 1 if 𝑗2 = 𝑁 , and 0 otherwise.

5.4.3 A possible quantum algorithm to solve SqareNat can be:

• Start with |0 . . . 0⟩ ∈ ®𝐻𝑛 ⊗ ®𝐻.

• Apply a tower of Hadamard on the 𝑛th first qubits to get

1

√
2

𝑛

2
𝑛−1∑︁
𝑗=0

|𝑖⟩ ⊗ |0⟩ .

• Apply𝑈 𝑓 to get

1

√
2

𝑛

2
𝑛−1∑︁
𝑗=0

|𝑖⟩ ⊗ | 𝑓 (𝑖)⟩ .

• Measure: if the last bit is 1, we succeed, if not, we start again.

Provided that the promise “N is a square” is held, this algorithm eventually converge to

a solution. However, because all of the coefficients are equal, the probability of success

for each run is very low:
1

2
𝑛 .

5.4.4 The procedure called Amplitude Amplification, or Grover’s algorithm (from the

first person to have described it), aims at speeding up the process presented in 5.4.3 by

augmenting the amplitudes of the “good states”, i.e. the ones for which 𝑓 (𝑖) is 1. For this,

we need 3 operations on ®𝐻⊗𝑛:

• an oracle 𝑂 : |𝑥⟩ ↦→ (−1) 𝑓 (𝑥) · |𝑥⟩;

• an operator𝑈0
⊥ sending |0 . . . 0⟩ to |0 . . . 0⟩ and every other canonical basis vector

|𝑥⟩ to − |𝑥⟩;

• a tower of Hadamard 𝐻⊗𝑛.

5.4.5 Note that 𝑂 is not under the canonical form𝑈 𝑓 : |𝑥⟩ ⊗ |𝑧⟩ ↦→ |𝑥⟩ ⊗ |𝑧 ⊕ 𝑓 (𝑥)⟩, but
one can build it from𝑈 𝑓 using the circuit

𝑛| ®𝑥⟩

|1⟩
𝑈 𝑓

𝐻 𝐻

(1) (2) (3) (4) (5) (6)

(43)
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Starting from a canonical basis state | ®𝑥⟩, we get:

| ®𝑥⟩ (1)

↦→ |®𝑥⟩ ⊗ |1⟩ (2)

↦→ |®𝑥⟩ ⊗ |−⟩ (3)

↦→(−1) 𝑓 (®𝑥) | ®𝑥⟩ ⊗ |−⟩ (4) (from 5.2.13)

↦→(−1) 𝑓 (®𝑥) | ®𝑥⟩ ⊗ |1⟩ (5)

The measurement operation on the second qubit is deterministic since the state is not

entangled with the rest of the system. We then get at (6) desired state (−1) 𝑓 (®𝑥) | ®𝑥⟩.

5.4.6 In Eq. 43, we measure the auxiliary register. If we have to repeat the circuit (and

we will have to do so for Grover), we do not have to measure it: we can reuse it since it

is back to the state |1⟩. If we reuse it for the same circuit, we can even simplify it by not

applying intermediary Hadamard gates.

5.4.7 Using the building blocks of 5.4.4, Grover’s algorithm is as follows:

|0⟩ 𝐻⊗𝑛 𝑂 𝐻⊗𝑛 𝑈⊥ 𝐻⊗𝑛

repeated many times

How many should “many times” be depends on 𝑓 .

5.4.8 Let us denote 𝐻⊗𝑛𝑈0
⊥𝐻⊗𝑛 with 𝑈⊥

𝜓
. What is its action? Let us consider |𝜓⟩ =

𝐻⊗𝑛 |0 . . . 0⟩. Let𝑉|𝜓⟩ be the subspace generated by |𝜓⟩ and𝑉⊥|𝜓⟩ the orthogonal subspace.
We then have

𝐻⊗𝑛𝑈0
⊥𝐻⊗𝑛 |𝜓⟩ = |𝜓⟩

Indeed:

𝐻⊗𝑛𝑈0
⊥𝐻⊗𝑛 |𝜓⟩ = 𝐻⊗𝑛𝑈0

⊥𝐻⊗𝑛
(
𝐻⊗𝑛 |0⟩

)
= 𝐻⊗𝑛𝑈0

⊥
(
𝐻⊗𝑛𝐻⊗𝑛

)
|0⟩

= 𝐻⊗𝑛𝑈0
⊥Id |0⟩

= 𝐻⊗𝑛𝑈0
⊥ |0⟩

= 𝐻⊗𝑛 |0⟩
= |𝜓⟩ .

Now, if |𝜙⟩ ∈ 𝑉⊥|𝜓⟩ , the vector 𝐻⊗𝑛 |𝜙⟩ does not contain any instance of |0...0⟩ in its

canonical decomposition. Indeed, supposed that there were such an instance. We would

then have 𝐻⊗𝑛 |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |0⊥⟩ with |0⊥⟩ ⊥ |0⟩. So

𝐻⊗𝑛
(
𝐻⊗𝑛 |𝜙⟩

)
= 𝐻⊗𝑛

(
𝛼 |0⟩ + 𝛽 |0⊥⟩

)
= 𝛼𝐻⊗𝑛 |0⟩ + 𝛽𝐻⊗𝑛 |0⊥⟩
= 𝛼 |𝜓⟩ + 𝛽 |𝜓⊥⟩
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with |𝜓⊥⟩ ∈ 𝑉⊥|𝜓⟩ . But then 𝐻⊗𝑛
(
𝐻⊗𝑛 |𝜙⟩

)
= |𝜙⟩ is not in 𝑉⊥|𝜓⟩ : contradiction. Therefore,

𝐻⊗𝑛𝑈0
⊥𝐻⊗𝑛 |𝜙⟩ = − |𝜙⟩. Indeed, 𝑈0

⊥
(
𝐻⊗𝑛 |𝜙⟩

)
= −𝐻⊗𝑛 |𝜙⟩ since 𝐻⊗𝑛 |𝜙⟩ does not con-

tain any instance of |0...0⟩, and is therefore orthogonal to |0...0⟩. So 𝐻⊗𝑛𝑈0
⊥𝐻⊗𝑛 |𝜙⟩ =

𝐻⊗𝑛
(
−𝐻⊗𝑛 |𝜙⟩

)
= −𝐻⊗𝑛

(
𝐻⊗𝑛 |𝜙⟩

)
= − |𝜙⟩.

5.4.9 We are now ready to see how the algorithm is working. We start by buiding the

state |𝜓⟩. It can be decomposed into

|𝜓⟩ = |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩ (44)

The former consists in the canonical basis kets for which 𝑓 gives 1, the latter consists in

the canonical basis kets for which 𝑓 yields 0.

The state |𝜓𝑔𝑜𝑜𝑑⟩ can be decomposed into 𝜖 |𝜓⟩ + 𝛿 |𝜓⊥⟩, with |𝜓⊥⟩ ∈ 𝑉⊥|𝜓⟩ . From

Eq. (44) we derive that |𝜓𝑏𝑎𝑑⟩ = |𝜓⟩ − |𝜓𝑔𝑜𝑜𝑑⟩ = (1− 𝜖) |𝜓⟩ − 𝛿 |𝜓⟩⊥. If there are not “too
many” solutions for 𝑓 , the amplitude 𝜖 is small.

Let us apply 𝐺 to |𝜓⟩:

• we first apply 𝑂: it flips around the “bad” states and turns |𝜓⟩ = |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩
into − |𝜓𝑔𝑜𝑜𝑑⟩ + |𝜓𝑏𝑎𝑑⟩. , that is,

(1 − 2𝜖) |𝜓⟩ − 2𝛿 |𝜓⊥⟩ .

• We then apply𝑈⊥
𝜓
: it flips around the |𝜓⟩ axis and changes the sign of |𝜓⊥⟩: we get

(1 − 2𝜖) |𝜓⟩ + 2𝛿 |𝜓⊥⟩ ,

that is,

(3 − 4𝜖) |𝜓𝑔𝑜𝑜𝑑⟩ + (1 − 4𝛿) |𝜓𝑏𝑎𝑑⟩

If 𝜖 is small enough, the amplitude of “good” states got increased. We can draw a geo-

metrical intuition as shown in Fig. 9: Two symmetries gives a rotation in the direction of

the “good” states. If we iterate the process, we get closer and closer. If we do too much,

we go too far and the amplitude starts decreasing.

5.4.10 One can compute the optimal number of iterations of 𝐺 . If there are 𝑘 values 𝑥

such that 𝑓 (𝑥) = 1, the optimal is

𝑟 ∼ 𝜋

4

√︂
2
𝑛

𝑘

and we get a quadratic speedup compared to a classical approach.

5.5 Quantum Fourier Transform

5.5.1 TheQuantum Fourier Transform (QFT ) is a circuit that moves information between

the phase and the canonical basis-ket. The circuit is the QFT, while the reversed one is

the QFT inverse. The latter can presented as a problem to solve as follows. You are given

a state on 𝑛 qubits hiding a number 𝑥 ∈ {0, . . . 2𝑛 − 1} as follows.

1

√
2

𝑛

2
𝑛−1∑︁
𝑘=0

𝜔𝑘
𝑥 |𝑘⟩ ,
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𝐵𝑎𝑑

𝐺𝑜𝑜𝑑

|𝜓⟩ = |𝜓𝑏𝑎𝑑⟩ + |𝜓𝑔𝑜𝑜𝑑⟩

|𝜓𝑏𝑎𝑑⟩ − |𝜓𝑔𝑜𝑜𝑑⟩

𝑂

𝑈⊥
𝜓

Figure 9: Geometric Intruition for Amplitude Amplification

where

𝜔𝑥 = 𝑒𝑖·
2𝜋
2
𝑛 ·𝑥 .

Can you (classically) retrieve the value of 𝑥?

5.5.2 The answer is yes: we can build a circuit computing the operation

1

√
2

𝑛

2
𝑛−1∑︁
𝑘=0

𝜔𝑘
𝑥 |𝑘⟩ ↦−→ |𝑥⟩

(with the least significant bit on the left in |𝑥⟩).

5.5.3 Let us try with 𝑛 = 1: the hidden value 𝑥 is then 0 ou 1. The state of the system

can be rewritten as

1∑︁
𝑘=0

𝑒
2𝑖 𝜋

2
𝑘𝑥 |𝑘⟩ = |0⟩ + (−1)𝑥 |1⟩ .

To get back |𝑥⟩, an Hadamard gate is enough.

5.5.4 Let us try with 𝑛 = 2. The hidden value 𝑥 is then 0, 1, 2 or 3. In binary notation,

⌊𝑥⌋2 = 𝑥1𝑥2, i.e. 𝑥 = 2𝑥1 + 𝑥2. The input state on two qubits is

2
𝑛−1∑︁
𝑘=0

𝑒
2𝑖 𝜋
2
𝑛 𝑘𝑥 |𝑘⟩
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=

3∑︁
𝑘=0

𝑒2𝑖𝜋( 𝑥1

2
+ 𝑥

2

4
)𝑘 |𝑘⟩

=

3∑︁
𝑘=0

𝑒2𝑖𝜋
𝑥

1

2
𝑘𝑒2𝑖𝜋

𝑥
2

4
𝑘 |𝑘⟩

=

3∑︁
𝑘=0

𝑒𝑖𝜋𝑥1𝑘𝑒𝑖𝜋
𝑥

2

2
𝑘 |𝑘⟩

=
1

2

( |00⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋
𝑥

2

2 |01⟩ + 𝑒2𝑖𝜋𝑥1𝑒𝑖𝜋𝑥2 |10⟩ + 𝑒3𝑖𝜋𝑥1𝑒3𝑖𝜋
𝑥

2

2 |11⟩)

=
1

2

(
|00⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋

𝑥
2

2 |01⟩ + 𝑒𝑖𝜋𝑥2 |10⟩ + 𝑒𝑖𝜋𝑥1𝑒3𝑖𝜋
𝑥

2

2 |11⟩
)

=
1

2

(
|0⟩ + 𝑒𝑖𝜋𝑥2 |1⟩

)
⊗

(
|0⟩ + 𝑒𝑖𝜋𝑥1𝑒𝑖𝜋

𝑥
2

2 |1⟩
)

=
1

2

( |0⟩ + (−1)𝑥2 |1⟩) ⊗
(
|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥
2

2 |1⟩
)
.

Note how the memory state is separable:

• Applying Hadamard on the first qubit, we retrieve |𝑥2⟩.

• If it were not for the phase 𝑒𝑖𝜋
𝑥

2

2 , we could get |𝑥1⟩ with an Hadamard. We first need

to get rid of the phase, and this can be done with the controlled rotation 𝐶-𝑅−1

2
,

where

𝑅𝑛 =

(
1 0

0 𝑒𝑖
2𝜋
2
𝑛

)
.

Summarizing, to get back |𝑥2𝑥1⟩ one can use the circuit

|𝑥2⟩

|𝑥1⟩

1√
2

( |0⟩ + (−1)𝑥2 |1⟩) 𝐻

1√
2

( |0⟩ + (−1)𝑥1𝑒𝑖𝜋
𝑥

2

2 |1⟩) 𝑅−1

2
𝐻

(1) (2) (3)

(45)

At each step, the memory is changed towards the goal:

• at (1): |𝑥2⟩ ⊗ 1√
2

( |0⟩ + (−1)𝑥1𝑒𝑖𝜋
𝑥

2

2 |1⟩);

• at (2): |𝑥2⟩ ⊗ 1√
2

( |0⟩ + (−1)𝑥1 |1⟩);

• at 3: |𝑥2⟩ ⊗ |𝑥1⟩.

Note that the bits of 𝑥 are read from right to left!
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5.5.5 The situation carries over for larger 𝑛: the state of the system is in fact separable,

and the bits of 𝑥 can be recovered one by one, using more and more controlled rotations

to correct for the additional phases. For instance, at 𝑛 = 3 the state of the system is

1

√
2

3
( |0⟩ + (−1)𝑥3 |1⟩) ⊗

(
|0⟩ + (−1)𝑥2𝑒𝑖𝜋

𝑥
3

2 |1⟩
)
⊗

(
|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥
2

2 𝑒𝑖𝜋
𝑥

3

4 |1⟩
)
.

One can recover |𝑥3𝑥2𝑥1⟩ using the circuit

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝑅−1

2
𝐻

𝑅−1

3
𝑅−1

2
𝐻

(46)

5.5.6 Remember 3.6.9: the circuit of Eq. (46) can be equivalently rewritten as

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻 𝑅−1

2
𝑅−1

3

𝐻 𝑅−1

2

𝐻

(47)

5.5.7 This structure generalizes to 𝑛 qubits: the circuit called QFT inverse can be defined

for all 𝑛 in a similar manner, with blocks of increasing sizes. For instance, for 𝑛 = 5 we

get the circuit

|𝑥5⟩

|𝑥4⟩

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝑅−1

2
𝐻

𝑅−1

3
𝑅−1

2
𝐻

𝑅−1

4
𝑅−1

3
𝑅−1

2
𝐻

𝑅−1

5
𝑅−1

4
𝑅−1

3
𝑅−1

2
𝐻

(48)

5.5.8 Reversing the circuit, we get the Quantum Fourier Transform, or QFT . It imple-

ments the map

|𝑥𝑛 . . . 𝑥1⟩ ↦−→
2
𝑛−1∑︁
𝑘=0

𝑒
2𝑖 𝜋
2
𝑛 𝑘 ⌊𝑥1...𝑥𝑛⌋2 |𝑘⟩ ,

102



B. Valiron Intro to Quantum Course Notes v.2025.03.04

where ⌊𝑥1 . . . 𝑥𝑛⌋2 =
∑𝑛

𝑘=1
𝑥𝑘2

𝑛−𝑘
. For 𝑛 = 5, the circuit is then the inverse of the one in

Eq. (48):

|𝑥5⟩

|𝑥4⟩

|𝑥3⟩

|𝑥2⟩

|𝑥1⟩

𝐻

𝐻 𝑅2

𝐻 𝑅2 𝑅3

𝐻 𝑅2 𝑅3 𝑅4

𝐻 𝑅2 𝑅3 𝑅4 𝑅5

(49)

5.6 Phase Estimation

5.6.1 Consider the problem PhaseEstimation, defined as follows

Input A unitary𝑈, an eigenvector |𝜓⟩ and a natural number 𝑛 ∈ N.

Output The phase of the corresponding eigenvalue up to 𝑛 bits of precision. 2.9.3

The algorithm QPE (for Quantum Phase Estimation) proposes a circuit for solving the

problem.

5.6.2 The algorithm is based on the following property of 𝐶-𝑈:

𝐶-𝑈 ((𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |𝜓⟩) = 𝐶-𝑈 (𝛼 |0⟩ ⊗ |𝜓⟩ + 𝛽 |1⟩ ⊗ |𝜓⟩)
= 𝛼 · 𝐶-𝑈 ( |0⟩ ⊗ |𝜓⟩) + 𝛽 · 𝐶-𝑈 ( |1⟩ ⊗ |𝜓⟩)
= 𝛼 · ( |0⟩ ⊗ |𝜓⟩) + 𝛽 · ( |1⟩ ⊗ (𝑈 |𝜓⟩))
= 𝛼 · ( |0⟩ ⊗ |𝜓⟩) + 𝛽 · ( |1⟩ ⊗ (𝑒2𝑖𝜋𝜔 |𝜓⟩))
= 𝛼 · ( |0⟩ ⊗ |𝜓⟩) + 𝛽𝑒2𝑖𝜋𝜔 · ( |1⟩ ⊗ |𝜓⟩)
= (𝛼 |0⟩ + 𝛽𝑒2𝑖𝜋𝜔 |1⟩) ⊗ |𝜓⟩ .

Note the maybe counterintuitive fact that on this particular shape of input, 𝐶-𝑈 only

changes the phase of the control qubit.

5.6.3 To understand how this works, let us consider that 𝜔 is 0.𝑥1𝑥2 in binary form:

𝜔 =
𝑥1

2

+ 𝑥2

4

.

Let |𝜓⟩ be the corresponding eigenvector. We then have

𝑈 |𝜓⟩ = 𝑒2𝑖𝜋𝜔 |𝜓⟩
= (−1)𝑥1𝑒𝑖𝜋

𝑥
2

2 |𝜓⟩ ,
𝑈2 |𝜓⟩ = (−1)𝑥1𝑒𝑖𝜋

𝑥
2

2 (𝑈 |𝜓⟩)
= (−1)𝑥2 |𝜓⟩ .
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Note how the two coefficients are akin to the input of the circuit of Eq. (45). It is not

exactly of the right form, but with the remark of 5.6.2, we can can derive the circuit

𝑚

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓⟩ |𝜓⟩

𝐻

QFT
−1

𝐻

𝑈2 𝑈

(1) (2) (3) (4)

(50)

At each step, the state of the system is

1. |0⟩ ⊗ |0⟩ ⊗ |𝜓⟩.

2. |+⟩ ⊗ |+⟩ ⊗ |𝜓⟩ = 1

2
( |0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ |𝜓⟩.

3.
1

2
( |0⟩ + (−1)𝑥2 |1⟩) ⊗ (|0⟩ + |1⟩) ⊗ |𝜓⟩.

4.
1

2
( |0⟩ + (−1)𝑥2 |1⟩) ⊗

(
|0⟩ + (−1)𝑥1𝑒𝑖𝜋

𝑥
2

2 |1⟩
)
⊗ |𝜓⟩.

and at this step, the two first qubits are exactly the input of the circuit in Eq. (45): Apply-

ing the QFT inverse yields |𝑥2𝑥1⟩ ⊗ |𝜓⟩: we can retrieve 𝜔 with a measurement.

5.6.4 Once again, this generalizes. One can also show that this is also working (albeit

probabilistically) if 𝜔 is not writable on precisely 𝑛 bits. The circuit for 4 bits of precision

is

𝑚

|0⟩ |𝑥4⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓⟩ |𝜓⟩

𝐻

QFT
−1

𝐻

𝐻

𝐻

𝑈8 𝑈4 𝑈2 𝑈

(51)

Note how the powers of 𝑈 are powers of 2. Indeed, each power of 𝑈 corresponds to one

bit of 𝜔.
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5.6.5 Note how in Circ. (51) the𝐶-𝑈𝑘
commutes: the circuit can be equivalently written

as

𝑚

|0⟩ |𝑥4⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥1⟩

|𝜓⟩ |𝜓⟩

𝐻

QFT
−1

𝐻

𝐻

𝐻

𝑈 𝑈2 𝑈4 𝑈8

(52)

We can also reorder the top wires, provided that the circuit QFT−1 is written upside down:

𝑚

|0⟩ |𝑥1⟩

|0⟩ |𝑥2⟩

|0⟩ |𝑥3⟩

|0⟩ |𝑥4⟩

|𝜓⟩ |𝜓⟩

𝐻

QFT−1

𝐻

𝐻

𝐻

𝑈 𝑈2 𝑈4 𝑈8

(53)

with

QFT−1 = QFT
−1

(54)

5.6.6 Let us write QPE for the unitary realized by the circuit of 5.6.4. In particular

QPE( |0000⟩ ⊗ |𝜓⟩) = |𝑥4𝑥3𝑥2𝑥1⟩ ⊗ |𝜓⟩ .

Note how this operator is linear. Therefore, if |𝜙⟩ is another eigenvector with eivgenvalue
⌊0.𝑦1𝑦2𝑦3𝑦4⌋2, then

QPE( |0000⟩ ⊗ |𝜙⟩) = |𝑦4𝑦3𝑦2𝑦1⟩ ⊗ |𝜙⟩ ,
and

QPE

(
|0000⟩ ⊗ 1

√
2

( |𝜙⟩ + |𝜓⟩)
)
=

1

√
2

( |𝑦4𝑦3𝑦2𝑦1⟩ ⊗ |𝜙⟩ + |𝑥4𝑥3𝑥2𝑥1⟩ ⊗ |𝜓⟩).

If we were to measure the first 4 qubits, we would get both 𝑥4𝑥3𝑥2𝑥1 and 𝑦4𝑦3𝑦2𝑦1 with

probability
1/2.
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5.7 Trotterization

5.7.1 In QPE, and we shall again use it for VQE and QAPA in Ch. 7, given a Hermitian

matrix 𝐴 we need to derive a circuit for 𝑒𝑖𝑡𝐴. An often used trick is called the Trotter-
Suzuki decomposition. It states that when 𝛿→ 0,

𝑒𝑖𝛿·(𝐴+𝐵) ≃ 𝑒𝑖𝛿·𝐴𝑒𝑖𝛿·𝐵 +𝑂 (𝛿2).

This is called theOrder 1 decomposition. There are also higher-order decompositions with

smaller errors, but they are out of scope for this course.

5.7.2 When 𝐴 and 𝐵 commute: 𝐴𝐵 = 𝐵𝐴, the decomposition is exact and we have

𝑒𝑖𝛿·(𝐴+𝐵) = 𝑒𝑖𝛿·𝐴𝑒𝑖𝛿·𝐵.

5.7.3 If 𝐴 and 𝐵 do not commute, and if one cannot make 𝛿 small, one can still make

use of the decomposition with the following trick:

𝑒𝑖𝛿·(𝐴+𝐵)

= 𝑒𝑖
𝛿
𝑛
·(𝐴+𝐵)+···+𝑖 𝛿

𝑛
·(𝐴+𝐵)

=

(
𝑒𝑖

𝛿
𝑛
·(𝐴+𝐵)

)𝑛
(𝐴 + 𝐵 commutes with itselt)

≃
(
𝑒𝑖

𝛿
𝑛
·𝐴𝑒𝑖

𝛿
𝑛
·𝐵
)𝑛
+𝑂 (𝛿2/𝑛)

5.8 Exercises

5.8.1 Using controlled-rotations, and identifying the 𝑛-sized bitstring 𝑥 with a natural

number, implements the operation

|𝑥⟩ ↦→ 𝑒2𝑖𝜋 𝑥
2
𝑛 |𝑥⟩ .

Explain how it works and your choice of encoding.
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6 Algorithms for LSQ era

6.1 Simple Oracle-Based Algorithms

6.1.1 Deutsch-Josza algorithm. Suppose that we are given the set-function

𝑓 : bool
𝑛 → bool,

with the promise that 𝑓 is either constant or balanced (i.e. the sets of inputs mapping

to 0 and 1 are of equal size). We are looking for an algorithm deciding on the status of

𝑓 : is it constant or balanced? The catch is that 𝑓 is givenas a blackbox: we only know

how to call 𝑓 , and we don’t have any information on how it is built. For instance, you

can consider 𝑓 as a call to an external server. In such an oracle-based algorithm, we care

about the complexity in term of calls to the oracle (the function 𝑓 ).

6.1.2 With a classical algorithm, the only thing we can do is call 𝑓 repeatedly on various

inputs. We need 2
𝑛−1+1 calls to 𝑓 : we might be very unlucky, and our classical procedure

might only pick the inputs mapping to the same Boolean value for the 2
𝑛−1

first calls. So

we really need one more to be sure that the function is indeed constant or balanced.

6.1.3 In the quantum case, we rely on the trick discussed in Section 5.2.1, and instead of

𝑓 we use𝑈 𝑓 . Deutsch-Josza algorithm is very simple: run the circuit below, and measure

the 𝑛 first qubits. 𝑓 est constant if |0...0⟩ was measured, and balanced otherwise. This

requires one single run of the algorithm!

𝑛|0 . . . 0⟩ 𝐻⊗𝑛

𝑈 𝑓

𝐻⊗𝑛

|1⟩ 𝐻

𝑥 𝑥

𝑦 𝑦 ⊕ 𝑓 (𝑥 )

Of course, one could argue that this changes the algorithm since we somehow have to

build the sub-circuit 𝑈 𝑓 out of 𝑓 . But for the purpose of the measure of the oracle-

complexity, this is irrelevant.

6.1.4 Case 𝑛 = 1. Let us compute what happens when 𝑛 = 1. There are 4 possible

functions 𝑓 : The two constant functions of value 0 and 1, the identity and the bit-flip.

Originally, the state is

|0⟩ ⊗ |1⟩ .
After applying the Hadamard gates, we get

1

2

( |0⟩ + |1⟩) ⊗ (|0⟩ − |1⟩)

=
1

2

( |00⟩ + |10⟩ − |01⟩ − |11⟩) .

The oracle is applied:

1

2

(
|0⟩ ⊗ |0 ⊕ 𝑓 (0)⟩ + |1⟩ ⊗ |0 ⊕ 𝑓 (1)⟩

− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩

)
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=
1

2

(
|0⟩ ⊗ | 𝑓 (0)⟩ + |1⟩ ⊗ | 𝑓 (1)⟩

− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩

)
,

followed by yet another Hadamard gate on the first wire:

1

2

√
2

(
( |0⟩ + |1⟩) ⊗ | 𝑓 (0)⟩ + (|0⟩ − |1⟩) ⊗ | 𝑓 (1)⟩

− (|0⟩ + |1⟩) ⊗ |1 ⊕ 𝑓 (0)⟩ − (|0⟩ − |1⟩) ⊗ |1 ⊕ 𝑓 (1)⟩

)
=

1

2

√
2

©­­­«
|0⟩ ⊗ | 𝑓 (0)⟩ + |0⟩ ⊗ | 𝑓 (1)⟩

− |0⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ − |0⟩ ⊗ |1 ⊕ 𝑓 (1)⟩
+ |1⟩ ⊗ | 𝑓 (0)⟩ − |1⟩ ⊗ | 𝑓 (1)⟩
− |1⟩ ⊗ |1 ⊕ 𝑓 (0)⟩ + |1⟩ ⊗ |1 ⊕ 𝑓 (1)⟩

ª®®®¬
=

1

√
2

(
|0⟩ ⊗ 1

2
( | 𝑓 (0)⟩ + | 𝑓 (1)⟩ − |1 ⊕ 𝑓 (0)⟩ − |1 ⊕ 𝑓 (1)⟩)

+ |1⟩ ⊗ 1

2
( | 𝑓 (0)⟩ − | 𝑓 (1)⟩ − |1 ⊕ 𝑓 (0)⟩ + |1 ⊕ 𝑓 (1)⟩)

)
. (55)

6.1.5 Case 𝑛 = 1, with contant 𝑓 . Assume 𝑓 is constant: there is some Boolean value

𝑏 such that 𝑓 (𝑥) = 𝑏 for all 𝑥. The formula in Eq. (55) becomes

1

√
2

(
|0⟩ ⊗ 1

2
( |𝑏⟩ + |𝑏⟩ − |1 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩)

+ |1⟩ ⊗ 1

2
( |𝑏⟩ − |𝑏⟩ − |1 ⊕ 𝑏⟩ + |1 ⊕ 𝑏⟩)

)
=

1

√
2

(
|0⟩ ⊗ 1

2
( |𝑏⟩ + |𝑏⟩ − |1 ⊕ 𝑏⟩ − |1 ⊕ 𝑏⟩)

+ |1⟩ ⊗ 1

2
(0 − 0)

)
= |0⟩ ⊗ 1

√
2

( |𝑏⟩ − |1 ⊕ 𝑏⟩) .

Measuring the first qubit yield 0 with probability 1, as claimed in Sec. 6.1.3.

6.1.6 Case 𝑛 = 1, with non-constant 𝑓 . If the function 𝑓 is not constant, then it is

either the identity or the bit flip. In both cases, we have 𝑓 (1) = 1 ⊕ 𝑓 (0). The formula in

Eq. (55) then becomes

1

√
2

©­­­­­«
|0⟩ ⊗ 1

2

(
| 𝑓 (0)⟩ + |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ − |1 ⊕ 1 ⊕ 𝑓 (0)⟩

)
+

|1⟩ ⊗ 1

2

(
| 𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ + |1 ⊕ 1 ⊕ 𝑓 (0)⟩

) ª®®®®®¬
=

1

√
2

©­­­­­«
|0⟩ ⊗ 1

2

(
| 𝑓 (0)⟩ + |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ − | 𝑓 (0)⟩

)
+

|1⟩ ⊗ 1

2

(
| 𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩
− |1 ⊕ 𝑓 (0)⟩ + | 𝑓 (0)⟩

) ª®®®®®¬
=

1

√
2

©­«
|0⟩ ⊗ 0

+
|1⟩ ⊗ 1

2
(2 | 𝑓 (0)⟩ − 2 |1 ⊕ 𝑓 (0)⟩)

ª®¬
= |1⟩ ⊗ 1

√
2

( | 𝑓 (0)⟩ − |1 ⊕ 𝑓 (0)⟩) .

Measuring the first qubit, we obtain 1 with probability 1.
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6.1.7 Generalization to any 𝑛 Through the Hadamard, the state |0 . . . 0⟩ ⊗ |1⟩ is sent
to

1

√
2

𝑛+1

(
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |0⟩ −
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |1⟩
)

and the action of the oracle gives

1

√
2

𝑛+1

(
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ | 𝑓 (𝑘)⟩ −
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩
)
. (56)

If 𝑓 is constant of Boolean value 𝑏, we get

1

√
2

𝑛+1

(
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |𝑏⟩ −
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑏⟩
)

=
1

√
2

𝑛

(
2
𝑛−1∑︁
𝑘=0

|𝑘⟩
)
⊗ 1

√
2

( |𝑏⟩ − |1 ⊕ 𝑏⟩) ,

and the last tower of Hadamard yield

|0...0⟩ ⊗ 1

√
2

( |𝑏⟩ − |1 ⊕ 𝑏⟩) .

Measuring, we indeed get 00000..000

6.1.8 Now, if 𝑓 were balanced, we can partition the set of indices {0...2𝑛 − 1} into 𝑆0∪𝑆1,

with 𝑆0 ∩ 𝑆1 = ∅, with 𝑓 (𝑥) = 𝑏 whenever 𝑥 ∈ 𝑆𝑏 . From |0 . . . 0⟩ ⊗ |1⟩, applying the

Hadamard gates and the oracle, we get

1

√
2

𝑛+1

(
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ | 𝑓 (𝑘)⟩ −
2
𝑛−1∑︁
𝑘=0

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩
)

=
1

√
2

𝑛+1

( ∑
𝑘∈𝑆0

|𝑘⟩ ⊗ | 𝑓 (𝑘)⟩ −∑
𝑘∈𝑆0

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩
+ ∑

𝑘∈𝑆1

|𝑘⟩ ⊗ | 𝑓 (𝑘)⟩ −∑
𝑘∈𝑆1

|𝑘⟩ ⊗ |1 ⊕ 𝑓 (𝑘)⟩

)
=

1

√
2

𝑛+1

( ∑
𝑘∈𝑆0

|𝑘⟩ ⊗ |0⟩ −∑
𝑘∈𝑆0

|𝑘⟩ ⊗ |1⟩
+ ∑

𝑘∈𝑆1

|𝑘⟩ ⊗ |1⟩ −∑
𝑘∈𝑆1

|𝑘⟩ ⊗ |0⟩

)
=

1

√
2

𝑛

( ∑
𝑘∈𝑆0

|𝑘⟩ ⊗ 1√
2

( |0⟩ − |1⟩)
+ ∑

𝑘∈𝑆1

|𝑘⟩ ⊗ 1√
2

( |1⟩ − |0⟩))

)
=

1

√
2

𝑛

(∑︁
𝑘∈𝑆0

|𝑘⟩ −
∑︁
𝑘∈𝑆1

|𝑘⟩
)
⊗ 1

√
2

( |0⟩ − |1⟩)

=
1

√
2

𝑛

(∑︁
𝑘∈𝑆0

(−1) 𝑓 (𝑘) |𝑘⟩ +
∑︁
𝑘∈𝑆1

(−1) 𝑓 (𝑘) |𝑘⟩
)
⊗ 1

√
2

( |0⟩ − |1⟩)

=
1

√
2

𝑛

(
2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘) |𝑘⟩
)
⊗ 1

√
2

( |0⟩ − |1⟩)
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Yielding, after the last Hadamard gates, to

|𝜓⟩ ⊗ 1

√
2

( |1⟩ − |0⟩)

with

|𝜓⟩ = 1

2
𝑛

2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘)
2
𝑛−1∑︁
𝑗=0

(−1) 𝑗⊙𝑘 | 𝑗⟩ = 1

2
𝑛

2
𝑛−1∑︁
𝑗=0

(
2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘)+ 𝑗⊙𝑘
)
| 𝑗⟩

since 𝐻⊗𝑛 |𝑘⟩ = ∑
2
𝑛−1

𝑗=0
(−1) 𝑗⊙𝑘 | 𝑗⟩ (identifying indices with bitstrings, recall 2.10.8). We

are interested in the coefficient of |0 . . . 0⟩: it corresponds to 𝑗 = 0, so it is(
2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘)+0⊙𝑘
)
=

(
2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘)
)

and since 𝑓 is balanced, there are as many 𝑘 for whuch 𝑓 (𝑘) = 0 as there are for which

𝑓 (𝑘) = 1: the coefficient is 0. Thus, we if were to measure |𝜓⟩, we cannot obtain 0 . . . 0

since the corresponding probability is 0.

6.1.9 Bernstein-Vazirani. An algorithm following the same structure is Bernstein-
Vazirani. The idea is the same as for Deutsch-Josza, except that this time you are told that

the function 𝑓 acting on a bitstring of size 𝑛 is of the form 𝑓 (𝑥1, . . . , 𝑥𝑛) = (𝑎1 . . . 𝑎𝑛) ⊕
(𝑥1 . . . 𝑥𝑛) = 𝑎1 ∧ 𝑥1 ⊕ · · · ⊕ 𝑎𝑛 ∧ 𝑥𝑛, for an unknown bitstring 𝑎. The question is to

figure out this bitstring 𝑎 hidden in the oracle. With a classical algorithm, 𝑛 calls to 𝑓 are

needed... With Bernstein-Vazirani only one is needed!

6.1.10 The circuit is literally the same as for Deutsch-Josza, shown in Sec. 6.1.3. Right

before the last tower of Hadamard, according to Eq. (56) in Sec. 6.1.7 the state is

1

√
2

𝑛

(
2
𝑛−1∑︁
𝑘=0

(−1) 𝑓 (𝑘) |𝑘⟩
)
⊗ 1

√
2

( |0⟩ − |1⟩) .

But now 𝑓 (𝑘) = 𝑎 ⊙ 𝑘 : when we apply the last tower of Hadamard (see Exercise 2.10.8),

we get

|𝑎⟩ ⊗ 1

√
2

( |0⟩ − |1⟩) ,

and measuring gives back the bitstring 𝑎.

6.2 Shor

6.2.1 Maybe the first work to have placed the subject of quantum algorithms on the

table is Shor’s factoring algorithm [Sho97]. Although it is not known whether it is NP-

complete or not, the fact is that we do not know of any classical algorithm able to factor

a number 𝑁 = 𝑝𝑞 (𝑝 and 𝑞 prime numbers) coded on 𝑛 digit in a time polynomial on

𝑛. The problem is deemed hard enough that it is at the root of the main cryptographic

protocol used to encrypt data over the internet: RSA.
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Factorization

Input A number 𝑁 , product of two unknown primes.

Output A divisor of 𝑁 .

OrderFinding

Input Two integers 𝑁 and 𝑎, co-primes.

Output The period 𝑟 of 𝑎, i.e. the smallest 𝑟 > 0 such that 𝑎𝑟 ≡ 1 mod 𝑁 .

PhaseEstimation

Input A unitary𝑈 and an eigenvector |𝜙⟩.
Output The corresponding eigenvalue.

Table 3: Each problem is reduced to the one below.

6.2.2 Provided that we have at disposal a quantum co-processor with a large enough

memory holding stable logical quantum qubits, factoring is at reach in polynomial time

(at least theoretically). The algorithm is based on the concept —standard in complexity

theory— of polynomial reduction: the “difficult” part of factorization is encoded in another

problem that we know how to solve. This process in done in two steps: Factorisation is

first reduced to the problem of ordre finding, and order finding is itself reduced to the

problem of phase estimation: see Table 3.

6.2.3 Step 1: Reducing Factorization to OrderFinding. This really means: “If

I know how to (efficiently) solve OrderFinding, I can easily factor an integer 𝑁”. In fact,

this part of the algorithm is purely classical, relying onmathematical properties. Suppose

that I can solve OrderFinding. I am given 𝑁 = 𝑝𝑞 to factor. The algorithm proceeds as

follows.

1. Select a number 1 < 𝑎 < 𝑁 at random. If it is not co-prime with 𝑁 , we are done:

we have a non-trivial factor.

2. Otherwise, it is co-primewith 𝑁 . We then invoke our algorithm for OrderFinding.

It outputs the smallest number 𝑟 such that 𝑎𝑟 = 1 mod 𝑁 .

3. Assume 𝑟 is even and 𝑎𝑟/2 ≠ −1 mod 𝑁 . Because of mathematical properties

(see Appendix A in Nielsen and Chuang for details), this happens with probability

greater or equal to
1/2: if it fails, start back at step 1.

4. We have 𝑎2 = (𝑎𝑟/2)2 = 1 mod 𝑁 , so (𝑎𝑟/2 − 1) (𝑎𝑟/2 + 1) = 0 mod 𝑁 . Thus, 𝑁

divides (𝑎𝑟/2 − 1) (𝑎𝑟/2 + 1).

5. 𝑁 cannot divide 𝑎𝑟/2 + 1 since we assumed that 𝑎𝑟/2 ≠ −1 mod 𝑁 . It cannot divide

𝑎𝑟/2 − 1 either since that would make 𝑎𝑟/2 = 1 mod 𝑁 , and 𝑟 is was supposed to be

the smallest such integer. Therefore, the only remaining possibility is that one of

the factor of 𝑁 divide 𝑎𝑟/2 − 1, and the other 𝑎𝑟/2 + 1.

6. These factors can be computed with gcd(𝑁, 𝑎𝑟/2 ± 1).
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6.2.4 Step 2: Solving OrderFinding using PhaseEstimation. Note that if 𝑎 and

𝑁 are co-primes, then 𝑥 ↦→ 𝑎 · 𝑥 mod 𝑁 is a reversible function (it is a permutation of

{0...𝑁 − 1}, see 2.10.3). Build the unitary 𝑈𝑎 : |𝑥⟩ ↦→ |𝑎 · 𝑥 mod 𝑁⟩ (multiplucation

modulo 𝑁) According to what we discussed in 5.2, we know that we can implement it

efficiently. We claim that PhaseEstimation can be used on𝑈𝑎 to recover the order of 𝑎

modulo 𝑁 .

6.2.5 The claim is that a suitable eigenvector of 𝑈𝑎 has an eigenvalue from which the

order of 𝑎 modulo 𝑁 can be recovered. Let us consider several possibilities.

• 𝑈𝑎 |0 . . . 0⟩ = |0 . . . 0⟩: the vector |0 . . . 0⟩ is an eigenvector of eigenvalue 1. We

cannot derive anything from this.

• Let us compute:

𝑈𝑎

(
1√
𝑟

∑𝑟−1

𝑘=0
|𝑎𝑘 mod 𝑁⟩

)
= 1√

𝑟

∑𝑟−1

𝑘=0
|𝑎 (𝑘+1) mod 𝑁⟩

= 1√
𝑟

∑𝑟
𝑘=1
|𝑎𝑘 mod 𝑁⟩

= 1√
𝑟
( |𝑎𝑟 mod 𝑁⟩ +∑𝑟−1

𝑘=1
|𝑎𝑘 mod 𝑁⟩)

= 1√
𝑟
( |1 mod 𝑁⟩ +∑𝑟−1

𝑘=1
|𝑎𝑘 mod 𝑁⟩)

= 1√
𝑟
( |𝑎0

mod 𝑁⟩ +∑𝑟−1

𝑘=1
|𝑎𝑘 mod 𝑁⟩)

= 1√
𝑟

∑𝑟−1

𝑘=0
|𝑎𝑘 mod 𝑁⟩

We have another eigenvector of 𝑈𝑎 , with eigenvalue 1. If this is still useless, we

can nonetheless use this technique and add a phase to the various elements in the

sum, in 6.2.6

6.2.6 Fix 𝑠 ∈ {0, . . . , 𝑟 − 1} and define

|𝜙𝑠⟩ =
1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒−2𝑖𝜋 𝑠·𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

Let us compute:

𝑈𝑎 |𝜙𝑠⟩ =
1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒−2𝑖𝜋 𝑠·𝑘
𝑟 𝑈𝑎 |𝑎𝑘 mod 𝑁⟩

=
1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒−2𝑖𝜋 𝑠·𝑘
𝑟 |𝑎 (𝑘+1) mod 𝑁⟩

=
1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒−2𝑖𝜋
𝑠· (𝑘−1)

𝑟 |𝑎𝑘 mod 𝑁⟩

=
1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒2𝑖𝜋 𝑠
𝑟 𝑒−2𝑖𝜋 𝑠·𝑘

𝑟 |𝑎𝑘 mod 𝑁⟩

= 𝑒2𝑖𝜋 𝑠
𝑟 |𝜙𝑠⟩
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This eigenvalue is better since it contains a phase parametrized by 𝑟 . As QPE gives us

the phase, with some luck we can retrieve 𝑟 out. 𝑈𝑎 have 𝑟 such eigenvectors, one for

each value of 𝑠 between 0 and 𝑟 − 1. We would just have to use the fact that

|0...0⟩ ⊗ |𝜙𝑠⟩
𝑄𝑃𝐸 (𝑈𝑎)−−−−−−−→ |𝑥1...𝑥𝑛⟩ ⊗ |𝜙𝑠⟩

where 𝑥1...𝑥𝑛 is a binary representation of the phase of the eigenvalue corresponding to

|𝜙𝑠⟩, from which one could infer 𝑟 .

6.2.7 The problem is that one cannot directly use these eigenvectors |𝜙𝑠⟩ since we need
to know 𝑟 to construct them. However, what we can do is use the fact that the QPE is a

linear map, so we can place them in superposition:

|0...0⟩ ⊗ (𝛼 |𝜙𝑠⟩ + 𝛽 |𝜙𝑠′⟩)
𝑄𝑃𝐸 (𝑈𝑎)−−−−−−−→ 𝛼 |𝑥1...𝑥𝑛⟩ ⊗ |𝜙𝑠⟩ + 𝛽 |𝑦1...𝑦𝑛⟩ ⊗ |𝜙𝑠′⟩

(where 𝑦1...𝑦𝑛 is a binary representation of the phase of the eigenvalue corresponding to

|𝜙𝑠′⟩). The trick consists in realizing that if we place them all in (equal) superposition, as

follows:

1

√
𝑟

𝑟−1∑︁
𝑠=0

|𝜙𝑠⟩ =
1

√
𝑟

𝑟−1∑︁
𝑠=0

1

√
𝑟

𝑟−1∑︁
𝑘=0

𝑒−2𝑖𝜋 𝑠∗𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

=
1

𝑟

𝑟−1∑︁
𝑘=0

𝑟−1∑︁
𝑠=0

𝑒−2𝑖𝜋 𝑠∗𝑘
𝑟 |𝑎𝑘 mod 𝑁⟩

=
1

𝑟

𝑟−1∑︁
𝑘=0

(
𝑟−1∑︁
𝑠=0

𝑒−2𝑖𝜋 𝑠∗𝑘
𝑟

)
|𝑎𝑘 mod 𝑁⟩ (57)

then the inner (red) sum is equal to 𝑟 if 𝑘 = 0, and 0 otherwise (because it is a sum of all

of the roots of unity). Therefore, in Eq (57) all the terms are nul except when 𝑘 = 0: we

get

1

√
𝑟

𝑟−1∑︁
𝑠=0

|𝜙𝑠⟩ =
1

𝑟

(
𝑟 |𝑎0

mod 𝑁⟩
)
= |1⟩𝑛

(where the encoding of 1 on 𝑛 qubits is |0...01⟩).
If we run QPE(𝑈𝑎) on this input, we “compute” all of the phases at once. Consider

two registers, the first one for retrieving the 𝜔 of the eigenvalue and the second one for

the eigenvector. We have

𝑄𝑃𝐸 (𝑈𝑎) ( |0...0⟩ ⊗ |𝜙𝑠⟩) = |𝑠/𝑟⟩ ⊗ |𝜙𝑠⟩

where by |𝑠/𝑟⟩ we mean the approximation of 𝑠/𝑟 over the corresponding number of

qubits. Then

𝑄𝑃𝐸 (𝑈𝑎)
(
|0...0⟩ ⊗ 1

√
𝑟

𝑟−1∑︁
𝑠=0

|𝜙𝑠⟩
)
=

1

√
𝑟

𝑟−1∑︁
𝑠=0

𝑄𝑃𝐸 (𝑈𝑎) ( |0...0⟩ ⊗ |𝜙𝑠⟩)

=
1

√
𝑟

𝑟−1∑︁
𝑠=0

|𝑠/𝑟⟩ ⊗ |𝜙𝑠⟩
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Measuring the first register, we get one of the
𝑠
𝑟
(for the sake of the discussion, assume

that the decomposition on 𝑛 bits is exact)

For instance, if 𝑟 = 4, there are exactly 4 elements in the sum: measuring, we get 0/4,
1/4, 2/4 and 3/4.

• On 2 bits, this is 00, 01, 10 and 11.

• On 3 bits, this is 000, 010, 100 and 110 (since 0.𝑥1𝑥2𝑥3 =
𝑥1

2
+ 𝑥2

4
+ 𝑥3

8
)

If we were to perform many measurements (for 3 bits) and collecting the results, we

would get the following plot

nber of results

000 001 010 011 100 101 110 111

with equiprobable results 000, 010, 100 and 110. If the decomposition were not exact (for

instance when 𝑟 = 3), we would instead get a less precise plot with 3 peaks but not as

sharp. Possibly then 3 bits would not be enough to distinguish them, and we would need

to get to 5 or 6 bits of precision.

In any case, when the precision is high enough, one can “read out” the period 𝑟 of

𝑎 mod 𝑁 from the plot, if we were to run enough computation.

6.2.8 However, in a concrete use-casewe cannot afford to perform enough computations

to draw such a plot. Instead, Shor’s algorithm is run once, and then one retrieves a

possible estimate for 𝑠/𝑟 , one uses the algorithm of continued fractions.
10
to get a putative

value 𝑟 , and one tests whether this gives a factor of 𝑁 . If not, we start over. With a high-

enough probability, this succeeds.

6.3 HHL

6.3.1 A slightly more involved algorithm relying on QPE is HHL, initials of the author’s
names: Harrow, Hassidim, Lloyd [HHL09]. This algorithm solves a linear system of equa-

tion with a complexity arguably better than the one offered by classical algorithms.

10
See e.g. https://en.wikipedia.org/wiki/Continued_fraction#Best_rational_approximations
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6.3.2 The problem can be stated as follows. Consider an hermitian matrix 𝐴 and a vector

®𝑏: we want to solve the equation

𝐴 · ®𝑥 = ®𝑏.
Note that if 𝐴 were not hermitian, we can reduce the problem to the case where the

matrix is (
0 𝐴

𝐴∗ 0

)
(see 6.4.1)

6.3.3 To make use of a quantum co-processor, the idea is to code the vectors
®𝑏 and ®𝑥 as

the coefficients of a ket-vector. For instance assume that
®𝑏 is the vector

©­­­«
𝑏0

𝑏1

𝑏2

𝑏3

ª®®®¬ .
The vector is stored in a 2-qubit register as

|𝑏⟩ = 𝑏0 |00⟩ + 𝑏1 |01⟩ + 𝑏2 |10⟩ + 𝑏3 |11⟩

modulo some renormalization. In the rest, we assume that
®𝑏 is of norm 1.

6.3.4 Complexity-wise, the algorithm is better than classical ones in the following sense.

If

• 𝑁 is the size of the system

• 𝑠 is the number of non-zero elements in a line of 𝐴

• 𝜅 is the condition number of 𝐴 (i.e. the ration between the largest and the smallest

eigenvalue of 𝐴)

• 𝜖 the allowed error

then the complexity are

• In the classical case: O(𝑁𝑠𝜅 log(1/𝜖))

• In the quantum case: O
(
log(𝑁)𝑠2𝜅2/𝜖

)
for HHL.

In summary, we get an exponential gain with respect to the size of the matrix. In theory.
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6.3.5 General idea. Since the matrix 𝐴 is hermitian, according to 2.9.4 it can be writ-

ten as

𝐴 =

𝑁−1∑︁
𝑗=0

𝜆 𝑗 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 |

with the 𝜆 𝑗s being real numbers and {|𝑢 𝑗 ⟩} 𝑗 an orthonormal basis. Provided that none

of the 𝜆 𝑗 are zero (which would make the condition number infinite), we can therefore

safely consider that 𝐴 admits an inverse, and in fact

𝐴−1 =

𝑁−1∑︁
𝑗=0

𝜆−1

𝑗 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 |

Now, | ®𝑏⟩ can be decompose in the basis

{
|𝑢 𝑗 ⟩

}
𝑗
. For instance,

| ®𝑏⟩ =
𝑁−1∑︁
𝑗=0

𝑏 𝑗 |𝑢 𝑗 ⟩

with 𝑏 𝑗 ∈ C. We can then write |𝑥⟩ as

| ®𝑥⟩ = 𝐴−1 | ®𝑏⟩ =
𝑁−1∑︁
𝑗=0

𝜆−1

𝑗 𝑏 𝑗 |𝑢 𝑗 ⟩ .

6.3.6 Can we consider that we solve the problem? If this mathematical development

gives us a formal presentation of |𝑥⟩, it does not say how to compute the various pieces: it
only say that “they exist” and that when combined they give a solution |𝑥⟩ to the problem.

The objective of the algorithm HHL is to provide a computational mean to attain such

a |𝑥⟩. It is however important to emphasize right away that HHL will not derive the

|𝑢 𝑗 ⟩s, the 𝑏𝑖s and the 𝜆 𝑗s. It will only rely on implicit mechanisms that manipulate them,

without having to spell them out. At the end of the computation, a register will be set in

state |𝑥⟩, solution to the problem. But everything will happen implicitely.

6.3.7 Structure of the circuit. We need two parameters, real values to calibrate the

system: 𝑡 and 𝐶. Their mean will be explained later on. The structure of the circuit is as

follows.

| ®𝑏⟩𝑏

|0⟩𝑒𝑖𝑔

|0⟩𝑖𝑛𝑣

register for 𝑏

register for 𝜆 𝑗

register for inversion

QPE QPE
−1

Inv
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The register inv contains a single qubit. The register b contains 𝑛 bits, when 𝑁 = 2
𝑛
. The

size of the register eig depends on the desired precision.

The sub-circuit QPE stands for the quantum phase estimation as in 5.6.1, applied to

the unitary 𝑒𝑖𝑡𝐴. The parameter 𝑡 aims at ensuring that the eigenvalues of 𝑡𝐴 are “not too

large” and that QPE succeeds. The subcircuit Inv stands for any circuit implementing the

operation

Inv : |0⟩𝑖𝑛𝑣 ⊗ |𝑟⟩𝑒𝑖𝑔 ↦−→
(√︂

1 − 𝐶2

𝑟2
|0⟩𝑖𝑛𝑣 +

𝐶

𝑟
|1⟩𝑖𝑛𝑣

)
⊗ |𝑟⟩𝑒𝑖𝑔

where 𝐶 is chosen small enough so that

• this makes sense: we need
𝐶
𝑟
to be within 0 and 1 for the values of 𝑟 we care about

(see below).

• yet the amplitudes corresponding to the subspace |1⟩𝑖𝑛𝑣 are as large as possible (so
that Step 5 in 6.3.10 succeeds with the highest probability).

6.3.8 The operation Inv. If we define the angle 𝜃𝑟 as 2 arcsin(𝐶/𝑟), the action of Inv is
“just” a rotation 𝑅𝑦 (𝜃𝑟) parameterized by 𝑟 . In 5.2, instead of a rotation 𝑅𝑦 the action was 3.5.7

a bit-flip: we can suggest two methods to realize a circuit for Inv replacing the bit-flip

with suitable rotations.

Following the strategy in 5.2.6, if the eig register holds two qubits, and if we consider

that |𝑟0𝑟1⟩ corresponds to the real value 𝑟0

2
+ 𝑟1

4
, the value 𝑟 can take 4 values: 0,

1/4, 1/2 and
3/4, corresponding respectively to the states |00⟩, |01⟩, |10⟩ and |11⟩. The circuit is then

|𝑟0⟩

|𝑟1⟩

𝑅𝑦

(
𝜃1/4

)
𝑅𝑦

(
𝜃1/2

)
𝑅𝑦

(
𝜃3/4

)
The size of the circuit is however exponential on the size of the register eig. Of we can

afford auxiliary qubits, one can rely on the structure of the function 𝜃 to build a circuit

𝑉𝜃 as in 5.2.8, and instead produce a circuit of size polynomial on the size of the register

eig (albeit with a high overhead).

6.3.9 Beware! The problem is always the same: the encoding of natural numbers (or,

for that matter, real numbers) on bitstrings relies on seemingly arbitrary conventions (see

5.3.2). When implementing an algorithm, one has to be careful about choosing the same

notation for all of its subparts. Here, we have to choose the same ones for QPE and Inv.

6.3.10 Overview of the algorithm.

1. At first we have |0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |®𝑏⟩𝑏 =
∑

𝑗 𝑏 𝑗 |0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏
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2. We apply QPE with the matrix

𝑈 = 𝑒𝑖𝐴𝑡 =

𝑁−1∑︁
𝑗=0

𝑒𝑖𝜆 𝑗 𝑡 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 | =
𝑁−1∑︁
𝑗=0

𝑒2𝑖𝜋
𝜆 𝑗 𝑡

2𝜋 |𝑢 𝑗 ⟩ ⟨𝑢 𝑗 |

(remember: QPE recovers the phase 𝜔 of an eigenvalue 𝑒2𝑖𝜋𝜔
).

Note howwe use here the calibration parameter 𝑡. Its purpose is to adjust the values

𝜆 𝑗s to have them fit inside the register eig and minimizing the error.

Assuming that there are no precision error, we now have∑︁
𝑗

𝑏 𝑗 |0⟩𝑖𝑛𝑣 ⊗ |
𝜆 𝑗 𝑡

2𝜋
⟩
𝑒𝑖𝑔
⊗ |𝑢 𝑗 ⟩𝑏

3. We then use the sub-circuit Inv discussed in 6.3.7 and whose action is

Inv: |0⟩𝑖𝑛𝑣 ⊗ |𝑟⟩𝑒𝑖𝑔 ↦→
(√︃

1 − 𝐶2

𝑟2
|0⟩𝑖𝑛𝑣 + 𝐶

𝑟
|1⟩𝑖𝑛𝑣

)
⊗ |𝑟⟩𝑒𝑖𝑔

This uses the second calibration parameter: the value 𝑟 is potentially very small:

we need to renormalize to get to a number between 0 and 1.

In any case, after the action of Inv, we have

∑︁
𝑗

𝑏 𝑗

(√︄
1 − (2𝜋𝐶)

2(
𝜆 𝑗 𝑡

)
2
|0⟩𝑖𝑛𝑣 +

2𝜋𝐶

𝜆 𝑗 𝑡
|1⟩𝑖𝑛𝑣

)
⊗ |

𝜆 𝑗 𝑡

2𝜋
⟩
𝑒𝑖𝑔
⊗ |𝑢 𝑗 ⟩𝑏

4. We then apply the inverse of the first QPE circuit: this uncomputes the |𝜆 𝑗 𝑡⟩s. We

have ∑︁
𝑗

𝑏 𝑗

(√︄
1 − (2𝜋𝐶)

2(
𝜆 𝑗 𝑡

)
2
|0⟩𝑖𝑛𝑣 +

2𝜋𝐶

𝜆 𝑗 𝑡
|1⟩𝑖𝑛𝑣

)
⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏

which is∑︁
𝑗

𝑏 𝑗

√︄
1 − (2𝜋𝐶)

2(
𝜆 𝑗 𝑡

)
2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏 +

∑︁
𝑗

𝑏 𝑗

2𝜋𝐶

𝜆 𝑗 𝑡
|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏

=
∑︁
𝑗

𝑏 𝑗

√︄
1 − (2𝜋𝐶)

2(
𝜆 𝑗 𝑡

)
2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏 +

2𝜋𝐶

𝑡

∑︁
𝑗

𝑏 𝑗

𝜆 𝑗

|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏

=
∑︁
𝑗

𝑏 𝑗

√︄
1 − (2𝜋𝐶)

2(
𝜆 𝑗 𝑡

)
2
|0⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗ |𝑢 𝑗 ⟩𝑏 +

2𝜋𝐶

𝑡
|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗

∑︁
𝑗

𝑏 𝑗

𝜆 𝑗

|𝑢 𝑗 ⟩𝑏

5. We then measure the register inv in the canonical basis.

In the case where the result is 1, accounting for the renormalization factor

𝜂 =
𝑡

2𝜋𝐶

√︂∑
𝑗

𝑏2

𝑗

𝜆2

𝑗
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we have

|1⟩𝑖𝑛𝑣 ⊗ |0⟩𝑒𝑖𝑔 ⊗
∑︁
𝑗

𝜂𝑏 𝑗

𝜆 𝑗

|𝑢 𝑗 ⟩𝑏 .

We therefore get the | ®𝑥⟩ in a state corresponding to ®𝑥, modulo the renormalization

factor 𝜂.

6. In case we are interested in 𝜂, this value can be recovered from the probability to

measure 1 in Step 5.

6.3.11 This algorithm follows a post-selection strategy: we only know if we succeed after

the measure of the register inv. If we get 0, we failed and we have to start over.

6.3.12 One remaining question is: what can we do with | ®𝑥⟩? The coefficients are not

classically available, and recovering them is costly. The HHL algorithm offers a use-case:

instead of trying to recover these coefficients, onemight want to compute the scalar prod-

uct of ®𝑥 with a third vector ®𝑟 . This can be done with the quantum co-processor without

having to extract the coefficients of ®𝑥. . . See the original paper [HHL09] for details.

6.3.13 An example. A working example is

𝐴 =

(
1 −1/3
−1/3 1

)
and

®𝑏 =

(
1

0

)
The solution ®𝑥 is (

9/8
3/8

)
.

To encode the problem we only need one single qubit for
®𝑏, and its state is | ®𝑏⟩𝑏 = |0⟩𝑏 .

For the parameters, we can choose 𝑡 = 2𝜋 3

8
et𝐶 = 1

4
: the calculations add up. We pick

a register eig with two qubits, since

𝐴

(
1

1

)
= 2

3

(
1

1

)
and then 𝜆1 = 2/3.

𝐴

(
1

−1

)
= 4

3

(
1

−1

)
and then 𝜆2 = 4/3.

This means that
𝜆1𝑡
2𝜋

= 1/4 and
𝜆2𝑡
2𝜋

= 1/2. Therefore, with two bits one can store each

of these values in binary as 0.𝑏1𝑏2 ≡ 𝑏1

2
+ 𝑏2

4
. Since 1/4 is 0.01 in binary and 1/2 is 0.10

in binary, the expected register states for eig are |01⟩ and |10⟩, fitting on two qubits.

If you follow my lecture, you might be asked to do a lab-session demonstrating how

the algorithm works on this contrived example.
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6.4 Exercises

6.4.1 Recall 6.3.2: When 𝐴 is not Hermitian, show how one can recover a solution for

the equation 𝐴 · ®𝑥 = ®𝑏 using HHL, by considering instead(
0 𝐴

𝐴∗ 0

)
.
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7 Algorithms for NISQ era

7.1 Variational Algorithms

7.1.1 In Shor’s algorithm, we build one single circuit, once for all. The circuit depends

on the size of the input (we would not use the same circuit to factor 15 and to factor

100970708303), but once te circuit is built, it is used over and over again without change,

until the algorithm succeeds. HHL or Grover are similar: a circuit is carefully crafted and

then used over and over.

7.1.2 Another class of algorithms are the variational algorithms. In such a model, the

circuit is updated each time we need to use it again. The idea is to refine the circuit to get

closer and closer to the solution to the problem. They can be regarded as optimization

techniques: instead of getting closer and closer to an optimal ket-vector (whichwe cannot

manipulate directly), the algorithm optimize a circuit computing the desired ket-vector.

7.1.3 Variational algorithms are particularly well-suited for theNISQ regime of quantum

computation (Noisy Intermediate Scale Quantum, see 4.8.2): they usually do not require

very large quantum memories, they are very flexible in term hardware, and they are

arguably resilient to noise.

7.2 VQE

7.2.1 Maybe the most typical variational algorithm is VQE, whose initials stand for Vari-
ational Quantum Eigensolver. Its objective is to find the extreman eigenvectors of an Her-

mitian matrix, and it perfectly embodies Feynman’s intuition: using a quantum physical 2.9.5

system to compute quantum properties [Fey82]. Indeed, Hermitian matrices (or Hamil-
tonian) are typically used to encode properties of a physical systems, and the extremal

eigenvectors of such operators capture important informations. For non-trivial systems,

the number of dimensions of the state space quickly becomes daunting on conventional

computers.

7.2.2 Optimization problems can be reduced to the quest for an extremal eigenvector in

the following way. An optimization problem is typically under the form

Maximize / minimize 𝐶 (𝑥) when 𝑥 belongs to some set 𝑆

with 𝐶 a cost function outputting real values.

In the discrete, finite case, one can always pick 𝑆 = {0..2𝑛 − 1} (with potentially a

dummy padding to match a power of two in size). The function 𝐶 then simply inputs

bitstrings of size 𝑛, using for instance big-endian notation (see 5.3.2).

If one builds a diagonal hermitian matrix as 2.9.4

𝐻𝐶 =
∑︁
𝑥

𝐶 (𝑥) |𝑥⟩ ⟨𝑥 | ,

we have 𝐻𝐶 |𝑥⟩ = 𝐶 (𝑥) |𝑥⟩. So
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• Minimizing 𝐶 (𝑥) consists in finding the minimal eigenvalue of 𝐻𝐶 .

• Maximizing 𝐶 (𝑥) consists in finding the maximal eigenvalue of 𝐻𝐶 , therefore the

minimal eigenvalue of −𝐻𝐶 : this is the same problem (up to a change in sign).

7.2.3 The kind of problem VQE can solve could be namedQuantumMinEigen:

QuantumMinEigen

Input an hermitian matrix 𝐻

Output an eigenvector |𝜓⟩ with minimal eigenvalue

The algorithm is very simple: it is about solving an optimization problem in the state

space. We aim at minimizing the function

𝐹 :

{
H⊗𝑛 −→ R
|𝜓⟩ ↦−→ ⟨𝜓 | 𝐻 |𝜓⟩ (58)

In theory this is a regular function: one can use any procedure such as gradient descent

to solve it. In practice, it is not clear how to do this efficiently.

7.2.4 Claim. Assuming that 𝜆
min

is the minimal eigenvalue of 𝐻, for all ket-vector |𝜓⟩
we have

⟨𝜓 | 𝐻 |𝜓⟩ ≥ 𝜆
min
.

The equality is attained when |𝜓⟩ = |𝜓
min
⟩.

7.2.5 Proof of 7.2.4. According to 2.9.4, one can rewrite 𝐻 as

𝐻 =
∑︁
𝑗

𝜆 𝑗 · |𝜓 𝑗 ⟩ ⟨𝜓 𝑗 | ,

where the |𝜓 𝑗 ⟩s form an orthonormal basis of eigenvectors. Among them, |𝜓
min
⟩ is a

minimal one. For the sake of the discussion, assume that it is the only one. We then have

𝐻 = 𝜆
min
· |𝜓

min
⟩ ⟨𝜓

min
| +

∑︁
𝑗≠min

𝜆 𝑗 · |𝜓 𝑗 ⟩ ⟨𝜓 𝑗 | .

We can also decompose |𝜓⟩ as

|𝜓⟩ = 𝛼 |𝜓
min
⟩ + 𝛽 |𝜓⊥

min
⟩

where |𝜓⊥
min
⟩ is of norm 1 and orthogonal to |𝜓

min
⟩ and |𝛼 |2 + |𝛽 |2 = 1. The ket-vector

|𝜓⊥
min
⟩ can be written as

|𝜓⊥
min
⟩ =

∑︁
𝑗≠min

𝛾 𝑗 |𝜓 𝑗 ⟩

with ∑︁
𝑗≠min

|𝛾 𝑗 |2 = 1. (59)
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Note how 𝐻 |𝜓⊥
min
⟩ is orthogonal to |𝜓

min
⟩. Let us compute:

⟨𝜓 | 𝐻 |𝜓⟩

=

(
𝛼 ⟨𝜓

min
| + 𝛽 ⟨𝜓⊥

min
|
)
𝐻

(
𝛼 |𝜓

min
⟩ + 𝛽 |𝜓⊥

min
⟩
)

= |𝛼 |2 ⟨𝜓
min
| 𝐻 |𝜓

min
⟩ + 𝛼𝛽 ⟨𝜓⊥

min
| 𝐻 |𝜓

min
⟩ + 𝛼𝛽 ⟨𝜓

min
| 𝐻 |𝜓⊥

min
⟩ + |𝛽 |2 ⟨𝜓⊥

min
| 𝐻 |𝜓⊥

min
⟩

= |𝛼 |2𝜆
min
⟨𝜓

min
| |𝜓

min
⟩ + 𝛼𝛽𝜆

min
⟨𝜓⊥

min
| |𝜓

min
⟩ + 0 + |𝛽 |2 ⟨𝜓⊥

min
| 𝐻 |𝜓⊥

min
⟩

= |𝛼 |2𝜆
min
+ |𝛽 |2 ⟨𝜓⊥

min
| 𝐻 |𝜓⊥

min
⟩ .

Because of the minimality assumption, we have 𝜆
min
≤ 𝜆 𝑗 for all 𝑗 . We also have that

⟨𝜓⊥
min
| 𝐻 |𝜓⊥

min
⟩ =

∑︁
𝑗
|𝛾 𝑗 |2 ⟨𝜓 𝑗 | 𝐻 |𝜓 𝑗 ⟩ =

∑︁
𝑗
|𝛾 𝑗 |2𝜆 𝑗 .

Since 𝜆
min
≤ 𝜆 𝑗 , we derive that

𝜆
min

= 1 ∗ 𝜆
min

=

(∑︁
𝑗
|𝛾 𝑗 |2

)
𝜆

min
=

∑︁
𝑗
|𝛾 𝑗 |2𝜆min

⩽
∑︁

𝑗
|𝛾 𝑗 |2𝜆 𝑗 = ⟨𝜓⊥min

| 𝐻 |𝜓⊥
min
⟩ .

and thus

⟨𝜓⊥
min
| 𝐻 |𝜓⊥

min
⟩ ⩾ 𝜆

min
.

Summarizing,

⟨𝜓 | 𝐻 |𝜓⟩ = |𝛼 |2𝜆
min
+ |𝛽 |2 ⟨𝜓⊥

min
| 𝐻 |𝜓⊥

min
⟩ ⩾ |𝛼 |2𝜆

min
+ |𝛽 |2𝜆

min
=

(
|𝛼 |2 + |𝛽 |2

)
𝜆

min
= 𝜆

min

which shows that ⟨𝜓 | 𝐻 |𝜓⟩ is always larger than 𝜆
min
. This inequality becomes an equal-

ity when |𝜓⟩ is the eigenvector |𝜓
min
⟩ since

⟨𝜓
min
| 𝐻 |𝜓

min
⟩ = 𝜆

min
⟨𝜓

min
| |𝜓

min
⟩ = 𝜆

min
.

7.2.6 Sketch of the VQE algorithm. This is where we will use the quantum co-

processor. Instead of directly manipulating a ket-state |𝜓⟩ to move it towards |𝜓
min
⟩, the

idea consists in manipulating a set of (real) parameters instead, used to specify a circuit.

This circuit is then used to compute a candidate |𝜓⟩. The procedure is as follows:

®𝜃 ∈ R𝑝 build

some circuit

evaluate |𝜓⟩ estimate ⟨𝜓 | 𝐻 |𝜓⟩

The first part generates a circuit out of 𝑝 real parameters, the second part consists in

evaluating the circuit to get the candidate ket-vector |𝜓⟩, and the third part estimates the

desired scalar product. The goal of VQE is to make use of the quantum co-processor for

the two last operations.

7.2.7 Structure of the circuit. For VQE, the circuit is built from an ansatz: a circuit
typically consisting of rotations and 2-qubit gates, where the rotation are parameterized

by the array of real numbers ®𝜃. There is no choice a priori on the structure of the circuit.

We only need a circuit shape that can approximate well-enough the desired extremal

eigenvector. In the context of quantum chemistry, the ansatz can for instance capitalize

on the symmetry of the problem.
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7.2.8 Without any knowledge on the structure of the Hermitian, we are bound tochoose

a generic ansatz, entangling enough to reach enough of the state space. On 1 qubit: we

only need 3 angles (see 3.5.9). On more qubits, we need at least one entangling gate,

typically the CNOT gate, in order to reach states that are not necessarily separable. For 3.3.6

instance, on 3 qubits, one can consider a circuit shaped in layers, as follows.

𝑢(𝜃1, 𝜃2, 𝜃3)

𝑢(𝜃4, 𝜃5, 𝜃6)

𝑢(𝜃7, 𝜃8, 𝜃9)

𝑢(𝜃10, 𝜃11, 𝜃12)

𝑢(𝜃13, 𝜃14, 𝜃15)

𝑢(𝜃16, 𝜃17, 𝜃18)

|0⟩

|0⟩

|0⟩

...

Layer 1 Layer 2

(with 𝑢 a generic unitary parameterized by 3 angles.) As we increase the number of

layers, the ansatz becomes more and more expressive, but also more and more expensive

to compute andmanipulate. Indeed, optimization techniques tend to perform poorly with

a large number of parameters: this problem is known as the Barren plateau.
In any case, the circuit computes a candidate state parameterized by an array of 𝜃’s.

We then have a purely classical set R𝑝
for some 𝑝, representing angles, from which we

build a circuit that, when run on the quantum co-processor, generates the |𝜓⟩ we care

about.

7.2.9 Estimating the scalar product Running the circuit on a quantum co-processor

indeed produces a ket-vector |𝜓⟩, but it is hidden inside the quantummemory. Estimating

⟨𝜓 | 𝐻 |𝜓⟩ can be done using an estimation of the amplitudes of the various basis vectors

in |𝜓⟩.
In this course, we focus on the case of diagonal hermitian matrices. If |𝜓⟩ is

|𝜓⟩ =
∑︁
𝑗

𝛼 𝑗 | 𝑗⟩

then

⟨𝜓 | 𝐻 |𝜓⟩ =
∑︁
𝑗

|𝛼 𝑗 |2𝐶 ( 𝑗)

and this can be computed offline, on the classical device, using an estimate of the proba-

bility distribution coming from the measure of |𝜓⟩.

7.2.10 In details, running the VQE algorithm consists in choosing an ansatz and building

a function 𝑓 : ®𝜃 ↦→[some real] as follows:

• Using the ansatz and the parameters ®𝜃, generate a circuit.

• Run many times (say 𝑁 times) the circuit on |00 . . . 0⟩, followed by a measure.

• This gives an estimation of the probability distribution that associate to each list

of Boolean values 𝑥1, . . . , 𝑥𝑛 the corresponding probability 𝑝®𝑥 ∈ [0, 1].
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• The output of 𝑓 is built as
∑
®𝑥 𝑝®𝑥𝐶 (®𝑥).

The objective is to minimize the function 𝑓 : it is a purely classical function that can

be coded in any language (such as Python) and this can be done using any suitable

optimization library.

7.3 QAOA

7.3.1 Let us take a bit of a high-level view from VQE: we start from a Hermitian, but the

ansatz is completely blind to the structure of this Hermitian. The algorithm only uses

it at the very end to adjust the parameters. One can think that maybe making a circuit

shape specific to the problem could somehow speed up the algorithm: this is the proposal

of Farhi and his co-authors with QAOA [FGG14].

7.3.2 QAOA stands for Quantum Approximate Optimization Algorithm, and can be re-

garded as a specialized VQE for optimization problems. It essentially implements the

simulation of an adiabatic evolution.

7.3.3 How it works. We make use of 2 hermitians, both acting on our 𝑛 qubits. The

first one if 𝐵 =
∑𝑛

𝑖=1
𝜎𝑖
𝑋
, where 𝜎𝑖

𝑋
is the action of 𝑋 on qubit 𝑖, and the Hamiltonian

encoding the cost function: 𝐻𝐶 =
∑

𝑥 𝐶 (𝑥) |𝑥⟩ ⟨𝑥 |. The shape of the algorithm is very

close to VQE:

• Start from a state |𝑠⟩ = 1√
2

𝑛

∑
𝑥1...𝑥𝑛

|𝑥1...𝑥𝑛⟩

– this is just a tower of Hadamard acting on |000...00⟩

• Generate |𝜓⟩ from a circuit parameterized by two arrays ®𝛽 et ®𝛾, each of 𝑝 angles

– |𝜓⟩ = 𝑈𝛽𝑝
𝑉𝛾𝑝

𝑈𝛽𝑝−1
𝑉𝛾𝑝−1

...𝑈𝛽2
𝑉𝛾2

𝑈𝛽1
𝑉𝛾1
|𝑠⟩

– with

∗ 𝑈𝜆 = 𝑒−𝑖𝜆𝐵

∗ 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶

|𝑠⟩ |𝜓⟩𝑉𝛾1
𝑈𝛽1

𝑉𝛾𝑝
𝑈𝛽𝑝

• Compute ⟨𝜓 | 𝐻𝐶 |𝜓⟩ as for VQE.

• This series of operations can be seen as a function that inputs two arrays ( ®𝛽, ®𝛾)
and that outputs a real numbers. As for VQE, we can optimize this function (here,

we will want to MAXIMIZE it).

Seen like that, QAOA is just an instance of VQE, with a circuit that is a bit more funky

than the one we used above. The question is: why do we have a good (better) chance to

get to the right vector if we perform a maximization?
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7.3.4 This raises two questions:

• Is there any proof for any speedup compared to classical methods?

– No

– Some theoretical results for p=1 et p=2, with error bounds

– No speedup shown up to date

– But not proof that there are none...

• Do we at least have a guarantee on the convergence towards a solution?

– Yes, for 𝑝 "large enough"

– To understand how it works, we need a small sidestep.

7.3.5 Sidestep: adiabatic evolution. (Disclaimer: I am not physicists. There are a lot

of caveats in what I will say, but the intuition still stands.) A physical system is subject

to an Hamiltonian 𝐻 which in our case is nothing more than a hermitian matrix. This

Hamiltonian might evolve along time: 𝐻 (𝑡). The evolution of a system |𝜓𝑡⟩ is described
by the Shrödinger equation

𝑑 |𝜓𝑡⟩
𝑑𝑡

= −𝑖 · 𝐻 (𝑡) |𝜓𝑡⟩

Note: if 𝐻 (𝑡) is constant with value 𝐻, the solution with initial condition |𝜓0⟩ is...

|𝜓𝑡⟩ = 𝑒−𝑖𝑡𝐻 |𝜓0⟩

(and we find back the relationship between hermitian and unitary). In any case, the

adiabatic theorem states that

Adiabatic Theorem

If𝐻 (𝑡) varies slow enough, and if the system is at t=0 at minimal energy

level (i.e. its state is a minimal eigenvector of 𝐻 (0)), then at each 𝑡 its

energy level is minimal (i.e. its state is a minimal eigenvector of 𝐻 (𝑡).

The “slow enough” has to do with the spectral gap: the distance between the two lowest

eigenvalues. Note that one can play the same game with the maximal eigenvalue by

instead considering −𝐻 (𝑡) (which is also Hermitian!).

7.3.6 Link with QAOA. We start with

|𝜓0⟩ = |𝑠⟩ =
1

√
2

𝑛

∑︁
𝑥1...𝑥𝑛

|𝑥1...𝑥𝑛⟩ =
1

√
2

( |0⟩ + |1⟩) ⊗ ... ⊗ 1

√
2

( |0⟩ + |1⟩)

We want to get to the eigenvector of maximal eigenvalue for 𝐻𝐶 .

7.3.7 Question: is |𝑠⟩ the maximal eigenvalue for somebody?

→ 𝐵 =
∑𝑛

𝑖=1
𝜎𝑖
𝑋
(𝜎𝑖

𝑋
is the action of 𝑋 on qubit 𝑖)

And it has all of the required properties for the adiabatic theorem to hold.
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7.3.8 From the adiabatic theorem we can deduce that the interpolation:

𝐻 (𝑡) = 𝑡
𝑇
𝐻𝐶 +

(
1 − 𝑡

𝑇

)
𝐵

with a large enough 𝑇 will slowly send |𝑠⟩ to the desired eigenvector

→ 𝐻 (0) = 𝐵 et 𝐻 (𝑇) = 𝐻𝐶

Remains to understand how to do this.

7.3.9 Instead of considering𝐻 (𝑡), we shall consider a piecewise constant approximation.

To not move apart from the "correct" function, we need small eough pieces.

𝑡

𝐻 (𝑡)

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5Δ1 Δ2
Δ3 Δ4 Δ5

0

On each timeslot Δ𝑖 , the Hamiltonian is approximated as constant. One can then say that

(according to the Shrödinger equation)

|𝜓𝑡𝑖+1⟩ ≃ 𝑒−𝑖Δ𝑖𝐻 (𝑡𝑖) |𝜓𝑡𝑖⟩

and then that if we consider the slicing of [0, 𝑇] into 𝑝 slides,

|𝜓𝑇 ⟩ = 𝑒−𝑖Δ𝑝𝐻 (𝑡𝑝) ...𝑒−𝑖Δ2𝐻 (𝑡2)𝑒−𝑖Δ1𝐻 (𝑡1) |𝑠⟩
is an approximation of the maximal eigenvector of 𝐻𝐶 . We almost have the form of the

QAOA circuit

7.3.10 To conclude, we need the Trotter-Suzuki formula of 5.7 stating that

𝑒𝛿(𝐴+𝐵) = 𝑒𝛿𝐴𝑒𝛿𝐵 +𝑂
(
𝛿2

)
whenever 𝛿 is small. So 𝑒−𝑖Δ𝑝𝐻 (𝑡𝑝) = 𝑒−𝑖Δ𝑝 (𝛼𝐵+𝛽𝐻𝐶 ) ≃ 𝑒−𝑖Δ𝑝𝛼𝐵𝑒−𝑖Δ𝑝𝛽𝐻𝐶

since Δ𝑝 is sup-

posed to be small.

7.3.11 Let us summarize: for QAOA, we build

• |𝜓⟩ = 𝑈𝛽𝑝
𝑉𝛾𝑝

𝑈𝛽𝑝−1
𝑉𝛾𝑝−1

...𝑈𝛽2
𝑉𝛾2

𝑈𝛽1
𝑉𝛾1
|𝑠⟩

with

• 𝑈𝜆 = 𝑒−𝑖𝜆𝐵

• 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶
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From the adiabatic theorem, we have

|𝜓𝑇 ⟩ = 𝑒−𝑖Δ𝑝𝐻 (𝑡𝑝) ...𝑒−𝑖Δ2𝐻 (𝑡2)𝑒−𝑖Δ1𝐻 (𝑡1) |𝑠⟩

We can then replace each 𝑒−𝑖Δ𝑝𝐻 (𝑡𝑝)
with a product𝑈𝛼𝑉𝛽. How to choose each of these

𝛼, 𝛽, since we do not know which Δ𝑖 and 𝑡𝑖 are optimal? This is why we consider this as

an optimization problem: a gradient descent (for instance) will figure it out for us.

7.3.12 Summary. For QAOA, we only need to build a circuit

|𝑠⟩ |𝜓⟩𝑉𝛾1
𝑈𝛽1

𝑉𝛾𝑝
𝑈𝛽𝑝

with

• 𝑈𝜆 = 𝑒−𝑖𝜆𝐵 → this is just a tower of 𝑋-rotations (𝑅𝑥-gates) with angles 𝜆

• 𝑉𝜆 = 𝑒−𝑖𝜆𝐻𝐶 → well, this depends on 𝐶 (𝑥) !

and then we minimize a function that

• Inputs ®𝛽, ®𝛾

• Realize and run the corresponding circuit many times

• Get a estimation of the probability distribution

• Compute and return (an estimate of) ⟨𝜓 | 𝐻𝐶 |𝜓⟩

Remains to know how to build 𝑒−𝑖𝜆𝐻𝐶
.

7.3.13 To build 𝑒−𝑖𝜆𝐻𝐶
, one can capitalize on the decomposition presented in 2.10.10:

𝐻𝐶 is written as a sum of (tensors of) Pauli matrices:

𝐻𝐶 =
∑︁

𝐺1,...𝐺𝑛∈{𝑋,𝑌,𝑍,𝐼}
ℎ𝐺1,...,𝐺𝑛

· 𝐺1 ⊗ · · · ⊗ 𝐺𝑛

with ℎ𝐺1,...,𝐺𝑛
∈ R. Note that in the very specific case of QAOA, because 𝐻𝐶 is a diagonal

matrix, so thematrices𝐺𝑖’s are only among 𝐼 and 𝑍 . In any case, using the Trotter-Suzuki

decomposition of 5.7, we deduce that

𝑒−𝑖𝜆𝐻𝐶 ∼
∏

𝐺1,...𝐺𝑛∈{𝑋,𝑌,𝑍,𝐼}
𝑒−𝑖𝜆ℎ𝐺1

,...,𝐺𝑛 ·𝐺1⊗···⊗𝐺𝑛 .

Realizing 𝑒−𝑖𝜆𝐻𝐶
is then reduced to the implementation of an exponential of (tensors of)

Pauli matrices (see for instance 2.10.14 and 3.11.7).
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7.3.14 If 𝐻𝐶 can necessary be written as a linear decomposition of (tensors of) Pauli

matrices, in the context of QAOA the function 𝐶 is in general given in a form that makes

it easy to generate the decomposition: a (real) polynomials of the 𝑥𝑖’s, seen as the values

0 and 1, as follows.

𝐶 (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑘

ℎ𝑘 · 𝑥𝑑1,𝑘

1
· · · 𝑥𝑑𝑛,𝑘𝑛 .

The trick to go from 𝐶 to 𝐻𝐶 is to change the 𝑥 𝑗 ’s with linear functions

𝑋 𝑗 :

H⊗𝑛 → H⊗𝑛

|𝑥1 . . . 𝑥𝑛⟩ →
{
|𝑥1 . . . 𝑥𝑛⟩ if 𝑥 𝑗 = 1

0 else

and the multiplications with function composition. We then have:

𝐻𝐶 =
∑︁
𝑘

ℎ𝑘 · 𝑋𝑑1,𝑘

1
· · · 𝑋𝑑𝑛,𝑘

𝑛

(where 𝑋0

𝑗
stands for the identity function). Now, note how one can encode each 𝑋 𝑗 as

𝑋 𝑗 = (𝐼 − 𝑍 𝑗 )/2

with 𝑍 𝑗 = 𝐼 ⊗ · · · ⊗ 𝐼 ⊗ 𝑍 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼 , the 𝑍 matrix acting on the 𝑗-th qubit. We have

our decomposition:

𝐻𝐶 =
∑︁
𝑘

ℎ𝑘 · ((𝐼 − 𝑍1)/2)𝑑1,𝑘 · · · ((𝐼 − 𝑍𝑛)/2)𝑑𝑛,𝑘

7.3.15 QAOApourMAXCUT. The problemwewant to solve is an optimization prob-
lem, defined as follows.

MAXCUT

Input a non-oriented graph 𝐺 = (𝑉, 𝐸).
Output A CUT: a partition of 𝑉 into 𝑉0 ∪𝑉1 (and 𝑉0 ∩𝑉1 = ∅).
Constraint Minimize the number of edges going from 𝑉0 to 𝑉1.

7.3.16 Consider for instance the following graph.

a
b

cd

• The cost of 𝑉0 = {𝑎, 𝑏}, 𝑉1 = {𝑐, 𝑑} is 2

• The cost of 𝑉0 = {𝑎, 𝑐}, 𝑉1 = {𝑏, 𝑑} is 4

• The cost of 𝑉0 = {𝑐} , 𝑉1 = {𝑎, 𝑏, 𝑑} is 2

The maximal cost one can get is 4, and one of the maxcut is 𝑉0 = {𝑎, 𝑐} , 𝑉1 = {𝑏, 𝑑}
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7.3.17 Cuts as bitstrings In the case of MAXCUT, the cost function works over the

set of all possible cuts. A cut can be coded in a bitstring as follow. Assume𝑉 = {0...𝑛−1}:
One can store in a boolean value 𝑥𝑖 the position of the node 𝑖 ∈ 𝑉 :

𝑖 ∈ 𝑉𝑥𝑖 .

Now, given a vector 𝑥0...𝑥𝑛−1, this vector stores where each node belongs to. For instance,

the max cut of 7.3.16 can be encoded as 0011 or 1100, assuming that 𝑎 = 0, 𝑏 = 1, 𝑐 = 2

and 𝑑 = 3.

7.3.18 TheHermitian of the cost function. In general, one canwrite a cost function

𝐶 (𝑥) =
∑︁
(𝑖, 𝑗)∈𝐸

𝑥𝑖 (1 − 𝑥 𝑗 ) + 𝑥 𝑗 (1 − 𝑥𝑖).

This function “counts” howmany edges connect𝑉0 and𝑉1. The maximum cut is obtained

with themaximization of this function. According to 7.3.14, the corresponding Hermitian

is then

𝐻𝐶 =
∑︁
(𝑖, 𝑗)∈𝐸

(
1

4

(1 − 𝑍𝑖) (1 + 𝑍 𝑗 ) +
1

4

(1 − 𝑍 𝑗 ) (1 + 𝑍𝑖)
)

=
1

4

∑︁
(𝑖, 𝑗)∈𝐸

(1 − 𝑍𝑖 + 𝑍 𝑗 − 𝑍𝑖𝑍 𝑗 + 1 − 𝑍 𝑗 + 𝑍𝑖 − 𝑍 𝑗𝑍𝑖)

=
1

4

∑︁
(𝑖, 𝑗)∈𝐸

(2 − 2𝑍𝑖𝑍 𝑗 )

=
1

2

∑︁
(𝑖, 𝑗)∈𝐸

(1 − 𝑍𝑖𝑍 𝑗 )

All the terms in the sum commute: the unitary 𝑒𝑖𝜆𝐻𝐶
is then exactly

𝑒𝑖𝜆𝐻𝐶 =
∏

𝑒𝜆𝑖(1−𝑍𝑖𝑍 𝑗 ) = (some phase) ·
∏

𝑒−𝜆𝑖𝑍𝑖𝑍 𝑗 .

For the corresponding circuit, see 2.10.14 and 3.11.7. . .

7.4 Exercises

7.4.1 MAXCUT Consider the following graph.

0 2

31

What are (or “is”) the maximum cuts here? What bitstrings do they correspond to? What

is the cost function, and the corresponding Hermitian 𝐻𝐶?
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A Cosine-Sine Decomposition

The statement of Theorem 4.3.13 is as follows:

A.1 Statement

Let𝑈 by any 𝑛 + 1-qubit unitary. One can decompose𝑈 as(
𝐵1 0

0 𝐵2

) (
𝐶 −𝑆
𝑆 𝐶

) (
𝐴1 0

0 𝐴2

)
with 𝐴, 𝐵,𝐶 and 𝑆 𝑛-qubit unitaries, with𝐶 and 𝑆 𝑛-qubit diagonals such that 𝑆2+𝐶2 = Id.

A.2 Proof

A.2.1 Write𝑈 blockwise with 𝑛-qubit-sized blocks:

𝑈 =

(
𝑈11 𝑈12

𝑈21 𝑈22

)
Let 𝐵1𝐶𝐴1 = 𝑈11 be a diagonalization of 𝑈11: the matrices 𝐴1 and 𝐵1 are unitary, and 𝐷

is diagonal with real entries. Without loss of generality, we can assume the entries are

non-negative and in decreasing order (with the largest on the left). Because the columns

of the matrix 𝑈11 are pieces of columns of the unitary 𝑈, their norms are less than 1: so

are the eigenvalues. The matrix 𝐶 can then be represented blockwise as

𝐶 =
©­«
Id 0 0

0 𝐷 0

0 0 0

ª®¬
with 𝐷 diagonal with positive entries that are neither 0 nor 1.

A.2.2 Now, using QL and QR decompositions, choose 𝐵′
2
and 𝐴′

2
so to make 𝐵′

2
𝑈21𝐴

′
1

lower and 𝐵′
1
𝑈12𝐵

′
2
upper triangular. Without loss of generality, we can assume that the

former has non-negative real numbers on the diagonal, while the later has non-positive

ones. Define the matrix 𝐸 as

𝐸 =

(
𝐵′

1
0

0 𝐵′
2

) (
𝑈11 𝑈12

𝑈21 𝑈22

) (
𝐴′

1
0

0 𝐴′
2

)
=

(
𝐶 𝐵′

1
𝑈12𝐴

′
2

𝐵′
2
𝑈21𝐴

′
1

𝐵′
2
𝑈22𝐴

′
2

)
. (60)

It is unitary and can then be written as blocks as follows:

𝐸 =

©­­­­­­­«

Id 0 0 𝑅1 𝑄1 𝑄2

0 𝐷 0 0 𝑅2 𝑄3

0 0 0 0 0 𝑅3

𝐿1 0 0 𝑁1 𝑁2 𝑁3

𝑃1 𝐿2 0 𝑁4 𝑁5 𝑁6

𝑃3 𝑃4 𝐿3 𝑁7 𝑁8 𝑁9

ª®®®®®®®¬
.

Unitarity imposes constraints from which we can explicit each block
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A.2.3 Collapse of 1st block-row and 1st block-column . Each row in

Id 0 0 𝑅1 𝑄1 𝑄2

and each column in

Id
0

0

𝐿1

𝑃1

𝑃3

is of norm 1: this forces 𝑅1,𝑄1,𝑄2, 𝐿1, 𝑃1, 𝑃3 to be zero-matrices since one of the entries

is necessarily 1 (from the Id block).

A.2.4 Collapse of the last block-row. Consider the 3rd block of columns and the

last block of rows:

0

0

0

0

0

𝑃3 𝑃4 𝐿3 𝑁7 𝑁8 𝑁9

The matrix 𝐿3 is lower-triangular as follows:

𝐿3 =

©­­­­«
. . .

...
...

...

· · · 𝑙6 0 0

· · · 𝑙5 𝑙4 0

· · · 𝑙3 𝑙2 𝑙1

ª®®®®¬
.

Consider the column of 𝐸 ending with 𝑙1: all of its other entries are 0s. Since it is of norm

1, 𝑙1 is 1. The last row of 𝐸 is also of norm 1: because one of its entry is 1, all other entries

are 0: the matrix 𝐿3 is

𝐿3 =

©­­­­«
. . .

...
...

...

· · · 𝑙6 0 0

· · · 𝑙5 𝑙4 0

· · · 0 0 1

ª®®®®¬
,

and the last lines of 𝑃3, 𝑃4, 𝑁7, 𝑁8 and 𝑁9 are all 0s.

A similar argument can now be used on the column of 𝐸 containing 𝑙4: we derive

that 𝑙4 is 1, and that the second-to-last line of 𝐸 contains zero everywhere except at the

position 𝑙4:

𝐿3 =

©­­­­«
. . .

...
...

...

· · · 𝑙6 0 0

· · · 0 1 0

· · · 0 0 1

ª®®®®¬
,

and the second-to-last lines of 𝑃3, 𝑃4, 𝑁7, 𝑁8 and 𝑁9 are all 0s. Working through all of

the rows of 𝐿3, we end up with

𝐿3 = Id, 𝑃3 = 0, 𝑃4 = 0, 𝑁7 = 0, 𝑁8 = 0, 𝑁9 = 0.
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Using a symmetric argument, we can derive that

𝑅3 = −Id, 𝑄3 = 0, 𝑄2 = 0, 𝑁3 = 0, 𝑁6 = 0, 𝑁9 = 0

(For the −Id, remember that the matrix has non-positive coefficients on the diagonal).

A.2.5 So far, we simplified 𝐸 into

𝐸 =

©­­­­­­­«

Id 0 0 0 0 0

0 𝐷 0 0 𝑅2 0

0 0 0 0 0 −Id
0 0 0 𝑁1 𝑁2 0

0 𝐿2 0 𝑁4 𝑁5 0

0 0 Id 0 0 0

ª®®®®®®®¬
.

A.2.6 Instantiating 𝑅2. The next step is to instantiate 𝑅2 and 𝐿2. For this, consider

the second block of rows:

0 𝐷 0 0 𝑅2 0.

It is of the form

0 · · · 0

...
...

...
...

0 · · · 0

. . .
...

...
...

· · · 𝑐3 0 0

· · · 0 𝑐2 0

· · · 0 0 𝑐1

0 · · · 0

...
...

...
...

0 · · · 0

0 · · · 0

...
...

...
...

0 · · · 0

. . .
...

...
...

· · · 𝑟3 𝑧3 𝑧2

· · · 0 𝑟2 𝑧1

· · · 0 0 𝑟1

0 · · · 0

...
...

...
...

0 · · · 0

(61)

Because 𝐸 is unitary, the last row in Eq. (61) is of norm 1:

𝑐2

1
+ 𝑟2

1
= 1.

Since 𝑐1 ≠ 1, we deduce 𝑟1 ≠ 0. Since the last and second-to-last are orthogonal, we

have 𝑟1𝑧1 = 0, so 𝑧1 = 0. The same argument on the last and third-to-last gives 𝑧2 = 0.

Proceeding similarly for all the remaining rows, we conclude that the last column of 𝑅2

is zero, except for its last element 𝑟1. Eq. (61) can then be rewritten

0 · · · 0

...
...

...
...

0 · · · 0

. . .
...

...
...

· · · 𝑐3 0 0

· · · 0 𝑐2 0

· · · 0 0 𝑐1

0 · · · 0

...
...

...
...

0 · · · 0

0 · · · 0

...
...

...
...

0 · · · 0

. . .
...

...
...

· · · 𝑟3 𝑧3 0

· · · 0 𝑟2 0

· · · 0 0 𝑟1

0 · · · 0

...
...

...
...

0 · · · 0

(62)

Using the same argument, focusing on the norm of the second-to-last row and the

fact that 𝑐2 ≠ 1, we deduce that 𝑟2 ≠ 0, and then that all elements in 𝑅2 above 𝑟2 are

null. We can proceed upwards, clearing all elements off diagonal: we deduce that 𝑅2 is

diagonal with non-zero entries, and that

𝐷2 + 𝑅2

2
= Id. (63)

A.2.7 Instantiating 𝐿2. Using a similar reasonning but with column in place of rows,

we can deduce that 𝐿2 is diagonal with non-zero entries, and that

𝐷2 + 𝐿2

2
= Id. (64)

Since all of the diagonal elementsof 𝑅2 are non-positive and ones of 𝐿2 are non-negative,

from Eq. (63) and (64) we derive that

𝑅2 = −𝐿2.
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A.2.8 Let us define the diagonal matrix 𝐿2 with 𝑇 : we simplified 𝐸 into

𝐸 =

©­­­­­­­«

Id 0 0 0 0 0

0 𝐷 0 0 −𝑇 0

0 0 0 0 0 −Id
0 0 0 𝑁1 𝑁2 0

0 𝑇 0 𝑁4 𝑁5 0

0 0 Id 0 0 0

ª®®®®®®®¬
.

A.2.9 Collapsing 𝑁2 and 𝑁4. The next step is to show how 𝑁2 and 𝑁4 are zero-

matrices. To show 𝑁2 = 0, we consider the orthogonality of rows in

0 𝐷 0 0 −𝑇 0

with rows in

0 0 0 𝑁1 𝑁2 0

Computing the scalar product of row number 𝑖 in the latter with row number 𝑗 in the

former yields

𝑡𝑖𝑛 𝑗 ,𝑖 = 0,

where 𝑛 𝑗 ,𝑖 is the 𝑗 , 𝑖-th element in 𝑁2 and 𝑡𝑖 the 𝑖th element on the diagonal of 𝑇 . Since

none of these diagonal elements are zero, 𝑡𝑖 ≠ 0, so 𝑛 𝑗 ,𝑖 = 0. And this is true for all 𝑖, 𝑗 .

So 𝑁2 = 0.

We can follow the same argument with columns instead and derive that 𝑁4 = 0.

A.2.10 We then simplified 𝐸 into

𝐸 =

©­­­­­­­«

Id 0 0 0 0 0

0 𝐷 0 0 −𝑇 0

0 0 0 0 0 −Id
0 0 0 𝑁1 0 0

0 𝑇 0 0 𝑁5 0

0 0 Id 0 0 0

ª®®®®®®®¬
.

A.2.11 Instantiating 𝑁5. We can now whow how 𝑁5 is diagonal. First, consider the

scalar product of one the 𝑖th row in the block of rows

0 𝐷 0 0 −𝑇 0

and the 𝑖th row in the block of rows

0 𝑇 0 0 𝑁5 0. (65)

We get 𝑐𝑖𝑡𝑖 − 𝑡𝑖𝑛𝑖,𝑖 = 0 : we deduce that 𝑛𝑖,𝑖 = 𝑐𝑖 . The 𝑖th row in the block of rows of Eq. 65

has a norm of the form

𝑡2𝑖 + 𝑐2

𝑖 +
∑︁
𝑗≠𝑖

|𝑛𝑖, 𝑗 |2,

supposed to be equal to 1. But since 𝑡2
𝑖
+ 𝑐2

𝑖
= 1, we deduce that all of the terms 𝑛𝑖, 𝑗 with

𝑖 ≠ 𝑗 are zero: The matrix 𝑁5 is diagonal, it is in fact equal to 𝐷.
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A.2.12 We then simplified 𝐸 into

𝐸 =

©­­­­­­­«

Id 0 0 0 0 0

0 𝐷 0 0 −𝑇 0

0 0 0 0 0 −Id
0 0 0 𝑁1 0 0

0 𝑇 0 0 𝐷 0

0 0 Id 0 0 0

ª®®®®®®®¬
.

A.2.13 Instantiating 𝑁1. Remains to study 𝑁1. For this, consider the fact that 𝐸
∗𝐸 =

𝐸𝐸∗ = Id. Blockwise, this means 𝑁1𝑁
∗
1
= 𝑁∗

1
𝑁1 = Id.

So if instead of 𝐴′
2
we had chosen

𝐴′′
2
= 𝐴′

2

©­«
−𝑁∗

1
0 0

0 Id 0

0 0 Id

ª®¬
Then we would have gotten instead some other 𝐸′

𝐸′ =

©­­­­­­­«

Id 0 0 0 0 0

0 𝐷 0 0 −𝑇 0

0 0 0 0 0 −Id
0 0 0 𝐼 0 0

0 𝑇 0 0 𝐶 0

0 0 Id 0 0 0

ª®®®®®®®¬
,

of the required form.
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As discussed in 2.6.8 and 3.3.3, we use here a lexicographic ordering on basis vectors.

From 2.10.9

𝑋 ≜
(

0 1

1 0

)
, 𝑍 ≜

(
1 0

0 −1

)
, 𝑌 ≜

(
0 −𝑖
𝑖 0

)
From 2.8.6

Had ≜
1

√
2

(
1 1

1 −1

)
From 3.5.2, 3.5.4 and 3.5.8:

𝑆 ≜
(

1 0

0 𝑖

)
. 𝑇 ≜

(
1 0

0 𝑒𝑖𝜋/4

)
. Ph(𝜃) ≜ 𝑅𝜃 ≜

(
1 0

0 𝑒𝑖𝜃

)
.

From 3.5.7

𝑅𝐺 (𝜃) ≜ 𝑒𝑖
𝜃
2
·𝐺 ≜ cos

(
𝜃

2

)
· Id − 𝑖 sin

(
𝜃

2

)
· 𝐺,

for 𝐺 ∈ {𝑋,𝑌, 𝑍}. Matrix-wise, they can be written as

𝑅𝑋 (𝜃) ≜
(

cos(𝜃/2) −𝑖 sin(𝜃/2)
−𝑖 sin(𝜃/2) cos(𝜃/2)

)
𝑅𝑌 (𝜃) ≜

(
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

)
𝑅𝑍 (𝜃) ≜

(
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

)
From 3.6.7, 3.6.10 and 3.4.12

CNOT ≜
©­­­«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬ , 𝐶-𝑍 ≜
©­­­«

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

ª®®®¬ , SWAP ≜
©­­­«

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®¬ .
From 3.6.8, the Toffoli gate:

𝐶-𝐶-𝑋 ≜

©­­­­­­­­­­­­«

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

ª®®®®®®®®®®®®¬
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array, 8

auxiliary qubits, 38
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circuit synthesis, 33

classical problem, 86

Clifford, 55
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coefficient, 8, 13

coincidence, 81
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complex plane, 6

complexity, 53

compute, 90

conjugate, 5

conjugate transpose, 10

control qubit, 35

controlled operation, 35

converging, 5

copy, 90

copying, 47

correction, 64, 83

Cosine-Sine Decomposition, 58

cost function, 121

creation operator, 79

decoherence, 69

deferred measurement, 42

dense coding, 49

destructive measure, 38

detectors, 75

dimension, 7

discard, 43

dual, 10

dual rail, 80

eigenvalue, 16

eigenvector, 16

electromagnetic wave, 73

encoding, 92

entangled, 27

EPR pair, 27

errors, 70

extremal, 17

family of quantum circuits, 86

field, 4

functionals, 10

garbage qubits, 90

gate-set, 54

geometric series, 5

global phase, 24, 73

graph state, 63

Grover, 97

H, 33

Had, 33

Hadamard, 14, 33

half-adder, 95

Hamiltonian, 17, 121
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heralded, 81, 82

Hermitian, 16

HHL, 114

Hilbert space, 9

Hong-Ou-Mandel effect, 80

imaginary, 5

indistinguishable, 78

instance, 86

internal operations, 28

inverse, 32

joint quantum system, 26

ket, 8

ket-notation, 9

Kronecker product, 12, 26

least significant bit, 92

lexicographic order, 11

linear map, 13

linear optical components, 75

linear optics, 72

little-endian, 93

LOQC, 75

LSQ, 70

magic state, 61

magic states, 55

majority function, 89

mapping, 71, 72

maximal, 17

MBQC, 55, 64

measurement, 28, 38

Measurement-based Computation, 55

minimal, 17

mode, 74

modes, 75

multiplexor, 58

negative controls, 36

NISQ, 70, 121

no-cloning theorem, 47

noise, 70

norm, 5

operator, 13

optical circuit, 75

optimization problem, 129

oracle, 88, 97

oracle-based, 107

orthogonal, 9

orthogonality, 24

orthonormal basis, 9

parametrization, 34

particle, 72

pattern, 65, 66

Pauli, 19, 32

phase, 6, 16, 25, 72

photons, 72

pointer, 22

polarization, 73

polynomial reduction, 111

post-selection, 81, 119

QAOA, 125

QFT, 99, 102

QPE, 103

quantum algorithm, 86

quantum bit, 22, 23

quantum circuit, 29

Quantum Fourier Transform, 99, 102

quantum gates, 28

quantum memory, 22

Quantum Phase Estimation, 103

quantum registers, 22

qubit, 23

radial representation, 6

real number, 4

reasonnable, 54

reference, 22

register, 22

repeat-until-success, 63

representative element, 24

ripple-carry adder, 95

rotations gates, 33

routing, 71, 72

S, 32

scalar product, 8

separable, 26, 27

series, 5

SHIFT basis, 26

signals, 66

Solovay-Kitaev algorithm, 33
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sources, 75

space complexity, 53

spectral gap, 126

subgraph isomorphism problem, 71

surface code, 61

swap, 31

symmetric tensor, 78

synthesis, 57

T, 33

teleportation, 47

tensor, 12

time complexity, 53

Toffoli, 36

topology, 70

tradeoffs, 61

Trotter-Suzuki, 106, 127

uncompute, 90

unequivocally distinguished, 23

unitary, 16, 28

universal, 77

universality, 54

variational, 121

variational algorithms, 87

vector space, 7

vectors, 7

VQE, 121

wave, 72

X, 32

Y, 32

Z, 32

zero, 4
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